![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative. According to the requirements of the Ministry of Housing and Urban-Rural Development of the People's Republic of China-"Notice on Printing 'Development and Revision Plan of National Engineering Construction Standards and Codes in 2009'" (Jian Biao [2009] No. 88), this code is revised from the national standard "Load Code for the Design of Building Structures" GB 50009-2001 (2006 Edition) by the China Academy of Building Research jointly with the organizations concerned. During the revision process, the drafting group seriously summed up the design experience in recent years, made reference to the relevant content of the foreign codes and international standards, developed multiple monographic studies, extensively solicited for the comments of construction competent departments as well as design, research and teaching organizations nationally, and finally finalized upon review through repeated discussion, modification and trial design. This code comprises 10 chapters and 9 appendixes with the main technical contents as follows: general provisions, terms and symbols, classification and combination of loads, permanent load, live load on floors and roofs, crane load, snow load, wind load, thermal action and accidental load. The main technical contents in the revision of this code: 1. the provisions for adjustment coefficient of variable load considering design working life are added; 2. the accidental load combination expression is added; 3. Chapter 4 "Permanent Load" is added; 4. the characteristic values of uniformly distributed live loads on floors and roofs of partial civil buildings are adjusted and supplemented, and the provisions for the value of live load of fire engine in the design of wall, column and foundation are modified, and the live loads on railings are modified and supplemented; 5. the conditions of nonuniform snow distribution on partial roofs are supplemented; 6. the exposure factor for wind load and the peak topography correction coefficient are adjusted; 7. the shape factor of wind load and the local shape factor are supplemented and perfected, the value range of interference effect coefficient of tall building complex is supplemented, and the provisions for wind tunnel test equipment and method requirements are added; 8. the calculation expression and calculation parameter of along-wind vibration coefficient are modified, and the provisions for the calculation principle of the wind vibration of large-span roof structures are added; 9. the provisions for the calculation of equivalent wind load for across-wind and torsional vibration are added, and the provisions for the combination conditions of along-wind load and equivalent wind load for across-wind and torsional vibration are added; 10. the calculation formula and table of gust factor are modified; 11. Chapter 9 "Thermal Action" is added; 12. Chapter 10 "Accidental Load" is added; 13. Appendix B "Reduction Factor of Fire Engine Load Accounting for the Influence of Covered Soil" is added; 14. the reference snow pressure and reference wind pressure of partial cities are adjusted by counting the snow pressure and wind pressure of each meteorological station throughout the country again based on the new observed data, and the new reference snow pressure and reference wind pressure maps throughout the country are drawn; 15. the reference air temperature of each meteorological station throughout the country are given by counting based on the monthly average maximum and monthly average minimum air temperature data over the years, and the reference air temperature distribution maps throughout the country are added; 16. Appendix H "Equivalent Wind Load for Across-wind and Torsional Vibration" is added; 17. Appendix J "Acceleration of Wind Induced Along-wind and Across-wind Vibration for Tall Buildings" is added. In this code, the provision(s) printed in bold type is (are) compulsory one(s) and must be enforced strictly. The Ministry of Housing and Urban-Rural Development of the People's Republic of China is in charge of the administration of this code and the explanation of the compulsory provisions, and the China Academy of Building Research is responsible for the explanation of specific technical contents. During the process of implementing this code, the relevant opinions or advice, whenever necessary, can be posted or passed on to the national standard "Load Code for the Design of