![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative. This standard is jointly prepared by the Institute of Electronic Industry Standardization of Ministry of Industry and Information Technology, China Electronics Engineering Design Institute Co., Ltd. (CEEDI) in conjunction with relevant design and research units in accordance with the requirements of the Notice on printing and distributing the development and revision plan on engineering construction standards and codes in 2015 (JIANBIAO [2014] No. 189) issued by the Ministry of Housing and Urban-Rural Development of the People's Republic of China. During the process of developing this standard, the drafting group have investigated and visited the domestic production, design and construction units involved with production of lithium-ion batteries, and collected the design requirements of lithium ion battery factories; after extensive investigation and careful summarization of practical experience, with reference to relevant international and foreign advanced standards and based on widely soliciting opinions, it finalized this standard finally through review. This standard consists of 11 clauses and 1 annex covering, general provisions, terms, basic requirement, process, site selection and master plan, architectural design, structural design, gases & utility, heating, ventilation, air conditioning and cleaning, water supply and drainage, and electrical design. The provisions printed in bold type in this standard are compulsory and must be enforced strictly. The Ministry of Housing and Urban-Rural Development is in charge of the administration of this code and the explanation of the compulsory provisions; the Ministry of Industry and Information Technology is responsible for current management; and China Electronics Engineering Design Institute is responsible for the explanation of specific technical contents. In the process of execution of this code, all relevant organizations are kindly requested to carefully sum up experience and data in combination with engineering or shall send the relevant comments and data on necessary revisions and additions (if found) to China Electronics Engineering Design Institute (Address: No.160, West 4th Ring North Road, Haidian District, Beijing, Zip Code: 100142) as the reference for later revision. Design standard for lithium-ion battery factories 1 General provisions 1.0.1 To implement the relevant national laws, regulations and provisions on the design of lithium-ion battery factories, to meet the requirements in safe production, energy conservation, environmental protection, advanced technology development, economic rationality and quality assurance, this standard is prepared. 1.0.2 This standard is applicable to design for new construction, renovation and extension of lithium-ion battery factories. 