![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative. According to the requirements of Notice on printing and distributing the development and revision plan on engineering construction standards and codes in 2014 (JIANBIAO [2013] No.169) issued by the Ministry of Housing and Urban-Rural Development of the People's Republic of China, the drafting group has revised this standard through extensive investigation and study, careful drawing of experience from practices, and reference to relevant international and foreign advanced standards and on the basis of widely soliciting for opinions. The main technical contents of this standard are general provisions, terms and symbols, basic requirements, loads and effects, steel tower and mast structure, reinforced concrete cylindrical tower, ground and foundation, and relevant annexes. The main technical contents revised in this standard are as follows: in order to be in coordination with the contents of the new standards issued recently by the state, relevant design contents of wind power tower have been added, requirements for the design of joints of high-rising steel pipe structures supplemented, and the requirements of anti-fatigue design of high-strength bolt under alternating tension and pressure action and the design requirements of prestressed anchor bolt foundation and foundation of prestressed anchor rod in rock for the wind power tower are put forward. The provisions printed in bold type in this standard are compulsory and must be enforced strictly. The Ministry of Housing and Urban-Rural Development is in charge of the administration of this standard and the explanation of compulsory provisions; Tongji University is responsible for the explanation of specific technical contents. In case of any comment or suggestion during the process of implementing this standard, please send it to Tongji University (address: A703 Civil Engineering Bldg., No.1239 Siping Road, Shanghai, 200092). Standard for design of high-rising structures 1 General provisions 1.0.1 This standard is developed with a view to achieving safety, applicability, advanced technology and reasonable economy, ensuring quality and protecting environment in the design of high-rising structures. 1.0.2 This standard is applicable to design for steel and reinforced concrete high-rising structures, including radio and television tower, observation tower, communication tower, navigation tower, transmission tower, petrochemical tower, atmospheric monitoring tower, chimney, exhaust tower, water tower, headstock, watchtower, wind power tower, etc. 1.0.3 The design of high-rise structures shall comprehensively consider the issues of fabrication, protection, transportation, site construction as well as environmental effects and maintenance after completion. 