Building Structures" Administrative Group of China Academy of Building Research (address: No. 30, North Third Ring East Road, Beijing, 100013, China). Chief development organization of this code: China Academy of Building Research Participating development organizations of this code: Tongji University China Architecture Design and Research Group China Institute of Building Standard Design & Research Beijing Institute of Architectural Design CMA Public Meteorological Service Center Harbin Institute of Technology Dalian University of Technology China Aviation Planning and Construction Development Co., Ltd. East China Architectural Design & Research Institute Co., Ltd. Southwestern Architectural Design Institute Co., Ltd. Central-South Architectural Design Institute Co., Ltd. Shenzhen General Institute of Architectural Design and Research Zhejiang Prov. Institute of Architectural Design and Research Chief drafting staff of this code: Jin Xinyang (the following ones are arranged according to family name strokes) Wang Jian, Wang Guoyan, Feng Yuan, Zhu Dan, Gong Jinxin, Li Ting, Yang Zhenbin, Yang Weibiao, Shu Weinong, Chen Kai, Fan Zhong, Fan Feng, Lin Zheng, Gu Ming, Tang Yi, Han Jisheng Chief examiners of this code: Cheng Maokun, Wang Dasui, Xu Yongji, Chen Jifa Xue Heng, Ren Qingying, Lou Yu, Yuan Jinxi, Zuo Jiang, Wu Yihong, Mo Yong, Zheng Wenzhong, Fang Xiaodan, Zhang Yiping, Fan Xiaoqing Contents 1 General Provisions 1 2 Terms and Symbols 1 2.1 Terms 1 2.2 Symbols 3 3 Classification and Combination of Loads 5 3.1 Classification of Loads and Representative Values of Loads 5 3.2 Combination of Loads 6 4 Permanent Load 9 5 Live Load on Floors and Roofs 10 5.1 Uniformly Distributed Live Loads on Floors in Civil Buildings 10 5.2 Live Loads on Floors in Industrial Buildings 12 5.3 Live Loads on Roofs 13 5.4 Ash Load on Roofs 14 5.5 Construction and maintenance loads, Horizontal and Vertical Loads on Railings 16 5.6 Dynamic Coefficient 16 6 Crane Load 17 6.1 Vertical and Horizontal Crane Loads 17 6.2 Combination of Multi-cranes 17 6.3 Dynamic Coefficients of Crane Loads 18 6.4 Combination Value, Frequent Value and Quasi-permanent Value of Crane Load 18 7 Snow Load 18 7.1 Characteristic Value of Snow Load and Reference Snow Pressure 18 7.2 Distribution Factor for Roof Snow Load 19 8 Wind Load 22 8.1 Characteristic Value of Wind Load and Reference Wind Pressure 22 8.2 Exposure Factor for Wind Pressure 23 8.3 Shape Factor of Wind Load 25 8.4 Along-wind Vibration and Dynamic Response Factor 41 8.5 Across-wind and Wind-induced Torsional Vibration 43 8.6 Gust Factor 45 9 Thermal Action 46 9.1 General 46 9.2 Reference Air Temperature 46 9.3 Uniform Temperature Action 47 10 Accidental Load 47 10.1 General 47 10.2 Explosion 48 10.3 Impact 48 Appendix A Self-weight of Commonly Used Materials and Members 50 Appendix B Reduction Factor of Fire Engine Load Accounting for the Influence of Covered Soil 63 Appendix C Determination Method of Equivalent Uniformly Distributed Live Loads on Floors 64 Appendix D Live Loads on Floors of Industrial Buildings 69 Appendix E Determination Method of Reference Snow Pressure, Wind Pressure and Temperature 75 Appendix F Empirical Formula for Fundamental Natural Period of Structures 103 Appendix G Approximate Vibration Mode Shape of Structures 105 Appendix H Equivalent Wind Load for Across-wind and Torsional Vibration 107 Appendix J Acceleration of Wind Induced Along-wind and Across-wind Vibration for Tall Buildings 114 Explanation of Wording in this Code 117 List of Quoted Standards 118 1 General Provisions 1.0.1 This code is formulated with a view to adapting the need of the building structure design and meeting the requirements of safety and usability, economy and rationality. 1.0.2 This code is applicable to the structural design of building engineering. 1.0.3 This code is formulated in accordance with the basic principles specified in the national standard "Unified Standard for Reliability Design of Engineering Structures" GB 50153-2008. 1.0.4 The actions concerned in the building structure design shall cover direct action (load) and indirect action. This code only specifies load and thermal action, and the provisions for the relevant variable load are also applicable to the thermal action. 1.0.5 The loads concerned in the building structure design shall not only comply with this code, but also those in the current relevant ones of the nation. 