![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative. This specification is formulated by Guangdong Provincial Academy of Building Research and Architectural Design and Research Institute of Guangdong Province together with relevant universities, scientific research institutes and production enterprises in accordance with the Document YUEJIANKEHAN ([2010], No. 416) issued by Guangdong Provincial Department of Housing and Urban-Rural Development. In the process of formulating this specification, this specification has been finalized by the drafting group through extensive investigation and research, reference to and absorption of existing scientific research achievements at home and abroad, summarization of practical design and construction experience in Guangdong Province, experimental investigation and theoretical analysis on key issues and coordination of relevant Chinese standards based on repeated discussions and revisions. Main technical contents of this specification: 1. General provisions; 2. Terms and symbols; 3. Materials; 4. Basic requirements; 5. Method of structural analysis; 6. Calculation of structure members; 7. Construction requirements; 8. Joints; 9. Construction and acceptance; Annexes A~F. This specification is completed on the basis of the national professional standard JGJ/T 268-2012 Technical specification for cast-in-situ concrete hollow floor structure. The supplementary contents are as follows: 1. the requirement that cast-in-situ hollow slab and cast-in-situ solid slab may be arranged separately or in a mixed way in the same floor and roof structure is supplemented, see 4.1.5; 2. the requirement that the steel mold may be considered is added, see 4.1.6; 3. the requirements that hollow floor structures may be classified into thick hollow floor structure and thin hollow floor structure according to the thickness-span ratio of slab are added, see 2.1.6~2.1.11; 4. the requirements on applicable height of buildings with hollow floor structure are supplemented, see 4.3; 5. the requirements on seismic grade of buildings with hollow floor structure are supplemented, see 4.4; 6. the requirements on seismic design requirements for lateral resistant system of hollow floor structure are supplemented, see 4.5; 7. the bending moment of the section of span slab in beamless floor structure is proposed, and appropriate reduction of dome effect may be considered. When finite element method is used for analysis, the effects of supporting sections of column, column cap, wall etc. may be considered, and the peak bending moment may be appropriately reduced, see 5.1.6; 8. the equivalent space frame method is proposed, see 5.6; 9. the construction requirements on minimum slab thickness and reinforcement when hollow slab is adopted for the basement roof are supplemented, see 7.1.14; 10. the requirements on beam-column joints of hollow floor structure are supplemented, see Clause 8; 11. some hollow slab parameters are supplemented for reference in scheme design, see 5.1.3 and Annex F. The provisions printed in bold type in 4.4.1, 7.4.2 and 8.3.2 are compulsory and must be enforced strictly. Guangdong Provincial Academy of Building Research (Address: No.121 Xianlie East Road, Guangzhou City Guangdong Province; 510500) and Architectural Design and Research Institute of Guangdong Province (Address: No.97 Liuhua Road, Guangzhou City Guangdong Province; 510010) are responsible for the