1.0.3 In addition to this standard, the design of lithium-ion battery factories shall also comply with the requirements of the current relevant standards of the nation. 2 Terms 2.0.1 lithium-ion battery rechargeable battery in which lithium ions are repeatedly stripped and embedded at positive and negative electrodes 2.0.2 dry room room with a relative humidity of 1% or less and an air dry bulb temperature of 25℃ 2.0.3 blend process in which active materials and accessory materials of batteries are highly dispersed in a solvent to form a highly-viscous non-Newtonian fluid 2.0.4 fill process of injecting electrolyte into a battery 2.0.5 coating process of coating a slurry onto a collector fluid and then removing the solvent by drying. current collector 2.0.6 formation process of charging and discharging a battery 2.0.7 electrolyte electrolyte of lithium-ion battery is a mixture of organic solvent and electrolyte salt compound. A common organic solvent is a mixture of cyclic carbonate and chain carbonate, and electrolyte salt compounds include lithium hexafluorophosphate (LiPF6) and lithium tetrafluoroborate (LiBF4) and others 2.0.8 N-Methyl pyrrolidone (NMP) chemical solvent, used in the slurry making process, that can uniformly dispersing the active materials 3 Basic requirements 3.0.1 The design of lithium-ion battery factories shall feature in reasonable use of resources, environment protection, and prevention of environmental pollution and hazards from waste gas, waste water, slag, dust, noise, vibration, electromagnetic radiation and others generated in the production and construction activities. 3.0.2 The design of lithium-ion battery factories shall comply with the following requirements: 1 New technology, equipment and materials shall be used according to the characteristics of the production process; 2 The design shall meet the requirements of equipment installation, commissioning, maintenance, safety production and maintenance management; 3 The measures taken shall meet the requirements of fire protection and the energy conservation measures shall be taken; 4 The design shall meet the requirements of low humidity environment required for the production of lithium-ion batteries; 5 The anticorrosion practice shall meet the relevant requirements of the current national standard GB 50046 Description for anticorrosion design of industrial constructions. 3.0.3 The design capacity of the production line should be in line with the requirements of the economic scale, and the design should allow for future expansion conditions. 