1.0.4 The design of high-rising structures shall meet those specified in both this standard and the current relevant standards of the nation. 2 Terms and symbols 2.1 Terms 2.1.1 high-rising structure high and thin structure 2.1.2 steel tower high-rising steel structure of self-supporting frame type 2.1.3 guyed steel mast high-rising steel structure composed of column and guy 2.1.4 reinforced concrete cylindrical tower self-supporting reinforced concrete high-rising structure with cylindrical cross section 2.1.5 prestressed anchor bolt unbonded prestressed anchor bolt anchored in the foundation through anchor plate for connecting the superstructure 2.1.6 prestressed anchor rod in rock prestressed anchor rod in rock consisting of free section and anchoring section 2.1.7 progressive collapse initial local destruction which extends from member to member and eventually leads to the collapse of the whole structure or a part of the structure that does not correspond to the cause 2.2 Symbols 2.2.1 Actions and action effects Af——the amplitude of horizontal dynamic displacement at the tower under the action of wind pressure frequent value; b——the basic ice thickness; N——the design value of cable tension; q——the linear distribution of gravity of concrete tube; qa——the ice load per unit area; q1——the Ice load per unit length; 1/rc——the bending deformation curvature at the representative section of the concrete tube; 1/rdc——the seismic bending deformation curvature at the representative section of the concrete tube; SA——the downwind wind load effect corresponding to the calculation of crosswind critical wind speed; SL——the crosswind wind vibration effect; Swk——the effect of the wind load standard value; Δu′——the interlayer horizontal displacement difference of cable; Ve——the sum of the vertical components of shear resistance on the sliding surface of soil mass; vcr——the critical wind speed; ω0——the basic wind pressure; ω1——the standard value of wind load on insulator string; ωk——the standard value of wind load acting on unit projected area at the height of z of the high-rising structure; ω0,R——the wind pressure representative value corresponding to the return period of R; ωx——the standard value of horizontal wind load perpendicular to the direction of conductor and ground wire; γ——the ice unit weight. 2.2.2 Calculation indexes: C——the corresponding limits for deformation and crack specified in the design of high-rising structures; fw——the design value of the strength of steel wire rope or steel stranded wire; fu——the lowest tensile strength of anchor bolts after heat treatment; Rt——the characteristic value of anti-uplift bearing capacity of single anchor rod; σcrt——the local stable critical stress of tube wall. 2.2.3 Geometric parameters: A——the gross section area of members, the section area of the steel wire rope or steel stranded wire of the cable, the concrete tube section