explanation of specific technical contents. Please mail the problems and opinions found by units concerned during use to the chief drafting organization of this specification or send them to the e-mail address (E-mail: kxlgbz@163.com). Technical specification for cast-in-situ concrete hollow floor structure 1 General provisions 1.0.1 This specification is formulated to make the design and construction of cast-in-situ concrete hollow floor structure be technologically advanced, safe and applicable, cost-effective and reasonable, and to ensure the quality. 1.0.2 This specification is applicable to the design, construction and acceptance of cast-in-situ reinforced concrete and prestressed concrete hollow floor structures in general industrial and civil buildings and structures in Guangdong Province. 1.0.3 The design, construction and acceptance of cast-in-situ concrete hollow floor structure shall not only comply with this specification, but also comply with the current relevant standards such as GB 50010 Code for design of concrete structures, GB 50011 Code for seismic design of buildings and JGJ 3 Technical specification for concrete structures of tall building. 2 Terms and symbols 2.1 Terms 2.1.1 cast-in-situ concrete hollow slab hollow slab formed by in-situ casting with embedded or exposed filler 2.1.2 cast-in-situ concrete hollow floor structure floor structure formed by horizontal members such as cast-in-situ concrete hollow slab and supporting beam (or concealed beam) 2.1.3 rigid edge supported floor structure floor structure with the slab supported vertically by a wall or a beam with large vertical rigidity 2.1.4 flexible edge supported floor structure floor structure with the slab supported vertically by beam with small vertical rigidity 2.1.5 column supported floor structure floor structure with a column as the vertical support of slab and with no rigid or flexible beam between supports 2.1.6 thick hollow floor structure cast-in-situ concrete hollow floor structure with the thickness-span ratio of slab (depth-span ratio of frame rib) not less than 1/22 2.1.7 thin hollow floor structure cast-in-situ concrete hollow floor structure with the thickness-span ratio of slab (depth-span ratio of frame rib) less than 1/22 2.1.8 thick hollow slab-column structure column supported thick hollow floor structure, frame structure formed by frame ribs or partial frame beams, flat beams and columns 2.1.9 thick hollow slab-column-shear wall structure slab-column-shear wall structure equipped with thick hollow floor structure, wherein, the slab-column part is a frame structure formed by frame ribs or partial frame beams, flat beams and columns 2.1.10 thin hollow slab-column structure column supported thin hollow floor structure 2.1.11 thin hollow slab-column-shear wall structure slab-column-shear wall structure equipped with thin hollow floor structure, i.e., the general slab-column-shear wall structure 2.1.12 filler object permanently embedded in cast-in-situ concrete slab to replace part of concrete to reduce the dead weight of structure; it may be classified into filler tubes, filler rods, filler boxes, filler blocks and filler plates according to shapes and molding methods 2.1.13 embedded filler filler embedded in cast-in-situ concrete slab with no exposed surface 2.1.14 exposed filler filler embedded in cast-in-situ concrete slab, with upper and (or) lower surface exposed to the slab surface 2.1.15 