4 Process 4.1 General 4.1.1 The process design for lithium-ion battery factories shall meet the following requirements: 1 Product quality and production efficiency shall be guaranteed; 2 The process shall be designed to prevent and reduce the damage and impact of occupational disease hazards on workers' health and reduce their labor intensity; 3 The process shall be flexible and adaptable; 4 The process shall be helpful to reduce project cost and operating cost. 4.1.2 The production capacity shall be designed according to the type of product, current production and future development plan. 4.1.3 The production space and its layout, production environment parameters and power supply conditions should be determined according to the requirements of the process, while the technological transformation and upgrading should be taken into account. 4.1.4 The main production department should apply the production organization mode of continuous operation, and that for working shifts of other auxiliary production departments may be determined according to the production needs. 4.2 Basic production process 4.2.1 The production processes shall include positive and negative electrode blending, coating, rolling, drying, cutting, winding or laminating, encapsulation, filling, formation, testing, delivery and others. Typical production processes may be designed according to Annex A hereof. 4.2.2 Auxiliary production facilities related to the main production process shall be set up in the factory. 4.3 Process zoning 4.3.1 The process zoning for a lithium-ion battery factory shall comply with the following requirements: 1 The process zones shall be combined according to process characteristics and environmental requirements; 2 The blending and electrode preparation processes shall be set up separately for positive and negative electrode manufacturing; 3 The personal and materials flows into the production zone shall be designed to a parted mode, and the corresponding personal and material cleaning facilities shall be set up; 4 The production zone shall be set up with the passageway for equipment moving in and out, the factory building shall be set up with moving-in entrance and transport and installation channel for process equipment and power equipment; the width of the passageway shall meet the requirements of personnel operation, material transport, equipment installation and maintenance; 5 The process equipment shall be arranged according to the process flow on the principle of production process concentration; 6 Ancillary production departments closely related to production shall be close to the production zone. 4.3.2 If visiting facilities are in the production zones, the visiting zone and its passages shall be isolated from the production zone, and such arrangement shall ensure the smooth flow of materials and personnel evacuation passages in the production zones. 