2 Terms and Symbols 2.1 Terms 2.1.1 Permanent load Load of which the value does not vary with time during the structure use period, or of which the variation may be neglected compared with the average value, or of which the variation is monotonous and trends to the limit. 2.1.2 Variable load Load of which the value varies with time during the structure use period, and of which the variation cannot be neglected compared with the average value. 2.1.3 Accidental load Load which does not always occur within the design working life of the structure, but its quantity value is very large once occurred and its duration is very short. 2.1.4 Representative values of a load They are used to check the quantity value of loads adopted in the limit state in the design, such as characteristic value, combination value, frequent value and quasi-permanent value. 2.1.5 Design reference period Time parameter which is selected to determine the representative value of variable load. 2.1.6 Characteristic value/nominal value Basic representative value of load and characteristic value of maximum load statistical distribution within the design reference period (such as mean, mode, median or some tantile). 2.1.7 Combination value For variable load, load value which can make the exceedance probability of the combined load effect within the design reference period consistent with the corresponding probability when this load occurs separately; or load value which can make the combined structure have a unified reliability index. 2.1.8 Frequent value For variable load, load value that the total exceedance time is the specified smaller ratio or the exceedance frequency is the specified frequency within the design reference period. 2.1.9 Quasi-permanent value For variable load, load value that the total exceedance time is about one half of the design reference period within the design reference period. 2.1.10 Design value of a load Product of representative value and partial coefficient of a load. 2.1.11 Load effect Reaction of structure or structural member caused by load, such as internal force, deformation and cracking. 2.1.12 Load combination Provisions for various design values of loads emerging simultaneously in order to ensure structure reliability in the limit state design. 2.1.13 Fundamental combination Combination of permanent load and variable load in calculation of limit state of bearing capacity. 2.1.14 Accidental combination Combination of permanent load, variable load and one accidental load in calculation of limit state of bearing capacity, and combination of permanent load and variable load in checking of monolithic stability of damaged structure after accidental event occurs. 2.1.15 Characteristic/nominal combination Combination that adopts characteristic value or combination value as the representative value of a load in calculation of limit state of normal use. 2.1.16 Frequent combination For variable load, combination that adopts frequent value or quasi-permanent value as the representative value of a load in calculation of limit state of normal use. 2.1.17 Quasi-permanent combination For variable load, combination that adopts quasi-permanent value as the representative value of a load in calculation of limit state of normal use. 2.1.18 Equivalent uniform live load Discontinuously distributed actual load on floor in structural design, which is generally replaced with uniform load; the equivalent uniform live load refers to the uniform load that the load effect obtained from its structure can keep consistent with the actual load effect. 2.1.19 Tributary area Floor area for member load calculation in consideration of uniform load reduction of members such as beam and column. 2.1.20 Dynamic coefficient Equivalent coefficient adopted for structure or member bearing dynamic load in static design, of which the value is the ratio of maximum dynamic effect to corresponding static effect of structure or member. 2.1.21 Reference snow pressure Reference pressure of snow load, generally determined based on the 50-year maximum value obtained through probability statistics according to the snow self-weight observation data on the local open and flat ground surface. 2.1.22 Reference wind pressure Reference pressure of wind load, wind speed generally determined based on the 50-year maximum value obtained through probability statistics according to the 10min average wind speed observation data at 10m height on the local open and flat ground surface, and wind pressure determined reconsidering corresponding air density according to Bernoulli Formula (E.2.4). 