volumetric void ratio ratio of volume of filler in the grid of cast-in-situ concrete slab to the floor volume, wherein, the volume of filler includes the volume of filler material and that of internal cavity 2.1.16 apparent density ratio of mass to volume of filler in natural state 2.1.17 rib; main-rib; frame rib; secondary-rib rib: concrete area formed between the side surfaces or end surfaces of adjacent fillers in the same column grid main-rib: rib formed between adjacent filler plates in cast-in-situ concrete hollow slab frame rib: main-rib or solid concealed beam in hollow floor structure, which is arranged between vertical supporting members and forms a lateral resistant system with vertical members secondary-rib: rib formed between adjacent lightweight core blocks in the filler plate in cast-in-situ concrete hollow slab 2.1.18 rib spacing distance between centerlines of two adjacent ribs 2.1.19 flange depth distance from the upper and lower surfaces of the filler to the top and bottom of the cast-in-situ concrete hollow floor respectively 2.1.20 analogue slab method calculation method of internal force and deformation analysis by cast-in-situ concrete hollow slab which is equivalent to solid slab 2.1.21 analogue cross beam method calculation method of internal force and deformation analysis of cast-in-situ concrete hollow slab which is equivalent to two-way cross beam system 2.1.22 empirical coefficient method calculation method of bending moment in control section of cast-in-situ concrete hollow floor structure with bending moment distribution coefficient 2.1.23 equivalent frame method calculation method for internal force analysis respectively for the column supported floor structure or flexible edge supported floor structure which is equivalent to a continuous frame centered on the column axis in two directions 2.1.24 equivalent space frame method calculation method where the upper plate and mid-span slab on column of hollow floor structure are equivalent to multiple beams according to the analogue cross beam method, which, together with vertical members, participate in the overall internal force analysis under the combined action of horizontal action and vertical load 2.2 Symbols 2.2.1 Properties of materials Ec——the elastic modulus of concrete; Ecb——the elastic modulus of beam concrete; Ecs——the elastic modulus of slab concrete; Ecc——the elastic modulus of column concrete; Ex——the x-direction elastic modulus of orthotropic slab; Ey——the y-direction elastic modulus of orthotropic slab; Gxy——the shear modulus of orthotropic slab; gfil——the apparent density of filler; vc——the Poisson’s ratio of concrete; vx——the x-direction Poisson's ratio of orthotropic slab; vy——the y-direction Poisson's ratio of orthotropic slab. 2.2.2 Actions and action effects Gfil——the weight of filler in slab grid; M0——the design total bending moment of the plate within one span in the calculation direction; Mx1, My1, Mx1y1——the x-direction bending moment, y-direction bending moment and torque of equivalent isotropic slab; Mx, My, Mxy——the x-direction bending moment, y-direction bending moment and torque of orthotropic slab; q——the design vertical uniformly distributed load on the slab surface. 