4.3.3 The factory should be set up with the storehouses for raw materials, auxiliary materials, finished products, chemicals and wastes, the arrangement of them should meet the following requirements: 1 The storehouses shall be set up by classes according to the physical and chemical properties of the stored materials and the requirements of the storage environment; 2 The storehouse of raw and auxiliary materials should be in the mode of "first-in and first-out"; 3 The storehouses for main raw and auxiliary materials and finished products shall be equipped with transport passageway to access them. 4.4 Equipment allocation 4.4.1 The process equipment with its own micro-environmental device is preferred in the dry rooms. 4.4.2 The filling equipment should be set up with airtight exhaust devices. 4.4.3 A large-scale lithium-ion battery production line should be equipped with an automatic material handling system, and a vertical transportation equipment should be used for the production zones featured in multi-layer arrangement. 4.4.4 The blending and rolling processes should be equipped with lifting equipment. 4.4.5 Full-automatic production lines are preferred for large-scale production. 5 Site selection and master plan 5.1 General 5.1.1 The master plan of a lithium-ion battery factory shall be determined according to factory scale, production process, transportation, environmental protection, fire protection, safety and health requirements, in combination with the natural conditions and surrounding environment of the site. 5.1.2 The master plan of a factory shall meet the following requirements: 1 It shall meet the requirements of urban planning; 2 Technical and economic conditions such as land resource utilization, engineering investment and environmental protection shall be considered comprehensively, to achieve compact layout and land use reduction; 3 Material and human flows shall be organized rationally; the material flows shall be convenient while persons and vehicles shall be separated; 4 The plan layout and landscape design of the building complex shall be planned in a unified way. 5.2 General layout 5.2.1 The general layout of the lithium-ion battery factories shall meet the following requirements: 1 Buildings, structures and other facilities should be arranged in a centralized combination; 2 The functional zoning of the factory zones shall be clear, and the width of the road shall meet the requirements in fire protection, transportation and safety distance; 3 The shape of the building should be neat, and the arrangement of the facilities should be compact and reasonable; 5.2.2 The building spacing shall meet the requirements in fire protection, transportation, safety and health, as well as the requirements on arrangement of pipelines, greening, construction installation and maintenance, and vertical design. 5.2.3 The general layout shall be combined with the topographical and engineering geological conditions on the site and shall meet the following requirements: 1 Buildings, structures and related facilities shall be arranged according to the requirements of the production process; 2 It shall meet the vertical design requirements for site drainage and road connection; 3 Vertical design shall be based on factors such as material handling and gravity flow of wastewater; 4 Expansion and reconstruction projects shall be given priority to use of the original facilities. 