2.1.23 Terrain roughness Grade for describing the distribution condition of irregular obstructions above this ground where wind blows across 2km range before reaching the structure. 2.1.24 Thermal action Action caused by temperature variation in structure or structural member. 2.1.25 Shade air temperature Temperature measured in a standard thermometer screen and recorded at regular time by the hour. 2.1.26 Reference air temperature Reference value of air temperature, which is determined through statistics according to the average maximum air temperature in the months with maximum temperature and the average minimum air temperature in the months with minimum temperature over the years by taking 50-year monthly average maximum air temperature and monthly average minimum air temperature. 2.1.27 Uniform temperature Temperature which is a constant in the whole section of the structural member and leads the expansion or contraction of the structural member. 2.1.28 Initial temperature Temperature when the structure forms an entirely-confined structural system in some particular construction stage, also called healing temperature. 2.2 Symbols 2.2.1 Representative values and combinations of loads Ad——Characteristic value of accidental load; C——Specified limit when the structure or member reaches the normal use requirements; Gk——Characteristic value of permanent load; Qk——Characteristic value of variable load; Rd——Design value of resistance of structural member; S_(A_d )——Characteristic value of accidental load effect; SGk——Characteristic value of permanent load effect; SQk——Characteristic value of variable load effect; Sd——Design value of load effect combination; γ0——Significance coefficient of structure; γG——Partial coefficient of permanent load; γQ——Partial coefficient of variable load; γ_(L_j )——Adjustment coefficient of variable load considering design working life; ψc——Combination value coefficient of variable load; ψf——Frequent value coefficient of variable load; ψq——Quasi-permanent value coefficient of variable load. 2.2.2 Snow load and wind load aD,z——Acceleration of along-wind vibration at z height of tall buildings (m/s2); aL,z——Acceleration of across-wind vibration at z height of tall buildings (m/s2); B——Windward side width of structure; Bz——Background component factor of fluctuating wind load; C'L——Across-wind force coefficient; C'T——Wind-induced torque coefficient; Cm——Angle edge correction coefficient of across-wind force; Csm——Angle edge correction coefficient of power spectrum of across-wind force; D——Structural plane depth (along-wind dimension) or diameter; f1——Natural vibration frequency of the first order of structure; fT1——Natural vibration frequency of the first order torsion of structure; f1*——Reduced frequency; f_T1^*——Reduced frequency of torsion; FDk——Characteristic value of along-wind force in unit height; FLk——Characteristic value of along-wind force in unit height; TTk——Characteristic value of wind-reduced torque in unit height; g——Gravity acceleration or peak factor; H——Structure height or peak height; I10——Nominal turbulence intensity of wind at 10m height; KL——Correction coefficient of across-wind vibration mode; KT——Correction coefficient of torsional vibration mode; R——Resonant component factor of fluctuating wind load; RL——Resonance factor of across-wind vibration; RT——Resonance factor of wind-induced torsional vibration;Re——Reynolds number; St——Strouhal number; Sk——Characteristic value of snow load; S0——Reference snow pressure; T1——Natural vibration period of the first order of structure; TL1——Natural vibration period of the across-wind first order of structure; TT1——Natural vibration period of the first order of structure torsion; ω0——Reference wind pressure; ωk——Characteristic value of wind load; ωLk——Characteristic value of wind load equivalent to across-wind vibration; ωTk——Characteristic value of wind load equivalent to wind-induced torsional vibration; α——Slope angle, or wind speed profile index; βz——Dynamic response factor at z height; βgz——Gust factor; υcr——Critical wind speed of across-wind resonance; υH——Wind speed at the top of structure; μr——Distribution factor for roof snow load; μz——Exposure factor for wind pressure; μs——Shape factor of wind load; μsl——Local shape factor of wind load; η——Correction coefficient of wind load landform; ηa——Fluctuation coefficient of acceleration of along-wind vibration; ρ——Air density or snow density; ρx and ρz——Correlation coefficient of fluctuating wind load in horizontal and vertical directions; φz——Coefficient of vibration mode of structure; ζ——Damping ratio of structure; ζa——Across-wind aerodynamic damping ratio. 