2.2.3 Geometric parameters Aa, Ap——the longitudinal and transverse sectional areas of hollow slab of round-section filler; b——the calculated unit width; calculated plate width; calculated width of equivalent frame beam; width of upper plate on column; bb——the width of beam section; width of analogue cross beam; bc——the width of column section; bw——the calculated width of section rib; c2——the width of column (column cap) perpendicular to l1 direction of slab span in equivalent frame method; D——the diameter of round-section filler; h——the thickness of slab; h0——the effective height of slab section; hc——the height of column section; hcon——the converted thickness of hollow slab; Il——the section inertia moment of beam slab at the edge of column (column cap) in equivalent frame; I0——the calculated section inertia moment of solid slab with equal width of the unit; Ia, Ip——the longitudinal and transverse section inertia moments of hollow slab of round-section filler; Ic——the section inertia moment of column in calculation direction; Kc——the flexural linear rigidity of column in equivalent frame method; Kec——the flexural linear rigidity of equivalent column in equivalent frame method; Kt——the torsional rigidity of torsional members on both sides of column in equivalent frame method; l1——the span of slab in calculation direction in empirical coefficient method and equivalent frame; l2——the span of slab perpendicular to calculation direction in empirical coefficient method and equivalent frame; lx——the calculated x-direction span of orthotropic slab; the long span of rigid support two-way slab; ly——the calculated y-direction span of orthotropic slab; the short span of rigid support two-way slab; lx1, ly1——the x-direction and y-direction spans of equivalent isotropic slab; ln——the net span of slab in calculation direction. 2.2.4 Calculation coefficients and others C——the section torsional constant calculated by empirical coefficient method; k——the ratio of y-direction elastic modulus to y-direction elastic modulus of orthotropic slab; the ratio of transverse inertia moment to longitudinal inertia moment of filler tube (rod) hollow slab; α1——the ratio of flexural rigidity of beam section to that of slab section in calculation direction in calculation by empirical coefficient method; α2——the ratio of flexural rigidity of beam section to that of slab section perpendicular to calculation direction in calculation by empirical coefficient method; αEf——the ratio of elastic modulus of filler to that of concrete; β——the adjustment coefficient of transverse shear capacity of filler tube (rod) hollow slab; βb——the amplification coefficient of torsional rigidity in equivalent frame calculation; βt——the torsional rigidity coefficient of empirical coefficient method; ρvoid——the volumetric void ratio. 3 Materials 3.1 Concrete 3.1.1 The concrete strength grade for cast-in-situ concrete hollow floor structure should not be lower than C25 for reinforced concrete floor structure, while should not be lower than C40 and shall not be lower than C30 for prestressed concrete floor structure. 3.2 Ordinary reinforcement 3.2.1 HRB400, HRB500, HRBF400 and HRBF500 steel bars should be adopted, and HPB300, HRB335, HRBF335 and RRB400 steel bars may be adopted, as the ordinary longitudinal load-bearing bars of cast-in-situ concrete hollow floor structure. 3.3 Prestressing tendon and anchoring system 3.3.1 For prestressing tendons of cast-in-situ prestressed concrete hollow floor structure, high-strength and low-relaxation steel strands should be preferred, and where necessary, prestressing tendons with reliable performance, such as steel wire bundles and fiber prestressing tendons may be adopted, and their performance shall meet the relevant requirements of the current national standards GB/T 5224 Steel strand for prestressed concrete and GB/T 5223 Steel wires for prestressed concrete. 