5.2.4 The power station should be arranged close to the main plant. 5.2.5 The chemical library shall be set up separately, managed separately, should be located at the edge of the factory, and should be separated by fences or walls. 5.2.6 Resource recovery stations may be set up separately or in combination with other auxiliary facilities. 5.2.7 Dormitories, canteens and activity rooms should be separated from the production zones and arranged in groups. 5.3 Vertical design 5.3.1 The vertical design of a lithium-ion battery factory site shall meet the requirements of urban planning, flood control and drainage, and shall be coordinated with the drainage system of existing roads and planned roads outside the site and the topographic elevation around the factory. The minimum design elevation of the site shall be more than 0.2m higher than that of the lowest section of the surrounding municipal roads. 5.3.2 The site shall be equipped with the facilities to drain rainwater from the ground and road surface to the urban drainage system, and the rainwater recycling measures should be taken. 5.3.3 The vertical design shall be carried out simultaneously with the general layout, and the vertical layout shall be reasonably determined with the actual terrain, production process and transportation mode. 5.3.4 The elevation difference of the floor in and out of the building shall not be less than 0.15m. 5.3.5 The elevation of the loading and unloading platform for the building shall match the model of the transport vehicles and shall meet the loading and unloading requirements. 5.3.6 The elevation of the entrance and exit of the factory should not be lower than that of the road surface outside the factory. Foreword ii 1 General provisions 2 Terms 3 Basic requirements 4 Process 4.1 General 4.2 Basic production process 4.3 Process zoning 4.4 Equipment allocation 5 Site selection and master plan 5.1 General 5.2 General layout 5.3 Vertical design 5.4 Transportation organization 5.5 Greening design 6 Architectural design 6.1 General 6.2 Fire safety and evacuation 6.3 Interior decoration 7 Structural design 7.1 General 7.2 Material of building 7.3 Structural design of factory buildings 8 Gases and utility 8.1 General 8.2 Nitrogen gas supply system 8.3 Compressed-dry-air supply system 8.4 Inert gases supply 8.5 Process vacuum system 8.6 NMP recycle and electrolyte supply systems 9 Heating, ventilation, air conditioning and cleaning 9.1 General 9.2 Heating 9.3 Ventilation and waste gas treatment 9.4 Air conditioning and air cleaning 9.5 Anti-smoke exhaust 10 Water supply and drainage 10.1 General requirements 10.2 General water supply 10.3 Process water 10.4 Fire protection 10.5 Drainage 11 Electrical design 11.1 General description 11.2 Power supply system and illumination 11.3 Grounding 11.4 IT and automatic control Annex A Typical process flow of lithium-ion battery Explanation of wording in this standard List of quoted standards 1 总则 1.0.1 为在锂离子电池工厂设计中贯彻执行国家的有关法律、法规和规定,满足安全生产、节约能源、保护环境、技术先进、经济合理和确保质量的要求,制定本标准。 