area, and the area of the foundation bottom; A1——the calculated value of air pressure bearing area of insulator string; d——the outer diameter or, in the case of ice, the calculated outer diameter of conductor or ground wire; the diameter of members with circular section, pull ropes, lacing cords and overhead lines; the outer diameter of the calculated section of concrete tube; the outer diameter of circular plate (ring) foundation slab; and the anchor rod diameter; d0——the inner diameter of the petrochemical tower; H——the total height of high-rising structure; h——the spacing of cables and the height of ribbed plates; H1——the resonance critical wind speed starting height; hcr——the critical depth calculated by soil weight method; ht——the foundation uplift depth; l0——the calculated length of rod between elastic support points; rc——the average radius of bottom section of tube; rco——the section core distance (radius); t——the thickness of connecting piece and the thickness of tube wall; α0——the anti-uplift angle for soil mass weight calculation; θ——the angle between the wind direction and the direction of the conductor or the ground wire, and the angle between the tower column and plumb line,°; λ0——the equivalent slenderness ratio of rod between elastic support points; Φ——the half-angle of compression zone of section. 2.2.4 Calculation coefficients and others: A0——the converted section area of horizontal section of concrete tube; B1——the coefficient of wind load increase in the case of icing; B2——the coefficient of wind load increase with ice on the transmission tower members; fR——the maximum rotational frequency of the wind wheel within the normal operating range; fR,m——the passage frequency of m wind wheel blades; f0, n——the n-th order natural frequency of the tower (in complete machine state); f0,1——the first order natural frequency of the tower (in complete machine state); g——the peak factor; I10——the turbulence intensity at the height of 10m; Re——the Reynolds number; St——the Strouhal number; α1——the correction coefficient of ice thickness related to member diameter; α2——the height increment coefficient of ice thickness; αt——the half-angle coefficient of tensile reinforcement; βz——the wind vibration coefficient at the height of z and the wind vibration coefficient of transmission tower; γ0——the importance coefficient of high-rising structure; γR1——the anti-uplift stability coefficient of soil weight; γR2——the anti-uplift stability coefficient of foundation weight; ε1——the influence coefficient with pressure fluctuation, wind pressure height variation, etc. taken into account; ε2——the influence coefficient with vibration mode and structural shape taken into account; εq——the coefficient with the influence of pressure fluctuation, height variation and vibration mode taken into comprehensive consideration; λj——the coefficient