3.3.2 Technology systems such as bonded, unbonded and retard-bonded prestressing may be adopted, and their performance shall meet the relevant requirements of the current standards GB 50010 Code for design of concrete structures, JG 92 Technical specification for concrete structures prestressed with unbonded tendons and JG/T 369 Retard-bonded prestressing steel strand. 3.3.3 The prestressed anchoring system shall meet the relevant requirements of the current national standard GB/T 14370 Anchorage, grip and coupler for prestressing tendons. 3.4 Filler 3.4.1 For filler materials used for cast-in-situ concrete hollow floor structure, the total content of chloride and alkali shall meet the concrete material requirements in the current national standard GB 50010 Code for design of concrete structures; the limits of radionuclides shall meet the requirements of the current national standard GB 6566 Limits of radionuclides in building materials; when used in normal service environment, they shall not generate members that are harmful to human health and the environment, and in case of fire, they shall not generate toxic gases precipitated from the floor within the time required by fire protection level. 3.4.2 The specifications and dimensions of filler tubes and filler rods shall be determined according to the specific project requirements, wherein, the outer diameter may be 100~500mm, the permissible dimensional deviation shall meet the requirements of Table 3.4.2, and the inspection method shall be implemented according to the requirements of Annex A. The appearance quality of filler tubes and filler rods shall meet the following requirements: 1 the surface shall be flat, smooth and free of visible through cracks and holes; 2 the end of filler tube shall be blocked tightly and firmly; 3 the outer sealing layer (if any) of the filler rod shall be densely sealed and firmly adhered. Table 3.4.2 Permissible dimensional deviation of filler tube and filler rod Item Permissible deviation (mm) Length (mm) L≤500 ±8 L>500 ±10 Cross-section dimension (mm) D≤300 ±5 D>300 ±8 Axial surface flatness (mm) L≤500 5 L>500 8 3.4.3 The specifications and dimensions of filler boxes and filler blocks shall be determined according to the specific project requirements, wherein, the side length may be 400~1,200mm. The permissible dimensional deviation shall meet the requirements of Table 3.4.3, and the inspection method shall be implemented according to the requirements of Annex A. When the short side of the bottom surface of the embedded filler box and filler block is longer than 600mm, a vertical through hole should be set in the middle. The appearance quality of filler boxes and filler blocks shall meet the following requirements: 1 the surface shall be flat, smooth and free of visible through cracks and holes; 2 the filler box shall be reliably sealed; 3 the side of the exposed surface of exposed filler box shall be reliably connected with the floor structure concrete. Table 3.4.3 Permissible dimensional deviation of filler box and filler block Item Permissible deviation (mm) Side length +5, -8 Height +5, -8 Surface flatness 5 Length difference of two diagonals 10 3.4.4 The