1.0.2 本标准适用于新建、改建和扩建的锂离子电池工厂设计。 1.0.3 锂离子电池工厂设计除应执行本标准外,尚应符合国家现行有关标准的规定。 2 术语 2.0.1 锂离子电池 Lithium-ion battery 锂离子在正、负极之间反复进行脱出和嵌入的二次电池。 2.0.2 干燥房 Dry room 空气干球温度为25℃时,相对湿度为1%以下的房间。 2.0.3 混料 Blend 把电池活性材料和辅料在溶剂中进行高度分散形成非牛顿型高黏度流体的过程。 2.0.4 注液 Fill 向电池中注入电解液的过程。 2.0.5 涂布 Coating 把浆料涂覆到集流体上,通过干燥去除溶剂的过程。 2.0.6 化成 Formation 对电池充放电的过程。 2.0.7 电解液 Electrolyte 锂离子电池的电解液是有机溶剂和电解质盐化合物的混合物,常见的有机溶剂是环状碳酸酯与链状碳酸酯的混合物,电解质盐化合物包括六氟磷酸锂(LiPF6)和四氟硼酸锂(LiBF4)等。 2.0.8 氮甲基吡咯烷酮 N-Methyl pyrrolidone(NMP) 浆料制作过程中使用的一种化学溶剂,起到均匀分散活性材料的功能。 3 基本规定 3.0.1 锂离子电池工厂设计应合理利用资源,保护环境,防止在生产建设活动中产生的废气、废水、废渣、粉尘以及噪声、振动、电磁辐射等对环境的污染和危害。 3.0.2 锂离子电池工厂设计应符合下列规定: 1 应根据生产工艺的特点,采用新技术、新设备、新材料; 2 应满足设备安装、调试检修、安全生产、维护管理的要求; 3 应采取措施满足消防安全的要求,应采取节约能源的措施; 4 应满足锂离子电池生产所需要低湿环境的要求; 5 防腐蚀做法应根据工艺要求,符合现行国家标准《工业建筑防腐蚀设计规范》GB 50046的有关规定。 3.0.3 生产线的设计能力宜符合经济规模的要求,设计中宜预留扩产条件。 4 工艺 4.1 一般规定 4.1.1 锂离子电池工厂工艺设计应符合下列规定: 1 应保障产品质量和生产效率; 2 应预防和减少职业病危害因素对劳动者健康的损害和影响,降低工人劳动强度; 3 应具有灵活性和适应性; 4 应有利于降低工程造价和运行费用。 4.1.2 生产能力应根据产品类型、本期产量以及未来发展规划进行设计。 4.1.3 生产空间及其布置、生产环境参数和动力供应条件应根据工艺生产的要求确定,同时宜兼顾技术改造升级。 4.1.4 主要生产部门宜采用连续运转的生产组织方式,其他辅助生产部门的工作班次可根据生产需要确定。 4.2 基本工序 4.2.1 生产工序应包括正负极混料、涂布、辊压、干燥、裁切、卷绕或叠片、封装、注液、化成、检测、出货等,典型生产工序可按本标准附录A设计。 4.2.2 工厂中应设置与主生产工艺有关的辅助生产设施。 4.3 工艺区划 4.3.1 锂离子电池工厂工艺区划应符合下列规定: 1 工艺区划应根据工艺特点和环境要求进行组合; 2 混料和电极制备工序应按正、负极制造分开设置; 3 进入生产区的人流和物流入口应分别设置,并应设置相应人身和物料净化设施; 4 生产区域应设置设备搬入口和搬入通道,厂房应设置工艺设备、动力设备的搬入口及运输安装通道;通道宽度应满足人员操作、物料运输、设备安装、检修的要求; 5 各工艺设备应根据工艺流程并应按工序集中的原则进行布置; 6 辅助生产部门中与生产密切联系的部门应靠近生产区。 4.3.2 生产区设置参观设施时,参观区域及其通道应与生产区域隔离,并应保证生产区域物流和人员疏散通道的通畅。 4.3.3 工厂宜设置原材料、辅助材料、成品、化学品和废料库房,库房设置应符合下列规定: 1 应根据所存储物料的物理、化学性质和存储环境的要求分类设置; 2 原辅材料的库房宜采用先进先出的存储方式; 3 主要原辅材料和成品库房应设出入库的运输通道。 4.4 设备配置 4.4.1 干燥房内宜采用自带微环境装置的工艺设备。 4.4.2 注液设备宜设置密闭排风装置。 4.4.3 大规模生产的锂离子电池生产线宜采用自动物料搬送系统,采取多层布置的生产区之间应采用垂直运输设备。 4.4.4 混料、辊压工序宜配置起重设备。 4.4.5 大规模生产宜采用全自动生产线。 5 厂址选择及总体规划 5.1 一般规定 5.1.1 锂离子电池工厂的总体规划应根据工厂的规模、生产流程、交通运输、环境保护、消防、安全卫生等要求,结合场地自然条件、用地周边环境确定。 5.1.2 总体规划应符合下列规定: 1 应满足城市规划的要求; 2 应综合考虑土地资源利用、工程投资、环境保护等技术经济条件,布置紧凑,减少用地; 3 应合理组织物流和人流;物流应便捷,人车应分流; 4 应统一规划建筑群体的平面布置与景观设计。 5.2 总平面布置 5.2.1 锂离子电池工厂的总平面布置应符合下列规定: 1 建筑物、构筑物等设施宜集中组合布置; 2 厂区功能分区应明确,道路宽度应满足消防、运输、安全间距等要求; 3 建筑物外形宜规整,各项设施的布置应紧凑合理。 5.2.2 建筑物间距应满足消防、运输、安全、卫生等要求,并应符合各种工程管线的布置、绿化布置、施工安装与检修、竖向设计的要求。 5.2.3 总平面布置应利用地形、地势及工程地质条件,按下列要求进行布置: 1 应依据生产工艺要求布置建筑物、构筑物及有关设施; 2 应满足场地排水及道路接口的竖向设计要求; 3 应根据物流装卸、废水重力流等因素进行竖向设计; 4 扩建、改建工程应优先使用原有设施。 5.2.4 动力站宜靠近主厂房布置。 5.2.5 化学品库应单独设置、单独管理,宜位于厂区的边缘地带,并宜用围栏或围墙隔开。 5.2.6 资源回收站可单独设置,也可与其他辅助设施组合布置。 5.2.7 宿舍、食堂、活动室宜与生产区分开,成组布置。 