2.2.3 Thermal action Tmax and Tmin——Monthly average maximum air temperature and monthly average minimum air temperature; Ts,max and Ts,min——Maximum average temperature and minimum average temperature of structure; T0,max and T0,min——Maximum initial temperature and minimum initial temperature of structure; ΔTk——Characteristic value of uniform temperature action; αT——Coefficient of linear expansion of materials. 2.2.4 Accidental load Av——Area of access plate (m2); Kdc——Dynamic coefficient for calculating equivalent uniformly distributed static load in explosion; m——Mass of automobile or helicopter; Pk——Characteristic value of impact load; pc——Maximum pressure of uniform dynamic load in explosion; pv——Verified breakdown pressure of access plate; qce——Characteristic value of equivalent uniformly distributed static load in explosion; t——Impact time; υ——Automobile speed (m/s); V——Volume of explosion space. 3 Classification and Combination of Loads 3.1 Classification of Loads and Representative Values of Loads 3.1.1 The loads of the building structures may be classified into: 1 Permanent load, including structure self-weight, soil pressure, prestress, etc. 2 Variable load, including live load on floor, live load on roof and ash load, crane load, wind load, snow load, thermal action, etc. 3 Accidental load, including explosive force, impact force, etc. 3.1.2 In the design of building structures, the different loads shall adopt different representative values according to the following requirements: 1 For permanent load, the characteristic value shall be its representative value; 2 For variable load, the characteristic value, combination value, frequent value or quasi-permanent value shall be its representative value according to the design requirements; 3 For accidental load, its representative value shall be determined according to the use characteristics of the building structures. 3.1.3 The determination of the representative value of variable load shall adopt 50-year design reference period. 3.1.4 The characteristic values of loads shall be adopted according to the requirements of each chapter of this code. 3.1.5 In the design of limit state of bearing capacity or the design of limit state of normal use according to the characteristic combination, for variable load, the combination value or characteristic value shall be its representative value according to the specified load combination. The combination value of variable load shall be the characteristic value of variable load multiplied by the load combination value coefficient. 3.1.6 In the design of limit state of normal use according to frequent combination, for variable load, the frequent value or quasi-permanent value shall be its representative value; in the design according to quasi-permanent combination, the quasi-permanent value of variable load shall be its representative value. The frequent value of variable load shall be the characteristic value of variable load multiplied by the frequent value coefficient. The quasi-permanent value of variable load shall be the characteristic value of variable load multiplied by the quasi-permanent value coefficient. 1 General Provisions 2 Terms and Symbols 2.1 Terms 2.2 Symbols 3 Classification and Combination of Loads 3.1 Classification of Loads and Representative Values of Loads 3.2 Combination of Loads 4 Permanent Load 5 Live Load on Floors and Roofs 5.1 Uniformly Distributed Live Loads on Floors in Civil Buildings 5.2 Live Loads on Floors in Industrial Buildings 5.3 Live Loads on Roofs 5.4 Ash Load on Roofs 5.5 Construction and maintenance loads, Horizontal and Vertical Loads on Railings 5.6 Dynamic Coefficient 6 Crane Load 6.1 Vertical and Horizontal Crane Loads 6.2 Combination of Multi-cranes 6.3 Dynamic Coefficients of Crane Loads 6.4 Combination Value, Frequent Value and Quasi-permanent Value of Crane Load 7 Snow Load 7.1 Characteristic Value of Snow Load and Reference Snow Pressure 7.2 Distribution Factor for Roof Snow Load 8 Wind Load 8.1 Characteristic Value of Wind Load and Reference Wind Pressure 8.2 Exposure Factor for Wind Pressure 8.3 Shape Factor of Wind Load 8.4 Along-wind Vibration and Dynamic Response Factor 8.5 Across-wind and