specifications and dimensions of filler plates shall be determined according to the specific project requirements, wherein, the side length may be 800~1,800mm, the thickness may be 80~500mm, the permissible dimensional deviation shall meet the requirements of Table 3.4.4, and the inspection method shall be implemented according to the requirements of Annex A. The appearance quality of filler plate shall meet the following requirements: 1 the surface of filler plate shall be flat and smooth, and the lightweight core blocks shall be arranged neatly; 2 the connecting net shall be free of falling off; 3 for the lightweight core block, its surface shall be free of obvious damage, and its size shall meet the requirements of concrete pouring and compaction. Foreword i 1 General provisions 2 Terms and symbols 2.1 Terms 2.2 Symbols 3 Materials 3.1 Concrete 3.2 Ordinary reinforcement 3.3 Prestressing tendon and anchoring system 3.4 Filler 4 Basic requirements 4.1 Structural arrangement principle 4.2 Calculation of section properties 4.3 Applicable height of building 4.4 Seismic grade of buildings 4.5 Seismic design requirements of lateral resistant system 5 Method of structural analysis 5.1 General requirements 5.2 Analogue slab method 5.3 Analogue cross beam method 5.4 Empirical coefficient method 5.5 Equivalent frame method 5.6 Equivalent space frame method 6 Calculation of structure members 6.1 General requirements 6.2 Calculation principles for design 6.3 Calculation of bearing capacity limit state 6.4 Checking calculation of serviceability limit states 7 Construction requirements 7.1 General requirements 7.2 Flexible edge supported floor structure 7.3 Thin hollow floor structure 7.4 Construction requirements for frame rib of thick hollow slab structure 8 Joints 8.1 Beam-column joints of flexible edge supported floor structure 8.2 Slab-column joints of thin hollow floor structure 8.3 Frame rib-column joints of thick hollow slab structure 9 Construction and acceptance 9.1 Construction points 9.2 Material approach acceptance 9.3 Constructional quality acceptance Annex A Inspection method of filler Annex B Calculation of dead weight, converted thickness and volumetric void ratio of hollow slab Annex C Equivalent isotropic slab method of orthotropic slab Annex D Construction technological process Annex E Filler quality acceptance forms Annex F Parameter table of cast-in-situ hollow slab Explanation of wording in this specification List of quoted standards 1 总则 1.0.1 为使现浇混凝土空心楼盖的设计、施工做到技术先进、安全适用、经济合理、确保质量,制定本规程。 1.0.2 本规程适用于广东省一般工业与民用建筑物及构筑物的现浇钢筋混凝土及预应力混凝土空心楼盖结构的设计、施工及验收。 1.0.3 现浇混凝土空心楼盖结构的设计、施工及验收除应符合本规程外,尚应符合《混凝土结构设计规范》GB 50010、《建筑抗震设计规范》GB 50011、《高层建筑混凝土结构技术规程》JGJ 3等国家现行有关标准的规定。 2 术语和符号 2.1 术语 2.1.1 现浇混凝土空心楼板 cast—in—situ concrete hollow slab 采用内置或外露填充体,经现场浇筑混凝土形成的空腔楼板。 2.1.2 现浇混凝土空心楼盖 cast—in—situ concrete hollow floor structure 由现浇混凝土空心楼板和支承梁(或暗梁)等水平构件形成的楼盖结构。 2.1.3 刚性支承楼盖 rigid edge supported floor structure 由墙或竖向刚度较大的梁作为楼板竖向支承的楼盖。 2.1.4 柔性支承楼盖 flexible edge supported floor structure 由竖向刚度较小的梁作为楼板竖向支承的楼盖。 2.1.5 柱支承楼盖 column supported floor structure 由柱作为楼板竖向支承,且支承间没有刚性梁和柔性梁的楼盖。 2.1.6 厚空心板楼盖 thick hollow floor structure 板厚与板跨的比值(框架肋梁的高跨比)不小于1/22的现浇混凝土空心楼盖,定义为厚空心板楼盖。 2.1.7 薄空心板楼盖 thin hollow floor structure 板厚与板跨的比值(框架肋梁的高跨比)小于1/22的现浇混凝土空心楼盖,定义为薄空心板楼盖。 2.1.8 厚空心板柱(框架)结构 thick hollow slab—column structure 柱支承厚空心板楼盖结构,由框架肋梁或部分框架梁、扁梁与柱形成的框架结构。 2.1.9 厚空心板柱—剪力墙结构 thick hollow slab—column—shear wall structure 采用厚空心板楼盖的板柱—剪力墙结构。