5.3 竖向设计 5.3.1 锂离子电池工厂场地的竖向设计应符合城市规划、防洪排涝要求,应与场外已有道路和规划道路的排水系统及工厂周围的地形标高相协调。场地最低设计标高应比周边市政道路的最低路段标高高出0.2m以上。 5.3.2 场地内应设有排除地面及道路路面雨水至城市排水系统的设施,且宜采取雨水回收利用措施。 5.3.3 竖向设计应与总平面布置同时进行,并应结合实际地形、生产工艺、运输方式合理确定竖向布置方式。 5.3.4 建筑物室内地坪标高高出室外地坪标高不应小于0.15m。 5.3.5 建筑物装卸货平台的标高应与运输车辆的型号相匹配,并应满足装卸要求。 5.3.6 厂区出入口标高不宜低于厂外道路路面标高。 5.4 交通组织 5.4.1 锂离子电池工厂厂区宜设置环形道路,道路宽度应满足生产运输要求。 5.4.2 厂区出入口不宜少于两个,物流应有专用的出入口。厂内配套生活区宜设置单独的对外出口。 5.4.3 锂离子电池工厂的货物进出口与人员出入口宜分开设置。 5.4.4 货物装卸场地宜靠近货流出口设置。货物装卸场地面积应能满足运输车辆的回转作业要求。货流出入口处宜设有货车等候区。 5.4.5 厂内道路路面承载能力应与相应货车、消防车载重能力相适应。 5.5 绿化设计 5.5.1 绿化应做到无表土裸露。绿化布置应满足生产、运输、安全、卫生、防火等要求。 5.5.2 厂区绿化应利用建(构)筑物的周围、道路两侧、地下管线的地面和边角地等空地。 5.5.3 绿化所选择植物应适合当地生长的环境,同时不应对生产环境和产品质量有影响。 6 建筑 6.1 一般规定 6.1.1 锂离子电池工厂的建筑平面和空间布局应满足产品生产工艺流程的要求,并应适应产品生产发展的灵活性。 6.1.2 锂离子电池工厂应合理组织人流、物流及消防疏散路线,并宜根据需要设置参观通道。 6.1.3 洁净生产区内不宜设置变形缝,干燥房内不应设置变形缝。 6.1.4 厂房围护结构材料的选择应满足生产对环境的气密、保温、隔热、防火、防潮、防尘、防腐、耐久、易清洗等要求。 6.1.5 厂房围护结构传热系数限值应符合现行国家标准《电子工程节能设计规范》GB 50710的有关规定。外墙、外窗、屋面的内表面温度不应低于室内空气露点温度。 6.1.6 厂房室内装修应符合现行国家标准《建筑内部装修设计防火规范》GB 50222和《电子工业洁净厂房设计规范》GB 50472的有关规定。 6.2 防火安全及疏散 6.2.1 锂离子电池工厂的耐火等级不应低于二级。 6.2.2 锂离子电池工厂各工作间的火灾危险性分类除应符合现行国家标准《建筑设计防火规范》GB 50016、《电子工业洁净厂房设计规范》GB 50472的有关规定外,并应符合下列规定: 1 电解液储存间、配送间及注液区生产的火灾危险性应依据电解液的火灾危险性特征确定; 2 当电解液的火灾危险性特征为甲、乙类,但电池注液区面积小于1000m2、内部生产设备密闭、电解液采用管道输送,且采用了泄漏报警、自动切断、事故排风措施时,火灾危险性可为丙类; 3 电池成品包装区的火灾危险性应为丙类。 6.2.3 化成工序应采取以下安全措施: 1 当采用闭口化成工艺时,每个电池应被安全器具隔离或每台设备都具有独立的排风隔火装置;房间内应设置全面排风和事故排风; 2 当采用开口化成工艺时,每个电池应设置独立的抽真空排气装置;房间内应设置事故排风。 6.2.4 锂离子电池工厂厂房及仓库防火分区的设置和安全疏散,应符合现行国家标准《建筑设计防火规范》GB 50016的有关规定。 6.2.5 甲、乙类电解液储存间及配送间应靠外墙布置,应设置防泄漏设施、泄压设施,并应采用不发生火花的防静电地面。 6.2.6 有爆炸危险的区域与相邻区域应采用耐火极限不低于3.00h的不燃烧体防爆墙分隔,防爆墙,上不得开设门窗洞口;设置门斗相通时,门应错位布置,门斗的隔墙应为耐火极限不低于2.00h的防火隔墙,门应采用甲级防火门。 6.2.7 锂离子电池化成、老化区域应采用耐火时间为2.00h的防火隔墙和1.50h的楼板与其他部位分隔,当隔墙上需要开设相互连通的门时,应采用甲级防火门。 6.2.8 仓库和厂房内设置的中间库应符合现行国家标准《建筑设计防火规范》GB 50016的有关规定。 6.3 室内装修 6.3.1 锂离子电池工厂的建筑围护结构和室内装修,应选用气密性良好、性能稳定、隔热阻燃的材料,注液、化成、老化区域应采用不燃材料。 6.3.2 生产车间门窗、壁板、楼地面的设计应满足使用功能的要求,构造和施工缝隙应采取密闭措施。低湿环境区域地面应配筋,并应采取防潮、防渗漏措施。 6.3.3 装修材料的燃烧性能应符合现行国家标准《建筑内部装修设计防火规范》GB 50222的有关规定。 7 结构 7.1 一般规定 7.1.1 锂离子电池生产厂房抗震设防分类应符合现行国家标准《建筑工程抗震设防分类标准》GB 20223的有关规定,抗震设防类别不应低于标准设防类;结构的抗震措施及抗震构造措施应符合现行国家标准《建筑抗震设计规范》GB 50011的有关规定。 7.1.2 锂离子电池生产厂房建筑结构安全等级应符合现行国家标准《工程结构可靠性设计统一标准》GB 50153的有关规定,且安全等级不应低于二级,结构设计使用年限不应低于50年。 7.1.3 锂离子电池生产厂房结构构件的耐久性应符合现行国家标准《混凝土结构耐久性设计规范》GB/T 50476的有关规定。 7.1.4 锂离子电池厂房结构的荷载作用效应及作用组合应符合现行国家标准《工程结构可靠性设计统一标准》GB 50153、《建筑结构荷载规范》GB 50009、《钢结构设计规范》GB 50017、《混凝土结构设计规范》GB 50010、《建筑抗震设计规范》GB 50011的有关规定。 7.2 建筑材料 7.2.1 混凝土、钢筋的力学性能指标要求应符合现行国家标准《混凝土结构设计规范》GB 50010的有关规定。 7.2.2 钢材的力学性能指标要求应符合现行国家标准《钢结构设计规范》GB 50017的有关规定。 7.2.3 钢筋焊接网应符合现行行业标准《钢筋焊接网混凝土结构技术规程》JGJ 114的有关规定。 7.3 厂房结构设计 7.3.1 锂离子电池生产厂房的结构型式宜选用门式轻钢结构、多层钢结构或混凝土框架结构。 7.3.2 锂离子电池生产厂房屋盖系统根据其结构型式、开间跨度大小可采用下列结构形式: 1 有保温层的压型钢板轻型屋面; 2 钢梁、钢屋架加压型钢板现浇钢筋混凝土屋面; 3 钢梁、钢屋架加钢筋桁架模板现浇钢筋混凝土屋面; 4 现浇钢筋混凝土屋面。 7.3.3 锂离子电池生产厂房楼地面使用荷载标准值应根据设备的布置、重量、基座平台的构造、搬运动线等确定。 7.3.4 锂离子电池生产厂房楼屋面的吊挂荷载标准值应根据吊挂层的构造、管道布置等因素确定。 