Wind-induced Torsional Vibration 8.6 Gust Factor 9 Thermal Action 9.1 General 9.2 Reference Air Temperature 9.3 Uniform Temperature Action 10 Accidental Load 10.1 General 10.2 Explosion 10.3 Impact Appendix A Self-weight of Commonly Used Materials and Members Appendix B Reduction Factor of Fire Engine Load Accounting for the Influence of Covered Soil Appendix C Determination Method of Equivalent Uniformly Distributed Live Loads on Floors Appendix D Live Loads on Floors of Industrial Buildings Appendix E Determination Method of Reference Snow Pressure, Wind Pressure and Temperature Appendix F Empirical Formula for Fundamental Natural Period of Structures Appendix G Approximate Vibration Mode Shape of Structures Appendix H Equivalent Wind Load for Across-wind and Torsional Vibration Appendix J Acceleration of Wind Induced Along-wind and Across-wind Vibration for Tall Buildings Explanation of Wording in this Code List of Quoted Standards 1 总 则 1.0.1 为了适应建筑结构设计的需要,符合安全适用、经济合理的要求,制定本规范。 1.0.2 本规范适用于建筑工程的结构设计。 1.0.3 本规范依据国家标准《工程结构可靠性设计统一标准》GB 50153-2008规定的基本准则制订。 1.0.4 建筑结构设计中涉及的作用应包括直接作用(荷载)和间接作用。本规范仅对荷载和温度作用作出规定,有关可变荷载的规定同样适用于温度作用。 1.0.5 建筑结构设计中涉及的荷载,除应符合本规范的规定外,尚应符合国家现行有关标准的规定。 2 术语和符号 2.1 术 语 2.1.1 永久荷载 permanent load 在结构使用期间,其值不随时间变化,或其变化与平均值相比可以忽略不计,或其变化是单调的并能趋于限值的荷载。 2.1.2 可变荷载 variable load 在结构使用期间,其值随时间变化,且其变化与平均值相比不可以忽略不计的荷载。 2.1.3 偶然荷载 accidental load 在结构设计使用年限内不一定出现,而一旦出现其量值很大,且持续时间很短的荷载。 2.1.4 荷载代表值 representative values of a load 设计中用以验算极限状态所采用的荷载量值,例如标准值、组合值、频遇值和准永久值。 2.1.5 设计基准期 design reference period 为确定可变荷载代表值而选用的时间参数。 2.1.6 标准值 characteristic value/nominal value 荷载的基本代表值,为设计基准期内最大荷载统计分布的特征值(例如均值、众值、中值或某个分位值)。 2.1.7 组合值 combination value 对可变荷载,使组合后的荷载效应在设计基准期内的超越概率,能与该荷载单独出现时的相应概率趋于一致的荷载值;或使组合后的结构具有统一规定的可靠指标的荷载值。 2.1.8 频遇值 frequent value 对可变荷载,在设计基准期内,其超越的总时间为规定的较小比率或超越频率为规定频率的荷载值。 2.1.9 准永久值 quasi-permanent value 对可变荷载,在设计基准期内,其超越的总时间约为设计基准期一半的荷载值。 2.1.10 荷载设计值 design value of a load 荷载代表值与荷载分项系数的乘积。 2.1.11 荷载效应 load effect 由荷载引起结构或结构构件的反应,例如内力、变形和裂缝等。 2.1.12 荷载组合 load combination 按极限状态设计时,为保证结构的可靠性而对同时出现的各种荷载设计值的规定。 2.1.13 基本组合 fundamental combination 承载能力极限状态计算时,永久荷载和可变荷载的组合。 2.1.14 偶然组合 accidental combination 承载能力极限状态计算时永久荷载、可变荷载和一个偶然荷载的组合,以及偶然事件发生后受损结构整体稳固性验算时永久荷载与可变荷载的组合。 2.1.15 标准组合 characteristic/nominal combination 正常使用极限状态计算时,采用标准值或组合值为荷载代表值的组合。 2.1.16 频遇组合 frequent combination 正常使用极限状态计算时,对可变荷载采用频遇值或准永久值为荷载代表值的组合。 2.1.17 准永久组合 quasi-permanent combination 正常使用极限状态计算时,对可变荷载采用准永久值为荷载代表值的组合。 2.1.18 等效均布荷载 equivalent uniform live load 结构设计时,楼面上不连续分布的实际荷载,一般采用均布荷载代替;等效均布荷载系指其在结构上所得的荷载效应能与实际的荷载效应保持一致的均布荷载。 2.1.19 从属面积 tributary area 考虑梁、柱等构件均布荷载折减所采用的计算构件负荷的楼面面积。 2.1.20 动力系数 dynamic coefficient 承受动力荷载的结构或构件,当按静力设计时采用的等效系数,其值为结构或构件的最大动力效应与相应的静力效应的比值。 2.1.21 基本雪压 reference snow pressure 雪荷载的基准压力,一般按当地空旷平坦地面上积雪自重的观测数据,经概率统计得出50年一遇最大值确定。 2.1.22 基本风压 reference wind pressure 风荷载的基准压力,一般按当地空旷平坦地面上10m高度处10min平均的风速观测数据,经概率统计得出50年一遇最大值确定的风速,再考虑相应的空气密度,按贝努利(Bernoulli)公式(E.2.4)确定的风压。 2.1.23 地面粗糙度 terrain roughness 风在到达结构物以前吹越过2km范围内的地面时,描述该地面上不规则障碍物分布状况的等级。 2.1.24 温度作用 thermal action 结构或结构构件中由于温度变化所引起的作用。 2.1.25 气温 shade air temperature 在标准百叶箱内测量所得按小时定时记录的温度。 2.1.26 基本气温 reference air temperature 气温的基准值,取50年一遇月平均最高气温和月平均最低气温,根据历年最高温度月内最高气温的平均值和最低温度月内最低气温的平均值经统计确定。 2.1.27 均匀温度 uniform temperature 在结构构件的整个截面中为常数且主导结构构件膨胀或收缩的温度。 2.1.28 初始温度 initial temperature 结构在施工某个特定阶段形成整体约束的结构系统时的温度,也称合拢温度。 2.2 符 号 2.2.1 荷载代表值及荷载组合 Ad——偶然荷载的标准值; C——结构或构件达到正常使用要求的规定限值; Gk——永久荷载的标准值; Qk——可变荷载的标准值; Rd——结构构件抗力的设计值; ——偶然荷载效应的标准值; SGk——永久荷载效应的标准值; SQk——可变荷载效应的标准值; Sd——荷载效应组合设计值; γ0——结构重要性系数; γG——永久荷载的分项系数; γQ——可变荷载的分项系数; ——可变荷载考虑设计使用年限的调整系数; ψc——可变荷载的组合值系数; ψf——可变荷载的频遇值系数; ψq——可变荷载的准永久值系数。 2.2.2 雪荷载及风荷载 aD,z——高层建筑z高度顺风向风振加速度(m/s2); aL,z——高层建筑z高度横风向风振加速度(m/s2); B——结构迎风面宽度; Bz——脉动风荷载的背景分量因子; C'L——横风向风力系数; C'T——风致扭矩系数; Cm——横风向风力的角沿修正系数; Csm——横风向风力功率谱的角沿修正系数; D——结构平面进深(顺风向尺寸)或直径; f1——结构第1阶自振频率; fT1——结构第1阶扭转自振频率; f1*——折算频率; ——扭转折算频率; FDk——顺风向单位高度风力标准值; FLk——横风向单位高度风力标准值; TTk——单位高度风致扭矩标准值; g——重力加速度,或峰值因子; H——结构或山峰顶部高度; I10——10m高度处风的名义湍流强度; KL——横风向振型修正系数; KT——扭转振型修正系数; R——脉动风荷载的共振分量因子; RL——横风向风振共振因子; RT——扭转风振共振因子; Re——雷诺数; St——斯脱罗哈数; Sk——雪荷载标准值; S0——基本雪压; T1——结构第1阶自振周期; TL1——结构横风向第1阶自振周期; TT1——结构扭转第1阶自振周期; ω0——基本风压; ωk——风荷载标准值; ωLk——横风向风振等效风荷载标准值; ωTk——扭转风振等效风荷载标准值; α——坡度角,或风速剖面指数; βz——高度z处的风振系数; βgz——阵风系数; υcr——横风向共振的临界风速; υH——结构顶部风速; μr——屋面积雪分布系数; μz——风压高度变化系数; μs——风荷载体型系数; μsl——风荷载局部体型系数; η——风荷载地形地貌修正系数; ηa——顺风向风振加速度的脉动系数; ρ——空气密度,或积雪密度; ρx、ρz——水平方向和竖直方向脉动风荷载相关系数; φz——结构振型系数; ζ——结构阻尼比; ζa——横风向气动阻尼比。 