板柱部分由框架肋梁或部分框架梁、扁梁与柱形成框架结构。 2.1.10 薄空心板柱(框架)结构 thin hollow slab—column structure 柱支承的薄空心板楼盖结构。 2.1.11 薄空心板柱—剪力墙结构 thin hollow slab—column—shear wall structure 采用薄空心板楼盖的板柱—剪力墙结构。通常意义上的板柱—剪力墙结构。 2.1.12 填充体 filler 永久埋置于现浇混凝土楼板中,置换部分混凝土以达到减轻结构自重的物体。按形状和成型方式可分为:管状成型的填充管、棒状成型的填充棒、箱状成型的填充箱、块状成型的填充块和板状成型的填充板等。 2.1.13 内置填充体 embedded filler 埋置于现浇混凝土楼板中,表面均不外露的填充体。 2.1.14 外露填充体 exposed filler 埋置于现浇混凝土楼板中,其上表面或下表面或上、下表面暴露于楼板表面的填充体。 2.1.15 体积空心率 volumetric void ratio 现浇混凝土楼板区格内填充体的体积与楼板体积的比值。填充体的体积包括了填充体材料的体积和内部空腔的体积。 2.1.16 表观密度 apparent density 自然状态下填充体的质量与体积的比值。 2.1.17 肋 rib;主肋 main—rib;框架肋梁 frame rib;次肋 secondary—rib 肋:同一柱网内相邻填充体侧面之间、端面之间形成的混凝土区域。 主肋:现浇混凝土空心楼板中相邻填充板之间形成的肋。 框架肋梁:空心板楼盖中,布置在竖向支承构件之间的、与竖向构件组成抗侧力体系的主肋或实心暗梁。 次肋:现浇混凝土空心楼板中填充板内相邻轻质芯块间形成的肋。 2.1.18 肋间距 rib spacing 相邻两肋中心线之间的距离。 2.1.19 翼缘厚度 flange depth 填充体上、下表面分别至现浇混凝土空心楼板顶面、底面的距离。 2.1.20 拟板法 analogue slab method 将现浇混凝土空心楼板等效为实心板进行内力和变形分析的计算方法。 2.1.21 拟梁法 analogue cross beam method 将现浇混凝土空心楼板等效为双向交叉梁系进行内力和变形分析的计算方法。 2.1.22 经验系数法 empirical coefficient method 用弯矩分配系数计算现浇混凝土空心楼盖各板带控制截面弯矩的计算方法。 2.1.23 等代框架法 equivalent frame method 在两个方向将柱支承楼盖或柔性支承楼盖等效成以柱轴线为中心的连续框架分别进行内力分析的计算方法。 2.1.24 空间等代框架法 equivalent space frame method 将空心楼盖柱上板带及跨中板带按拟梁法等效为多根梁,同竖向构件一起参与在水平作用、竖向荷载共同作用下的整体内力分析的计算方法。 2.2 符号 2.2.1 材料性能 Ee——混凝土弹性模量; Ecb——梁混凝土弹性模量; Ecs——板混凝土弹性模量; Ecc——柱混凝土弹性模量; Ex——正交各向异性板x向弹性模量; Ey——正交各向异性板y向弹性模量; Gxy——正交各向异性板剪变模量; gfil———填充体表观密度; vc——混凝土泊松比; vx——正交各向异性板x向泊松比; vy——正交各向异性板y向泊松比。 2.2.2 作用、作用效应 Gfil——楼板区格内填充体重量; M0——计算板带在计算方向一跨内的总弯矩设计值; Mx1、My1、Mx1y1——等效各向同性板x向弯矩、y向弯矩以及扭矩; Mx、My、Mxy——正交各向异性板x向弯矩、y向弯矩以及扭矩; q——板面竖向均布荷载设计值。 2.2.3 几何参数 Aa、Ap——圆形截面填充体空心楼板纵向、横向截面积; b——计算单元宽度;计算板带宽度;计算等代框架梁宽度;柱上板带宽度; bb——梁截面宽度;拟梁宽度; bc——柱截面宽度; bw——计算截面肋宽; c2——等代框架法中垂直于板跨度l1方向的柱(柱帽)宽; D——圆形截面填充体直径; h——楼板厚度; h0——楼板截面有效高度; hc——柱截面高度; hcon——空心楼板折实厚度; I1——等代框架中梁板在柱(柱帽)边缘处的截面惯性矩; I0——计算单位等宽度实心楼板截面惯性矩; Ia、Ip——圆形截面填充体空心楼板纵向、横向截面惯性矩; Ic——柱在计算方向的截面惯性矩; Kc——等代框架法中柱的抗弯线刚度; Kec——等代框架法中等效柱的抗弯线刚度; Kt——等代框架法中柱两侧抗扭构件的抗扭刚度; l1——经验系数法及等代框架中板计算方向跨度; l2——经验系数法及等代框架中板垂直于计算方向的跨度; lx——正交各向异性板x向计算跨度;刚性支承双向板长跨跨度; ly——正交各向异性板y向计算跨度;刚性支承双向板短跨跨度; lx1、ly1——等效各向同性板x向和y向跨度; ln——计算方向板的净跨。 2.2.4 计算系数及其他 C——经验系数法计算中的截面抗扭常数; k——正交各向异性板y向与x向的弹性模量比;填充管(棒)空心楼板横向与纵向惯性矩比; α1——经验系数法计算中计算方向梁与板截面抗弯刚度的比值; α2——经验系数法计算中垂直于计算方向梁与板截面抗弯刚度的比值; αEf——填充体弹性模量与混凝土弹性模量比值; β——填充管(棒)空心楼板横向受剪承载力调整系数; βb——等代框架计算中抗扭刚度增大系数; βt——经验系数法中抗扭刚度系数; ρvoid——体积空心率。 3 材料 3.1 混凝土 3.1.1 用于现浇混凝土空心楼盖的混凝土强度等级:钢筋混凝土楼盖不宜低于C25,预应力混凝土楼盖不宜低于C40,且不应低于C30。 3.2 普通钢筋 3.2.1 现浇混凝土空心楼盖的普通纵向受力钢筋宜采用HRB400、HRB500、HRBF400和HRBF500钢筋,也可采用HPB300、HRB335、HRBF335、RRB400钢筋。 3.3 预应力筋及锚固系统 3.3.1 现浇预应力混凝土空心楼盖的预应力筋宜优先选用高强低松弛钢绞线,必要时也可选用钢丝束、纤维预应力筋等性能可靠的预应力筋,其性能应符合现行国家标准《预应力混凝土用钢绞线》GB/T 5224和《预应力混凝土用钢丝》GB/T 5223等有关规定。 3.3.2 预应力可采用有粘结、无粘结、缓粘结等技术体系,其性能应符合国家现行标准《混凝土结构设计规范》GB 50010、《无粘结预应力混凝土结构技术规程》JGJ 92和《缓粘结预应力钢绞线》JG/T 369的有关规定。 3.3.3 预应力锚固系统应符合现行国家标准《预应力筋用锚具、夹具和连接器》GB/T 14370的有关规定。 3.4 填充体 3.4.1 用于现浇混凝土空心楼盖的填充体材料,氯化物和碱的总含量应符合现行国家标准《混凝土结构设计规范》GB 50010中对混凝土材料的要求;放射性核素的限量应符合现行国家标准《建筑材料放射性核素限量》GB 6566的要求;正常使用环境下不应产生有损人身健康及环境的有害成分,火灾时防火等级要求时间内不得产生析出楼板的有毒气体。 3.4.2 填充管、填充棒的规格尺寸应根据具体工程需要确定,外径可取100mm~500mm,尺寸允许偏差应符合表3.4.2的规定,检验方法应按本规程附录A的规定执行。填充管、填充棒的外观质量应符合下列要求: 1 表面应平整,无明显贯通性裂纹、孔洞; 2 填充管管端应封堵密实、牢固; 3 当填充棒有外裹封闭层时,封裹应密实,粘附应牢固。 表3.4.2 填充管、填充棒尺寸允许偏差 项目 允许偏差(mm) 长度(mm) L≤500 ±8 L>500 ±10 断面尺寸(mm) D≤300 ±5 D>300 ±8 轴向表面平直度(mm) L≤500 5 L>500 8 3.4.3 填充箱、填充块的规格尺寸应根据具体工程需要确定,其边长可取400mm~1200mm。尺寸允许偏差应符合表3.4.3的规定,检验方法应按本规程附录A的规定执行。当内置填充箱、填充块的底面短边尺寸大于600mm时,宜在中部设置竖向通孔。