of resonance area; μs——the wind load shape coefficient; μsc——the shape coefficient of conductor or ground wire; μsn——the shape coefficient component perpendicular to the cross beam; μsp——the shape coefficient component parallel to the cross beam; μz——the height variation coefficient of wind pressure at the height of z; ξ——the fluctuation amplifying coefficient, and the stiffness reduction coefficient of latticed mast when the mast is assumed as bending rod piece for calculating; φ——the wind-breaking coefficient; ψ——the strain uniformity coefficient of steel bar between cracks under longitudinal tension, and the form coefficient of annular foundation slab; ψwE——the coefficient of wind load combination value in seismic fundamental combination; ωhs and ωhp——the characteristic coefficient of horizontal section of concrete tube; ωv——the characteristic coefficient of vertical section of concrete tube. 3 Basic requirements 3.0.1 In this standard, the limit state design method based on probability theory shall be adopted, the reliability of structure member measured by reliability index, and design carried out using the partial coefficient design expression. 3.0.2 The design reference period adopted in this standard is 50 years. 3.0.3 The design service life of high-rising structures shall meet the following requirements: 1 The design service life of high-rising structures of great importance shall be 100 years. 2 The design service life of general high-rising structures shall be 50 years. 3 For the communication tower built on the existing building or structure, its design service life should be matched with the subsequent design service life of the existing structure. 4 The design service life of wind power tower should be matched with that of the power generation equipment. 5 For high-rising structures with other special requirements, the service life should be determined according to specific conditions. 3.0.4 The high-rising structures shall meet the following functional requirements within the specified design service life: 1 They are able to withstand various possible loads and actions in normal construction and use; 2 They have good working performance in normal use; 3 They have sufficient durability under normal maintenance; 4 In case of an accidental event, the structure is able to maintain the necessary overall stability and free from damage consequences that do not correspond to the cause so as to prevent the progressive collapse of the structure. 