2.2.3 温度作用 Tmax、Tmin——月平均最高气温,月平均最低气温; Ts,max、Ts,min——结构最高平均温度,结构最低平均温度; T0,max、T0,min——结构最高初始温度,结构最低初始温度; ΔTk——均匀温度作用标准值; αT——材料的线膨胀系数。 2.2.4 偶然荷载 Av——通口板面积(m2); Kdc——计算爆炸等效均布静力荷载的动力系数; m——汽车或直升机的质量; Pk——撞击荷载标准值; pc——爆炸均布动荷载最大压力; pv——通口板的核定破坏压力; qce——爆炸等效均布静力荷载标准值; t——撞击时间; υ——汽车速度(m/s); V——爆炸空间的体积。 3 荷载分类和荷载组合 3.1 荷载分类和荷载代表值 3.1.1 建筑结构的荷载可分为下列三类: 1 永久荷载,包括结构自重、土压力、预应力等。 2 可变荷载,包括楼面活荷载、屋面活荷载和积灰荷载、吊车荷载、风荷载、雪荷载、温度作用等。 3 偶然荷载,包括爆炸力、撞击力等。 3.1.2 建筑结构设计时,应按下列规定对不同荷载采用不同的代表值: 1 对永久荷载应采用标准值作为代表值; 2 对可变荷载应根据设计要求采用标准值、组合值、频遇值或准永久值作为代表值; 3 对偶然荷载应按建筑结构使用的特点确定其代表值。 3.1.3 确定可变荷载代表值时应采用50年设计基准期。 3.1.4 荷载的标准值,应按本规范各章的规定采用。 3.1.5 承载能力极限状态设计或正常使用极限状态按标准组合设计时,对可变荷载应按规定的荷载组合采用荷载的组合值或标准值作为其荷载代表值。可变荷载的组合值,应为可变荷载的标准值乘以荷载组合值系数。 3.1.6 正常使用极限状态按频遇组合设计时,应采用可变荷载的频遇值或准永久值作为其荷载代表值;按准永久组合设计时,应采用可变荷载的准永久值作为其荷载代表值。可变荷载的频遇值,应为可变荷载标准值乘以频遇值系数。可变荷载准永久值,应为可变荷载标准值乘以准永久值系数。 3.2 荷载组合 3.2.1 建筑结构设计应根据使用过程中在结构上可能同时出现的荷载,按承载能力极限状态和正常使用极限状态分别进行荷载组合,并应取各自的最不利的组合进行设计。 3.2.2 对于承载能力极限状态,应按荷载的基本组合或偶然组合计算荷载组合的效应设计值,并应采用下列设计表达式进行设计: (3.2.2) 式中:γ0结构重要性系数,应按各有关建筑结构设计规范的规定采用; Sd——荷载组合的效应设计值; Rd——结构构件抗力的设计值,应按各有关建筑结构设计规范的规定确定。 3.2.3 荷载基本组合的效应设计值Sd,应从下列荷载组合值中取用最不利的效应设计值确定: 1 由可变荷载控制的效应设计值,应按下式进行计算: (3.2.3-1) 式中: ——第j个永久荷载的分项系数,应按本规范第3.2.4条采用; ——第i个可变荷载的分项系数,其中 为主导可变荷载Q1的分项系数,应按本规范第3.2.4条采用; ——第i个可变荷载考虑设计使用年限的调整系数,其中 为主导可变荷载Q1考虑设计使用年限的调整系数; ——按第j个永久荷载标准值Gjk计算的荷载效应值; ——按第i个可变荷载标准值Qik计算的荷载效应值,其中 为诸可变荷载效应中起控制作用者; ——第i个可变荷载Qi的组合值系数; m——参与组合的永久荷载数; n——参与组合的可变荷载数。 2 由永久荷载控制的效应设计值,应按下式进行计算: (3.2.3-2) 注:1 基本组合中的效应设计值仅适用于荷载与荷载效应为线性的情况; 2 当对 无法明显判断时,应轮次以各可变荷载效应作为 ,并选取其中最不利的荷载组合的效应设计值。 3.2.4 基本组合的荷载分项系数,应按下列规定采用: 1 永久荷载的分项系数应符合下列规定: 1)当永久荷载效应对结构不利时,对由可变荷载效应控制的组合应取1.2,对由永久荷载效应控制的组合应取1.35; 2)当永久荷载效应对结构有利时,不应大于1.0。 2 可变荷载的分项系数应符合下列规定: 1)对标准值大于4kN/m2的工业房屋楼面结构的活荷载,应取1.3; 2)其他情况,应取1.4。 3 对结构的倾覆、滑移或漂浮验算,荷载的分项系数应满足有关的建筑结构设计规范的规定。 3.2.5 可变荷载考虑设计使用年限的词整系数γL应按下列规定采用: 1 楼面和屋面活荷载考虑设计使用年限的调整系数γL应按表3.2.5采用。 表3.2.5 楼面和屋面活荷载考虑设计使用年限的调整系数γL 结构设计使用年限(年) 5 50 100 γL 0.9 1.0 1.1 注:1 当设计使用年限不为表中数值时,调整系数γL可按线性内插确定; 2 对于荷载标准值可控制的活荷载,设计使用年限调整系数γL取1.0。 2 对雪荷载和风荷载,应取重现期为设计使用年限,按本规范第E.3.3条的规定确定基本雪压和基本风压,或按有关规范的规定采用。 3.2.6 荷载偶然组合的效应设计值Sd可按下列规定采用: 1 用于承载能力极限状态计算的效应设计值,应按下式进行计算: (3.2.6-1) 式中: ——按偶然荷载标准值Ad计算的荷载效应值; ——第1个可变荷载的频遇值系数; ——第i个可变荷载的准永久值系数。 2 用于偶然事件发生后受损结构整体稳固性验算的效应设计值,应按下式进行计算: (3.2.6-2) 注:组合中的设计值仅适用于荷载与荷载效应为线性的情况。 3.2.7 对于正常使用极限状态,应根据不同的设计要求,采用荷载的标准组合、频遇组合或准永久组合,并应按下列设计表达式进行设计: Sd≤C (3.2.7) 式中:C——结构或结构构件达到正常使用要求的规定限值,例如变形、裂缝、振幅、加速度、应力等的限值,应按各有关建筑结构设计规范的规定采用。 3.2.8 荷载标准组合的效应设计值Sd应按下式进行计算: (3.2.8) 注:组合中的设计值仅适用于荷载与荷载效应为线性的情况。 3.2.9 荷载频遇组合的效应设计值Sd应按下式进行计算: (3.2.9) 注:组合中的设计值仅适用于荷载与荷载效应为线性的情况。 3.2.10 荷载准永久组合的效应设计值Sd应按下式进行计算: (3.2.10) 注:组合中的设计值仅适用于荷载与荷载效应为线性的情况。 4 永久荷载 4.0.1 永久荷载应包括结构构件、围护构件、面层及装饰、固定设备、长期储物的自重,土压力、水压力,以及其他需要按永久荷载考虑的荷载。 4.0.2 结构自重的标准值可按结构构件的设计尺寸与材料单位体积的自重计算确定。 4.0.3 一般材料和构件的单位自重可取其平均值,对于自重变异较大的材料和构件,自重的标准值应根据对结构的不利或有利状态,分别取上限值或下限值。常用材料和构件单位体积的自重可按本规范附录A采用。 4.0.4 固定隔墙的自重可按永久荷载考虑,位置可灵活布置的隔墙自重应按可变荷载考虑。 5 楼面和屋面活荷载 5.1 民用建筑楼面均布活荷载 5.1.1 民用建筑楼面均布活荷载的标准值及其组合值系数、频遇值系数和准永久值系数的取值,不应小于表5.1.1的规定。 表5.1.1 民用建筑楼面均布活荷载标准值及 其组合值、频遇值和准永久值系数 项次 类 别 标准值(kN/m2) 组合值系数ψc 频遇值系数ψf 准永久值系数ψq 1 (1)住宅、宿舍、旅馆、办公楼、医院病房、托儿所、幼儿园 2.0 0.7 0.5 0.4 (2)试验室、阅览室、会议室、医院门诊室 2.0 0.7 0.6 0.5 2 教室、食堂、餐厅、一般资料档案室 2.5 0.7 0.6 0.5 3 (1)礼堂、剧场、影院、有固定座位的看台 3.0 0.7 0.5 0.3 (2)公共洗衣房 3.0 0.7 0.6 0.5 4 (1)商店、展览厅、车站、港口、机场大厅及其旅客等候室 3.5 0.7 0.6 0.5 (2)无固定座位的看台 3.5 0.7 0.5 0.3 5 (1)健身房、演出舞台 4.0 0.7 0.6 0.5 (2)运动场、舞厅 4.0 0.7 0.6 0.3 6 (1)书库、档案库、贮藏室 5.0 0.9 0.9 0.8 (2)密集柜书库 12.0 0.9 0.9 0.8 续表5.1.1 项次 类 别 标准值(kN/m2) 组合值系数ψc 频遇值系数ψf 准永久值系数ψq 7 通风机房、电梯机房 7.0 0.9 0.9 0.8 8 汽车通道及客车停 车库 (1)单向板楼盖(板跨不小于2m)和双向板楼盖(板跨不小于3m×3m) 客车 4.0 0.7 0.7 0.6 消防车 35.0 0.7 0.5 0.0 (2)双向板楼盖(板跨不小于6m×6m)和无梁楼盖(柱网不小于6m×6m) 客车 2.5 0.7 0.7 0.6 消防车 20.O 0.7 0.5 0.0 9 厨房 (1)餐厅 4.0 0.7 0.7 0.7 (2)其他 2.0 0.7 0.6 0.5 10 浴室、卫生间、盥洗室 2.5 0.7 0.6 0.5 11 走廊、门厅 (1)宿舍、旅馆、医院病房、托儿所、幼儿园、住宅 2.0 0.7 0.5 0.4 (2)办公楼、餐厅、医院门诊部 2.5 0.7 0.6 0.5 (3)教学楼及其他可能出现人员密集的情况 3.5 0.7 0.5 0.3 12 楼梯 (1)多层住宅 2.0 0.7 0.5 0.4 (2)其他 3.5 0.7 0.5 0.3 续表5.1.1 项次 类 别 标准值(kN/m2) 组合值系数ψc 频遇值系数ψf 准永久值系数ψq 13 阳台 (1)可能出现人员密集的情况 3.5 0.7 0.6 0.5 (2)其他 2.5 0.7 0.6 0.5 注:1 本表所给各项活荷载适用于一般使用条件,当使用荷载较大、情况特殊或有专门要求时,应按实际情况采用; 2 第6项书库活荷载当书架高度大于2m时,书库活荷载尚应按每米书架高度不小于2.5kN/m2确定; 3 第8项中的客车活荷载仅适用于停放载人少于9人的客车;消防车活荷载适用于满载总重为300kN的大型车辆;当不符合本表的要求时,应将车轮的局部荷载按结构效应的等效原则,换算为等效均布荷载; 4 第8项消防车活荷载,当双向板楼盖板跨介于3m×3m~6m×6m之间时,应按跨度线性插值确定; 5 第12项楼梯活荷载,对预制楼梯踏步平板,尚应按1.5kN集中荷载验算; 6 本表各项荷载不包括隔墙自重和二次装修荷载;对固定隔墙的自重应按永久荷载考虑,当隔墙位置可灵活自由布置时,非固定隔墙的自重应取不小于1/3的每延米长墙重(kN/m)作为楼面活荷载的附加值(kN/m2)计入,且附加值不应小于1.0kN/m2。 