7.3.5 锂离子电池生产厂房整体抗震计算时,建筑重力荷载代表值中可变荷载取值宜按楼层设备实际荷载情况确定。 7.3.6 混浆、辊压等重量超重的设备和有振动的设备应采用独立地基。 7.3.7 立体库地面使用荷载应按实际情况确定,不均匀沉降差宜控制在1/500以内。结构地面完成面平整度应满足2m内不大于5mm,最终地面平整度应满足2m内不大于2mm、50m内不大于25mm的要求。 8 气体动力 8.1 一般规定 8.1.1 锂离子电池工厂使用的干燥压缩空气、氮气、惰性气体、工艺真空等,其品质应满足生产工艺要求。 8.1.2 气体的供气方式和供气系统应根据气体用量、气体品质和当地的供气状况等因素,通过经济技术比较后确定。 8.1.3 锂离子电池工厂气体的制备、储存和分配系统,应符合现行国家标准《建筑设计防火规范》GB 50016、《压缩空气站设计规范》GB 50029、《大宗气体纯化及输送系统工程技术规范》GB 50724、《特种气体系统工程技术规范》GB 50646、《电子工业洁净厂房设计规范》GB 50472的有关规定。 8.1.4 气体过滤器应根据产品生产工艺对气体纯度的要求进行选择和配置。终端气体过滤器应设置在靠近用气点处。 8.2 氮气系统 8.2.1 氮气供应系统宜在锂离子电池工厂内或邻近处设置制氮装置并通过管道输送,或采用外购液态氮气气化后由管道进行输送。 8.2.2 氮气管道和阀门应根据产品生产工艺要求选择,并宜符合下列规定: 1 氮气纯度小于或等于99.999%时,宜采用内壁光亮退火处理BA级不锈钢管,阀门采用不锈钢球阀; 2 气体管道阀门、附件的材质宜与相连接的管道材质一致; 3 在制氮机或液氮汽化气出口宜设置缓冲罐;对于管道距离长的区域且服务于多个车间的系统,可在进入车间处再设置二级缓冲罐。 8.2.3 氮气管道连接宜符合下列规定: 1 管道连接宜采用氩弧焊连接; 2 压力露点低于-40℃时,用于管道连接的密封材料宜采用金属垫或聚四氟乙烯垫; 3 当采用软管连接时,宜采用金属软管。 8.3 干燥压缩空气系统 8.3.1 锂离子电池工厂内的干燥压缩空气系统应根据产品生产工艺要求、供气量和供气品质及露点等因素确定。压缩空气直接与物料接触的工艺工段,宜采用无油压缩空气系统。 8.3.2 压缩空气系统宜设置热回收系统。 8.3.3 干燥压缩空气管道内输送压力露点低于-40℃时,宜采用不锈钢管或铝合金管。阀门宜采用球阀。 8.3.4 管道连接宜符合下列规定: 1 热镀锌无缝钢管宜采用螺纹连接或螺纹法兰连接,不锈钢管宜采用氩弧焊; 2 铝合金管道连接方式宜为管夹卡箍连接,并宜带密封圈和卡压圈。 8.4 惰性气体系统 8.4.1 锂离子电池生产使用的氦气及氩气宜采用瓶装压缩气体供气。其纯度应大于或等于99.99%,管道宜采用不锈钢316 BA级及以上管材。 8.4.2 锂离子电池生产用的氦气及氩气等窒息性瓶装气体,应存放在厂房内的专用房间。 8.4.3 车间管网宜采用树状分布形式。 8.5 工艺真空系统 8.5.1 锂离子电池工厂工艺真空系统宜根据生产性质和真空度的不同分系统设置。 8.5.2 工艺真空系统设置除应符合现行国家标准《电子工业洁净厂房设计规范》GB 50472外,还应符合下列规定: 1 锂离子电池生产的真空系统应根据工艺特性选择设计; 2 正负极制造的合浆真空系统宜独立设置; 3 当工艺生产设备排出有腐蚀性气体时,真空系统宜选用耐腐蚀的真空泵;当真空泵无耐腐蚀功能时,对腐蚀性气体宜采取预处理措施; 4 当工艺生产设备排出有爆炸性气体时,工艺真空系统应满足相应防爆要求; 5 注液真空泵轴承宜设置温度监控; 6 真空系统宜设置智能控制系统。 8.6 NMP回收及电解液供应系统 8.6.1 NMP供应及废液排污管管道宜采用不锈钢无缝钢管或钛合金管,连接阀门宜采用不锈钢球阀。 8.6.2 NMP供应系统宜采用相应磁力泵或隔膜泵,泵房与罐区距离应符合现行国家标准《建筑设计防火规范》GB 50016的有关规定。 8.6.3 NMP罐区内储罐间距应符合现行国家标准《建筑设计防火规范》GB 50016的有关规定,罐区应设置有效的防雷系统。NMP罐区事故池内宜设置液位报警装置。 8.6.4 电解液暂存间至注液机管道应有防泄漏措施,电解液供液主管路上应设置紧急切断阀。 9 供暖、通风、空气调节与净化 9.1 一般规定 9.1.1 锂离子电池工厂供暖、通风、空调与空气净化系统的设计应满足生产工艺对生产环境的要求。 9.1.2 洁净室(区)及干燥房的气流组织应根据洁净度、露点温度以及生产工艺要求确定。 9.1.3 空气调节系统划分的原则除应符合现行国家标准《工业建筑供暖通风与空气调节设计规范》GB 50019和《电子工业洁净厂房设计规范》GB 50472的有关规定外,还应符合下列规定: 1 干燥房与一般空调房间应分开设置空气调节系统; 2 露点温度差别大的干燥房应分开设置空气调节系统; 3 有洁净度要求的干燥房与无洁净度要求的干燥房应分开设置空气调节系统; 4 正极生产车间和负极生产车间应分开设置空气调节系统; 5 产尘量大的车间应设置独立的空气调节系统,并应配置粉尘处理装置。 9.1.4 干燥房应进行严格的湿负荷计算,且散湿量应包括如下内容: 1 人体散湿量; 2 围护结构散湿量; 3 原材料及 包装材料散湿量; 4 工艺过程的散湿量; 5 各种潮湿表面的散湿量; 6 渗透空气带入的湿量; 7 新风带入的湿量。 9.1.5 干燥房与周围的空间应保持一定的静压差,静压差应符合下列规定: 1 不同露点的干燥房之间的静压差不宜小于5Pa; 2 干燥房与一般空调房间的静压差不应小于5Pa; 3 干燥房与室外的静压差应大于10Pa。 9.1.6 干燥房的通风、排烟、空气调节系统的风管在穿越干燥房隔墙、吊顶时,应符合现行国家标准《建筑设计防火规范》GB 50016的有关规定,并应符合下列规定: 1 风口与吊顶之间应采取密闭措施; 2 风管与隔墙、吊顶间应采取密闭措施; 3 排烟管在穿越隔墙、吊顶处应设置电动密闭阀。 |
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 |
服务热线:400-001-5431 | 电话:010-8572 5110 | 传真:010-8581 9515 | Email: bz@bzfyw.com | |
版权所有: 北京悦尔信息技术有限公司 2008-2020 京ICP备17065875号-1 51La |
本页关键词: |
GB 51377-2019, GB/T 51377-2019, GBT 51377-2019, GB51377-2019, GB 51377, GB51377, GB/T51377-2019, GB/T 51377, GB/T51377, GBT51377-2019, GBT 51377, GBT51377 |