3.0.5 In the design of the high-rise structures, different safety grades shall be adopted according to the possible consequences of structural damage and the severity of harmfulness to human life, economic losses, social and environmental impacts, etc. The safety grade classification of high-rising structures shall meet those specified in Table 3.0.5 and the following requirements: 1 The safety grade of high-rise structures shall be adopted in accordance with the requirements of Table 3.0.5. Foreword ii 1 General provisions 2 Terms and symbols 2.1 Terms 2.2 Symbols 3 Basic requirements 4 Loads and actions 4.1 Classification of loads and actions 4.2 Wind load 4.3 Ice load 4.4 Earthquake action 4.5 Thermal action 5 Steel tower and mast structure 5.1 General requirements 5.2 Calculation of internal forces for steel tower and mast structure 5.3 Deformation and stability of steel tower and mast structure 5.4 Cable 5.5 Members under axial tension and compression 5.6 Members under combined axial force and bending 5.7 Welding connections 5.8 Bolted connections 5.9 Flange connections 5.10 Detailing requirements 6 Reinforced concrete cylindrical tower 6.1 General requirements 6.2 Deformation of tower and internal force calculation of section 6.3 Calculation of bearing capacity 6.4 Calculation of crack 6.5 Detailing of cylindrical 7 Ground and foundation 7.1 General requirements 7.2 Calculation for ground 7.3 Foundation design 7.4 Anti-uplift and anti-sliding stability of foundation Annex A Materials and connections Annex B Stability coefficient of axial compressed steel members Annex C Local stability calculation of monopole Annex D Critical value of gusset plate’s size Annex E Calculation of capacity for section with openings Annex F Calculation of distance between the centroidal axis and the central axis of the section, and moment of the core of the section Annex G Stress calculation of section of concrete tube with openings Annex H Pressure calculation coefficient of the base zero stress zone for circle or ring foundation under eccentric load Annex J Calculation of the anti-uplift stability for foundation and anchored plate Explanation of wording in this standard List of quoted standards 1 总 则 1.0.1 为了在高耸结构设计中做到安全适用、技术先进、经济合理、确保质量、保护环境,制定本标准。 1.0.2 本标准适用于钢及钢筋混凝土高耸结构,包括广播电视塔、旅游观光塔、通信塔、导航塔、输电高塔、石油化工塔、大气监测塔、烟囱、排气塔、水塔、矿井架、瞭望塔、风力发电塔等的设计。 1.0.3 高耸结构设计应综合考虑制作、防护、运输、现场施工以及建成后的环境影响和维护保养等问题。 1.0.4 高耸结构设计除应符合本标准的规定外,尚应符合国家现行有关标准的规定。 2术语和符号 2.1 术 语 2.1.1 高耸结构high-rising structure 高而细的结构。 2.1.2 钢塔架 steel tower 自立构架式高耸钢结构。 2.1.3 钢桅杆 guyed steel mast 由立柱和拉索构成的高耸钢结构。 2.1.4混凝土圆筒形塔 reinforced concrete cylindrical tower 横截面为圆筒形、材料为钢筋混凝土的自立式高耸结构。 2.1.5预应力锚栓prestressed anchor bolt 通过锚固板锚固于基础中,用于连接上部结构的无黏结预应力地脚螺栓。 2.1.6预应力岩石锚杆prestressed anchor rod in rock 由自由段和锚固段构成的施加预应力的岩石锚杆。 2.1.7 连续倒塌progressive collapse 初始的局部破坏,从构件到构件扩展,最终导致整个结构倒塌或与起因不相称的一部分结构倒塌。 2.2 符 号 2.2.1作用和作用效应: Af——风压频遇值作用下塔楼处水平动位移幅值; b——基本覆冰厚度; N——纤绳拉力设计值; q——塔筒线分布重力; qa——单位面积上的覆冰荷载; q1——单位长度上的覆冰荷载; 1/rc——塔筒代表截面处的弯曲变形曲率; 1/rdc——塔筒代表截面处的地震弯曲变形曲率; SA——与横风向临界风速计算相应的顺风向风荷载效应; SL——横风向风振效应; Swk——风荷载标准值的效应; Δu′——纤绳层间水平位移差; Ve——土体滑动面上剪切抗力的竖向分量之和; vcr——临界风速; w0——基本风压; w1——绝缘子串风荷载的标准值; wk——作用在高耸结构z高度处单位投影面积上的风荷载标准值; w0,R——对应于重现期为R的风压代表值; wx——垂直于导线及地线方向的水平风荷载标准值; γ——覆冰重度。 