5.1.2 设计楼面梁、墙、柱及基础时,本规范表5.1.1中楼面活荷载标准值的折减系数取值不应小于下列规定: 1 设计楼面梁时: 1)第1(1)项当楼面梁从属面积超过25m2时,应取0.9; 2)第1(2)~7项当楼面梁从属面积超过50m2时,应取0.9; 3)第8项对单向板楼盖的次梁和槽形板的纵肋应取0.8,对单向板楼盖的主梁应取0.6,对双向板楼盖的梁应取0.8; 4)第9~13项应采用与所属房屋类别相同的折减系数。 2 设计墙、柱和基础时: 1)第1(1)项应按表5.1.2规定采用; 2)第1(2)~7项应采用与其楼面梁相同的折减系数; 3)第8项的客车,对单向板楼盖应取0.5,对双向板楼盖和无梁楼盖应取0.8; 4)第9~13项应采用与所属房屋类别相同的折减系数。 注:楼面梁的从属面积应按梁两侧各延伸二分之一梁间距的范围内的实际面积确定。 表5.1.2 活荷载按楼层的折减系数 墙、柱、基础计算截面以上的层数 1 2~3 4~5 6~8 9~20 >20 计算截面以上各楼层活荷载总和的折减系数 1.00 (0.90) 0.85 0.70 0.65 0.60 0.55 注:当楼面梁的从属面积超过25m2时,应采用括号内的系数。 5.1.3 设计墙、柱时,本规范表5.1.1中第8项的消防车活荷载可按实际情况考虑;设计基础时可不考虑消防车荷载。常用板跨的消防车活荷载按覆土厚度的折减系数可按附录B规定采用。 5.1.4 楼面结构上的局部荷载可按本规范附录C的规定,换算为等效均布活荷载。 5.2 工业建筑楼面活荷载 5.2.1 工业建筑楼面在生产使用或安装检修时,由设备、管道、运输工具及可能拆移的隔墙产生的局部荷载,均应按实际情况考虑,可采用等效均布活荷载代替。对设备位置固定的情况,可直接按固定位置对结构进行计算,但应考虑因设备安装和维修过程中的位置变化可能出现的最不利效应。工业建筑楼面堆放原料或成品较多、较重的区域,应按实际情况考虑;一般的堆放情况可按均布活荷载或等效均布活荷载考虑。 注:1 楼面等效均布活荷载,包括计算次梁、主梁和基础时的楼面活荷载,可分别按本规范附录C的规定确定; 2 对于一般金工车间、仪器仪表生产车间、半导体器件车间、棉纺织车间、轮胎准备车间和粮食加工车间,当缺乏资料时,可按本规范附录D采用。 5.2.2 工业建筑楼面(包括工作平台)上无设备区域的操作荷载,包括操作人员、一般工具、零星原料和成品的自重,可按均布活荷载2.0kN/m2考虑。在设备所占区域内可不考虑操作荷载和堆料荷载。生产车间的楼梯活荷载,可按实际情况采用,但不宜小于3.5kN/m2。生产车间的参观走廊活荷载,可采用3.5kN/m2。 5.2.3 工业建筑楼面活荷载的组合值系数、频遇值系数和准永久值系数除本规范附录D中给出的以外,应按实际情况采用;但在任何情况下,组合值和频遇值系数不应小于0.7,准永久值系数不应小于0.6。 5.3 屋面活荷载 5.3.1 房屋建筑的屋面,其水平投影面上的屋面均布活荷载的标准值及其组合值系数、频遇值系数和准永久值系数的取值,不应小于表5.3.1的规定。 表5.3.1 屋面均布活荷载标准值及其组合值 系数、频遇值系数和准永久值系数 项次 类 别 标准值(kN/m2) 组合值系数ψc 频遇值系数ψf 准永久值系数ψq 1 不上人的屋面 0.5 0.7 0.5 0.0 2 上人的屋面 2.0 0.7 0.5 0.4 3 屋顶花园 3.0 0.7 0.6 0.5 4 屋顶运动场地 3.0 0.7 0.6 0.4 注:1 不上人的屋面,当施工或维修荷载较大时,应按实际情况采用;对不同类型的结构应按有关设计规范的规定采用,但不得低于0.3kN/m2; 2 当上人的屋面兼作其他用途时,应按相应楼面活荷载采用; 3 对于因屋面排水不畅、堵塞等引起的积水荷载,应采取构造措施加以防止;必要时,应按积水的可能深度确定屋面活荷载; 4 屋顶花园活荷载不应包括花圃土石等材料自重。 5.3.2 屋面直升机停机坪荷载应按下列规定采用: 1 屋面直升机停机坪荷载应按局部荷载考虑,或根据局部荷载换算为等效均布荷载考虑。局部荷载标准值应按直升机实际最大起飞重量确定,当没有机型技术资料时,可按表5.3.2的规定选用局部荷载标准值及作用面积。 表5.3.2 屋面直升机停机坪局部荷载标准值及作用面积 类型 最大起飞重量(t) 局部荷载标准值(kN) 作用面积 轻型 2 20 0.20m×0.20m 中型 4 40 0.25m×0.25m 重型 6 60 0.30m×0.30m 2 屋面直升机停机坪的等效均布荷载标准值不应低于5.0kN/m2。 3 屋面直升机停机坪荷载的组合值系数应取0.7,频遇值系数应取0.6,准永久值系数应取0。 5.3.3 不上人的屋面均布活荷载,可不与雪荷载和风荷载同时组合。 5.4 屋面积灰荷载 5.4.1 设计生产中有大量排灰的厂房及其邻近建筑时,对于具有一定除尘设施和保证清灰制度的机械、冶金、水泥等的厂房屋面,其水平投影面上的屋面积灰荷载标准值及其组合值系数、频遇值系数和准永久值系数,应分别按表5.4.1-1和表5.4.1-2采用。 表5.4.1-1 屋面积灰荷载标准值及其组合值系数、频遇值系数和准永久值系数 项次 类别 标准值(kN/m2) 组合值系数ψc 频遇值系数ψf 准永久值系数ψq 屋面无挡风板 屋面有挡风板 挡风板内 挡风板外 1 机械厂铸造车间(冲天炉) 0.50 O.75 0.30 O.9 0.9 0.8 续表5.4.1-1 项次 类别 标准值(kN/m2) 组合值系数ψc 频遇值系数ψf 准永久值系数ψq 屋面无挡风板 屋面有挡风板 挡风板内 挡风板外 2 炼钢车间(氧气转炉) — 0.75 0.30 0.9 0.9 0.8 3 锰、铬铁合金车间 0.75 1.00 0.30 4 硅、钨铁合金车间 0.30 0.50 0.30 5 烧结室、一次混合室 0.50 1.00 0.20 6 烧结厂通廊及其他车间 0.30 — — 7 水泥厂有灰源车间(窑房、磨房、联合贮库、烘干房、破碎房) 1.00 — — 8 水泥厂无灰源车间(空气压缩机站、机修间、材料库、配电站) 0.50 — — 注:1 表中的积灰均布荷载,仅应用于屋面坡度α不大于25°;当α大于45°时,可不考虑积灰荷载;当α在25°~45°范围内时,可按插值法取值; 2 清灰设施的荷载另行考虑; 3 对第1~4项的积灰荷载,仅应用于距烟囱中心20m半径范围内的屋面;当邻近建筑在该范围内时,其积灰荷载对第1、3、4项应按车间屋面无挡风板的采用,对第2项应按车间屋面挡风板外的采用。 表5.4.1-2 高炉邻近建筑的屋面积灰荷载标准值 及其组合值系数、频遇值系数和准永久值系数 高炉容积(m3) 标准值(kN/m2) 组合值系数ψc 频遇值系数ψf 准永久值系数ψq 屋面离高炉距离(m) ≤50 100 200 <255 255~620 >620 0.50 0.75 1.00 — 0.30 0.50 — — 0.30 1.0 1.0 1.0 注:1 表5.4.1-1中的注1和注2也适用本表; 2 当邻近建筑屋面离高炉距离为表内中间值时,可按插入法取值。 5.4.2 对于屋面上易形成灰堆处,当设计屋面板、檩条时,积灰荷载标准值宜乘以下列规定的增大系数: 1 在高低跨处两倍于屋面高差但不大于6.0m的分布宽度内取2.0; 2 在天沟处不大于3.0m的分布宽度内取1.4。 5.4.3 积灰荷载应与雪荷载或不上人的屋面均布活荷载两者中的较大值同时考虑。 5.5 施工和检修荷载及栏杆荷载 5.5.1 施工和检修荷载应按下列规定采用: 1 设计屋面板、檩条、钢筋混凝土挑檐、悬挑雨篷和预制小梁时,施工或检修集中荷载标准值不应小于1.0kN,并应在最不利位置处进行验算; 2 对于轻型构件或较宽的构件,应按实际情况验算,或应加垫板、支撑等临时设施; 3 计算挑檐、悬挑雨篷的承载力时,应沿板宽每隔1.0m取一个集中荷载;在验算挑檐、悬挑雨篷的倾覆时,应沿板宽每隔2.5m~3.0m取一个集中荷载。 5.5.2 楼梯、看台、阳台和上人屋面等的栏杆活荷载标准值,不应小于下列规定: 1 住宅、宿舍、办公楼、旅馆、医院、托儿所、幼儿园,栏杆顶部的水平荷载应取1.0kN/m; 2 学校、食堂、剧场、电影院、车站、礼堂、展览馆或体育场,栏杆顶部的水平荷载应取1.0kN/m,竖向荷载应取1.2kN/m,水平荷载与竖向荷载应分别考虑。 5.5.3 施工荷载、检修荷载及栏杆荷载的组合值系数应取0.7,频遇值系数应取0.5,准永久值系数应取0。 5.6 动力系数 5.6.1 建筑结构设计的动力计算,在有充分依据时,可将重物或设备的自重乘以动力系数后,按静力计算方法设计。 5.6.2 搬运和装卸重物以及车辆启动和刹车的动力系数,可采用1.1~1.3;其动力荷载只传至楼板和梁。 5.6.3 直升机在屋面上的荷载,也应乘以动力系数,对具有液压轮胎起落架的直升机可取1.4;其动力荷载只传至楼板和梁。 6 吊车荷载 6.1 吊车竖向和水平荷载 6.1.1 吊车竖向荷载标准值,应采用吊车的最大轮压或最小轮压。 6.1.2 吊车纵向和横向水平荷载,应按下列规定采用: 1 吊车纵向水平荷载标准值,应按作用在一边轨道上所有刹车轮的最大轮压之和的10%采用;该项荷载的作用点位于刹车轮与轨道的接触点,其方向与轨道方向一致。 2 吊车横向水平荷载标准值,应取横行小车重量与额定起重量之和的百分数,并应乘以重力加速度,吊车横向水平荷载标准值的百分数应按表6.1.2采用。 表6.1.2 吊车横向水平荷载标准值的百分数 吊车类型 额定起重量(t) 百分数(%) 软钩吊车 ≤10 12 16~50 10 ≥75 8 硬钩吊车 — 20 3 吊车横向水平荷载应等分于桥架的两端,分别由轨道上的车轮平均传至轨道,其方向与轨道垂直,并应考虑正反两个方向的刹车情况。 注:1 悬挂吊车的水平荷载应由支撑系统承受;设计该支撑系统时,尚应考虑风荷载与悬挂吊车水平荷载的组合; 2 手动吊车及电动葫芦可不考虑水平荷载。 |
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 |
服务热线:400-001-5431 | 电话:010-8572 5110 | 传真:010-8581 9515 | Email: bz@bzfyw.com | |
版权所有: 北京悦尔信息技术有限公司 2008-2020 京ICP备17065875号-1 51La |
本页关键词: |
GB 50009-2012, GB/T 50009-2012, GBT 50009-2012, GB50009-2012, GB 50009, GB50009, GB/T50009-2012, GB/T 50009, GB/T50009, GBT50009-2012, GBT 50009, GBT50009 |