2.2.2计算指标: C——高耸结构设计对变形、裂缝等规定的相应限值; fw——钢丝绳或钢绞线强度设计值; fu——锚栓经热处理后的最低抗拉强度; Rt——单根锚杆抗拔承载力特征值; σcrt——筒壁局部稳定临界应力。 2.2.3几何参数: A——构件毛截面面积,纤绳的钢丝绳或钢绞线截面面积,塔筒截面面积,基础底面面积; A1——绝缘子串承受风压面积计算值; d——导线或地线的外径或覆冰时的计算外径,圆截面构件、拉绳、缆索、架空线的直径,塔筒计算截面的外径,圆板(环)形基础底板的外径,锚杆直径; d0——石油化工塔的内径; H——高耸结构总高度; h——纤绳的间距,肋板的高度; H1——共振临界风速起始高度; hcr——土重法计算的临界深度; ht——基础上拔深度; l0——弹性支承点之间杆身计算长度; rc——简体底截面的平均半径; rco——截面核心距(半径); t——连接件的厚度,筒壁厚度; α0——土体重量计算的抗拔角; θ——风向与导线或地线方向之间的夹角(°),塔柱与铅直线的夹角; λ0——弹性支承点之间杆身换算长细比; Φ——截面受压区半角。 2.2.4计算系数及其他: A0——塔筒水平截面的换算截面面积; B1——覆冰时风荷载增大系数; B2——输电高塔构件覆冰时风荷载增大系数; fR——正常运行范围内风轮的最大旋转频率; fR,m——m个风轮叶片的通过频率; f0,n——塔架(在整机状态下)的第n阶固有频率; f0,1——塔架(在整机状态下)的第一阶固有频率; g——峰值因子; I10——10m高紊流度; Re——雷诺数; St——斯脱罗哈数; α1——与构件直径有关的覆冰厚度修正系数; α2——覆冰厚度的高度递增系数; αt——受拉钢筋的半角系数; βz——高度z处的风振系数、输电高塔风振系数; γ0——高耸结构重要性系数; γR1——土体重的抗拔稳定系数; γR2——基础重的抗拔稳定系数; ε1——风压脉动和风压高度变化等的影响系数; ε2——振型、结构外形的影响系数; εq——综合考虑风压脉动、高度变化及振型影响的系数; λj——共振区域系数; μs——风荷载体型系数; μsc——导线或地线的体型系数; μsn——垂直于横梁的体型系数分量; μsp——平行于横梁的体型系数分量; μz——高度z处的风压高度变化系数; ξ——脉动增大系数,格构式桅杆杆身按压弯杆件计算时的刚度折减系数; φ——挡风系数; ψ——裂缝间纵向受拉钢筋应变不均匀系数,环形基础底板外形系数; ψwE——抗震基本组合中的风荷载组合值系数; whs、whp——塔筒水平截面的特征系数; wv——塔筒竖向截面的特征系数。 3 基本规定 3.0.1 本标准采用以概率理论为基础的极限状态设计方法,以可靠指标度量结构构件的可靠度,采用分项系数的设计表达式进行设计。 3.0.2本标准采用的设计基准期为50年。 3.0.3高耸结构的设计使用年限应符合下列规定: 1特别重要的高耸结构设计使用年限应为100年; 2一般高耸结构的设计使用年限应为50年; 3建于既有建筑物或构筑物上的通信塔,其设计使用年限宜与既有结构的后续设计使用年限相匹配; 4风力发电塔的设计使用年限宜与发电设备的设计使用年限相匹配; 5对有其他特殊要求的高耸结构,使用年限宜根据具体条件确定。 3.0.4高耸结构在规定的设计使用年限内应满足下列功能要求: 1 在正常施工和使用时,能承受可能出现的各种荷载和作用; 2在正常使用时,具有良好的工作性能; 3在正常维护下,具有足够的耐久性能; 4 当发生偶然事件时,结构能保持必需的整体稳固性,不出现与起因不对应的破坏后果,防止出现结构的连续倒塌。 3.0.5 高耸结构设计时,应根据结构破坏可能产生的后果,根据危及人的生命、造成经济损失、产生社会、环境影响等的严重性,采用不同的安全等级。高耸结构安全等级的划分应符合表3.0.5的规定,并应符合下列规定: 1 高耸结构安全等级应按表3.0.5的要求采用。 表3.0.5高耸结构安全等级 安全等级 破坏后果 高耸结构类型 一级 很严重 特别重要的高耸结构 二级 严重 一般的高耸结构 三级 不严重 次要的高耸结构 注:1 对特殊高耸结构,其安全等级可根据具体情况另行确定; 2 对风力发电塔,安全等级应为二级。 2 结构重要性系数γ0应按下列规定采用: 1)对安全等级为一级的结构构件,不应小于1.1; 2)对安全等级为二级的结构构件,不应小于1.0; 3)对安全等级为三级的结构构件,不应小于0.9。 3.0.6 高耸结构除疲劳设计采用容许应力法外,应按极限状态法进行设计。 3.0.7对于承载能力极限状态,高耸结构及构件应按荷载效应的基本组合和偶然组合进行设计。 1基本组合应采用下列极限状态设计表达式中的最不利组合: 1)可变荷载效应控制的组合: (3.1.7-1) 2)永久荷载效应控制的组合: (3.0.7-2) 式中: γ0——高耸结构重要性系数,按本标准第3.0.5条第2款的规定确定; ——第j个永久荷载分项系数,按表3.0.7-1采用; ——第一个可变荷载、其他第i个可变荷载的分项系数,一般用1.4;可变荷载效应对结构有利时,分项系数为0; γLi——第i个可变荷载考虑设计使用年限的调整系数,其中γL1为主导可变荷载Q1考虑设计使用年限的调整系数; ——按第j个永久荷载标准值Gjk计算的荷载效应值; ——按第i个可变荷载标准值Qik计算的荷载效应值; ——可变荷载Qi的组合值系数,按行业规范取值,当行业规范无特殊要求时按表3.0.7-2采用; m——参与组合的永久荷载数; n——参与组合的可变荷载数; R(γk,fk,ak)——结构抗力; γR——结构抗力分项系数,其值应符合各类材料的结构设计标准规定; fk——材料性能的标准值; ak——几何参数的标准值,当几何参数的变异对结构构件有明显影响时可另增减一个附加值Δa考虑其不利影响。 表3.0.7-1永久荷载分项系数 荷载效应对结构有利与否 控制荷载或结构计算内容 不利 由可变荷载控制 1.20 由永久荷载控制 1.35 有利 一般结构计算 1.00 倾覆、滑移验算 0.90 注:初始状态下导线或纤绳张力的γG=1.4。 表3.0.7-2不同荷载基本组合中可变荷载组合值系数表 荷载组合 可变荷载组合值系数 ψCW ψCI ψCA ψCT ψCL I G+W+L 1.00 — — — 0.70 Ⅱ G+I+W+L 0.25~0.70 1.00 — — 0.70 Ⅲ G+A+W+L 0.60 — 1.00 — 0.70 Ⅳ G+T+W+L 0.60 — — 1.00 0.70 注:1 G表示自重等永久荷载,W、A、I、T、L分别表示风荷载、安装检修荷载、覆冰荷载、温度作用和塔楼楼屋面或平台的活荷载; 2对于带塔楼或平台的高耸结构,塔楼顶及外平台面的活载准永久值加雪荷载组合值大于活载组合值时,该平台活载组合值改为准永久值,即ψCL均改为0.40,而雪荷载组合系数ψCS在组合I、Ⅲ、Ⅳ中均取0.70; 3在组合Ⅱ中ψCW可取0.25~0.70,即一般取0.25,但0.25W0≥0.15kN/m2;对覆冰后冬季风很大的区域,应根据调查选用相应的值; 4在组合Ⅲ中,ψCW可取0.60,但对于临时固定状态的结构遭遇强风时,应取ψCW=1.00,且按临时固定状况验算; 5表中ψCW、ψCA、ψCI、ψCT、ψCL分别为风荷载、安装检修荷载、覆冰荷载、温度作用和塔楼楼屋面或平台的活荷载的可变荷载组合值系数。 2采用偶然组合设计时应符合下列规定: 1)高耸结构在偶然组合承载能力极限状态验算中,偶然作用的代表值不乘分项系数,与偶然作用同时出现的可变荷载应根据观测资料和工程经验采用适当的代表值; 2)具体的表达式及参数应按国家现行有关标准确定。 3.0.8 高耸结构抗震设计时,基本组合应采用下列极限状态表达式: S=γGSGE+γEhSEhk+γEvSEvk+ψwEψwSwk (3.0.8-1) S≤R/γRE (3.0.8-2) 式中:S——结构构件内力组合的设计值,包括组合的弯矩、轴力和剪力设计值等; γEh、γEv——水平、竖向地震作用分项系数,按表3.0.8的规定采用; γw——风荷载分项系数,取1.4; SGE——重力荷载代表值的效应,可按本标准第4.4.13条的规定采用; SEhk——水平地震作用标准值的效应; SEvk——竖向地震作用标准值的效应; Swk——风荷载标准值的效应; ψwE——抗震基本组合中的风荷载组合值系数,可取0.2;对于风力发电塔,取0.7; R——抗力,按本标准相应各章的有关规定计算; γRE——承载力抗震调整系数,按有关标准取值。 表3.0.8地震作用分项系数 考虑地震作用的情况 γEh γEv 仅考虑水平地震作用 1.3 — 仅考虑竖向地震作用 — 1.3 以水平地震为主的地震作用 1.3 0.5 以竖向地震为主的地震作用 0.5 1.3 3.0.9对于正常使用极限状态,应根据不同的设计要求,分别采用荷载的短期效应组合(标准组合或频遇组合)和长期效应组合(准永久组合)进行设计,变形、裂缝等作用效应的代表值应符合下式规定: Sd≤C (3.0.9-1) 式中:Sd——变形、裂缝等作用效应的代表值; C——设计对变形、裂缝、加速度、振幅等规定的相应限值,应符合本标准第3.0.11条的规定。 1 标准组合: (3.0.9-2) 2频遇组合: (3.0.9-3) 3准永久组合: (3.0.9-4) 式中: ——第1个可变荷载的频遇值系数,按表3.0.9取值; ——第i个可变荷载的准永久值系数,按表3.0.9取值。 表3.0.9 高耸结构常用可变荷载的组合值、频遇值、准永久值系数表 荷载类别 组合值系数ψc 频遇值系数ψf 准永久值系数ψq 风载 0.6(0.2) 0.4 0 塔楼楼面活载 0.7 0.6 0.5 外平台及塔楼屋面活载 0.7 0.5 0.4 雪荷载 地区I 0.7 0.6 0.5 地区Ⅱ 0.7 0.6 0.2 地区Ⅲ 0.7 0.6 0 注:1 雪荷载的分区应按现行国家标准《建筑结构荷载规范》GB 50009执行; 2 风荷载的ψc仅在验算抗震时用0.2。 3.0.10 高耸结构按正常使用极限状态设计时,可变荷载代表值可按表3.0.10选取。 表3.0.10 高耸结构按正常使用极限状态设计时可变荷载代表值 序号 高耸结构类别 验算内容 可变荷载代表值选用 1 微波塔 天线标高处角位移 标准值组合 2 带塔楼电视塔 塔楼处剪切变形 标准值组合 3 带塔楼电视塔 塔楼处加速度 频遇值组合 4 钢筋混凝土塔或烟囱 裂缝宽度验算 标准值组合 5 所有高耸结构 地基沉降及不均匀沉降验算 准永久值(频遇值)组合 6 所有高耸结构 顶点水平位移 标准值组合 7 非线性变形较大的高耸结构 计算非线性变形及其对结构的不利影响 标准值乘分项系数组合 注:括号内代表值适用于风玫瑰图呈严重偏心的地区,计算地基不均匀沉降时可用频遇值作为风荷载的代表值。 3.0.11 高耸结构正常使用极限状态的控制条件应符合下列规定: 1对于装有方向性较强(如微波塔、电视塔)或工艺要求较严格(如石油化工塔)的设备的高耸结构,在不均匀日照温度或风荷载标准值作用下,设备所在位置塔身的角位移应满足工艺要求; 2在风荷载或多遇地震作用下,塔楼处的剪切位移角θ不宜大于1/300; 3在风荷载的动力作用下,设有游览设施或有人员在塔楼值班的塔,塔楼处振动加速度幅值应符合公式(3.0.11-1)的规定,塔身任意高度处的振动加速度可按公式(3.0.11-2)计算: a=Afw12≤200 (3.0.11-1) (3.0.11-2) 式中:Af——风压频遇值作用下塔楼处水平动位移幅值,其值为结构对应点在0.4wk作用下的位移值与0.4μzμsw0作用下的位移值之差,对仅有游客的塔楼可按实际使用情况取Af为6级~7级风作用下水平动位移幅值(mm); w1——塔第一圆频率(1/s)。 4风力发电塔顶部加速度值不宜大于0.15g,g为重力加速度; 5在各种荷载标准值组合作用下,钢筋混凝土构件的最大裂缝宽度应符合现行国家标准《混凝土结构设计规范》GB 50010的规定,且不应大于0.2mm; 6高耸结构的基础变形值应符合本标准第7.2.5条的规定; 7高耸结构在以风为主的荷载标准组合及以地震作用为主的荷载标准组合下,其水平位移角不得大于表3.0.11的规定。单管塔的水平位移限值可比表3.0.11所列限值适当放宽,具体限值根据各行业标准确定;但同时应按荷载的设计值对塔身进行非线性承载能力极限状态验算,并将塔脚处非线性作用传给基础进行验算。对于下部为混凝土结构、上部为钢结构的自立式塔,钢结构塔位移应符合表3.0.11的规定;其下部混凝土结构应符合结构变形及开裂的有关规定。 |
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 |
服务热线:400-001-5431 | 电话:010-8572 5110 | 传真:010-8581 9515 | Email: bz@bzfyw.com | |
版权所有: 北京悦尔信息技术有限公司 2008-2020 京ICP备17065875号-1 51La |
本页关键词: |
GB 50135-2019, GB/T 50135-2019, GBT 50135-2019, GB50135-2019, GB 50135, GB50135, GB/T50135-2019, GB/T 50135, GB/T50135, GBT50135-2019, GBT 50135, GBT50135 |