填充箱、填充块的外观质量应符合下列规定: 1 表面应平整,无明显贯通性裂纹、孔洞; 2 填充箱应具有可靠的密封性; 3 外露填充箱的外露面侧边应与楼盖混凝土有可靠连接。 表3.4.3 填充箱、填充块尺寸允许偏差项目 项目 允许偏差(mm) 边长 +5,-8 高度 +5,-8 表面平整度 5 两对角线长度差 10 3.4.4 填充板的规格尺寸应根据具体工程需要确定,边长可取800mm~1800mm,厚度可取80mm~500mm,尺寸允许偏差应符合表3.4.4的规定,检验方法应按本规程附录A的规定执行。填充板外观质量应符合下列规定: 1 填充板表面应平整、轻质芯块应排列整齐; 2 连接网不应有脱落; 3 轻质芯块表面不应有明显破损,大小应满足混凝土浇筑密实的要求。 表3.4.4 填充板的尺寸允许偏差 项目 允许偏差(mm) 轻质芯块 边长,厚度 +5,-8 表面平整度 8 连接网 间距 ±5 表面平整度 8 整体板 边长、厚度 +5,-8 表面平整度 8 3.4.5 填充体的物理力学性能应符合表3.4.5的规定,检验方法应按本规程附录A的规定执行。 表3.4.5 填充体的物理力学性能要求 项目 技术指标 表观密度(kg/m3) 15.0~500.0 48h浸泡后局部抗压荷载(kN) ≥1.0 自然吸水率(%) ≤5 抗振动冲击 φ30振动棒紧贴内置表面振动1 min,不出现贯通性裂纹及破损 注:1 当外露填充箱上表面为混凝土,且与现浇混凝土同样受力时,上表面质量和体积可不计入表观密度计算; 2 填充板的局部抗压强度是指轻质芯块的局部抗压强度。 4 基本规定 4.1 结构布置原则 4.1.1 现浇混凝土空心楼盖的结构布置应受力明确、传力合理。 4.1.2 现浇混凝土空心楼板为单向板时,填充体长向应沿板受力方向布置。 4.1.3 现浇混凝土空心楼板为双向板时,填充体宜为平面对称形状,并宜按双向对称布置;当为填充管、填充棒等平面不对称形状时,其长向宜沿受力较大的方向布置。 4.1.4 直接承受较大集中静力荷载的楼板区域,不宜布置填充体;直接承受较大集中动力荷载的楼板区格,不应采用空心楼板。 4.1.5 现浇空心板与现浇实心板可单一或混合布置在同一楼面、屋面结构中。 4.1.6 当外部条件比较严格而常规空心楼盖无法满足设计、施工要求时,可考虑采用钢模作为空心楼盖填充体。 4.2 截面特性计算 4.2.1 双向布置填充体的现浇混凝土空心楼板,两正交方向的截面特性应按下列规定计算: 1 选取两相邻填充体中心线之间的范围作为一个计算单元(图4.2.1-1)。 2 当填充体为内置填充体、单面外露填充体和双面外露填充体时,可将计算单元分别简化为I形截面、T形截面和矩形截面来计算其截面积A和截面惯性矩Ⅰ(图4.2.1-2)。 3 当填充体外壳为混凝土且与现浇混凝土可靠连接时,可将填充体外壳计入混凝土截面内计算截面特性。 (a)内置填充体空心板 (b)单面外露填充体空心板 (c)双面外露填充体空心板 图4.2.1-1 现浇混凝土空心楼板截面示意图 1—混凝土;2—填充体 图4.2.1-2 截面计算单元示意图 4.2.2 当内置填充体为圆形截面且圆心与板形心一致时,可取宽度D+bw为一个计算单元(图4.2.2),其截面面积和截面惯性矩的计算应符合下列规定: 1 空心楼板沿填充体纵向的截面积和截面惯性矩应按下列公式计算: (4.2.2-1) (a)空心板截面示意图 (b)计算单元示意图 图4.2.2 圆形截面填充体空心板 1—混凝土;2—填充体 (4.2.2-2) 式中:Aa、Ia——纵向一个计算单元宽度内空心楼板截面积(mm2)、截面惯性矩(mm4); D——填充体直径(mm); bw——肋宽(mm); b——计算单元宽度(mm),大小为D+bw; h——楼板厚度(mm)。 2 空心楼板沿填充体横向的截面积和截面惯性矩可按下列公式计算: Ap=b(1.06h-D) (4.2.2-3) Ip=kIa (4.2.2-4) 式中:Ap、Ip——横向一个计算单元宽度内空心楼板截面积(mm2)、截面惯性矩(mm4); k——横向计算单元与纵向计算单元截面惯性矩比,可按表4.2.2采用,中间值按线性插值。 表4.2.2 横向计算单元与纵向计算单元截面惯性矩比k D/h 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 k 0.97 0.96 0.95 0.93 0.90 0.87 0.82 0.77 4.3 房屋适用高度 4.3.1 采用刚性支承现浇混凝土空心楼盖的多、高层建筑,其最大适用高度按现行国家标准《高层建筑混凝土结构技术规程》JGJ 3和《建筑抗震设计规范》GB 50011的规定取值。 4.3.2 采用厚空心板楼盖的板柱(框架)结构、板柱(框架)—剪力墙结构乙类和丙类的房屋建筑,最大适用高度应符合表4.3.2的规定。 表4.3.2 采用厚空心板楼盖的多、高层建筑房屋最大适用高度(m) 结构体系 非抗震设计 抗震设防烈度 6 7 8 厚空心板柱(框架)结构 70 60 50 40 厚空心板柱(框架)—剪力墙结构 150 130 120 100 注:1 房屋高度指室外地面到主要屋面板板顶的高度(不包括局部突出屋顶部分); 2 超过表内高度的房屋,应进行专门研究和论证,采取有效的加强措施; 3 表中框架不含异型柱框架; 4 厚空心板(框架)指框架肋梁、框架梁与柱形成的框架。 4.3.3 采用薄空心板楼盖的板柱(框架)结构、板柱(框架)—剪力墙结构乙类和丙类的房屋建筑,最大适用高度应符合表4.3.3的规定。 表4.3.3 采用薄空心板楼盖的多、高层建筑最大适用高度(m) 结构体系 非抗震设计 抗震设防烈度 6 7 8 薄空心板柱(框架)结构 24 22 18 不应采用 薄空心板柱(框架)—剪力墙结构 110 80 70 55 注:1 房屋高度指室外地面到主要屋面板板顶的高度(不包括局部突出屋顶部分); 2 超过表内高度的房屋,应进行专门研究和论证,采取有效的加强措施; 3 板柱(框架)—剪力墙结构指板柱、框架和剪力墙组成抗侧力体系的结构; 4 按本表确定薄空心板柱(框架)结构最大适用高度时,空心板板厚与跨度之比(框架暗梁高跨比)不宜小于1/25且不应小于300mm; 5 薄空心板柱框架指框架肋梁、框架梁与柱形成的框架; 6 表中框架不含异型柱框架。 4.3.4 采用现浇混凝土空心楼盖的筒体结构最大适用高度应符合表4.3.4的规定。 表4.3.4 采用现浇混凝土空心楼盖的筒体结构最大适用高度(m) 结构类型 6度 7度 8度 框架—核心筒 150 130 100 筒中筒 180 150 120 钢框架—钢筋混凝土核心筒 200 160 120 型钢(钢管)混凝土框架—钢筋混凝土核心筒 220 190 150 钢外筒—钢筋混凝土核心筒 260 210 160 型钢(钢管)混凝土外筒—钢筋混凝土核心筒 280 230 170 注:平面和竖向均不规则的结构,最大适用高度应适当降低。 4.4 房屋抗震等级 4.4.1 采用空心楼盖房屋结构,应根据设防类别、烈度、结构类型和房屋高度采用不同的抗震等级,并应符合相应的计算和构造措施要求。丙类建筑的抗震等级应按表4.4.1确定。 表4.4.1 混凝土空心楼盖结构的抗震等级 结构类型 设防烈度 6 7 8 厚空心板柱(框架)结构 高度(m) ≤24 >24 ≤24 >24 ≤24 >24 框架 四 三 三 二 二 一 大跨度框架 三 二 一 薄空心板柱(框架)结构 框架 三 二 薄空心板柱(框架)-剪力墙(斜撑)结构 高度(m) ≤35 >35 ≤35 >35 ≤35 >35 框架 三 二 二 二 一 剪力墙(斜撑) 二 二 二 一 二 一 厚空心板柱(框架)-剪力墙(斜撑)结构 高度(m) ≤60 >60 ≤24 25~60 >60 ≤24 25~60 >60 框架 四 三 四 三 二 三 二 一 剪力墙(斜撑) 三 三 二 二 一 注:1 建筑场地为I类时,除6度设防烈度外,应允许按本地区设防烈度降低一度所对应的抗震等级采取抗震构造措施,但相应的计算要求不应降低; 2 接近或等于高度分界时,应允许结合房屋不规则程度及场地、地基条件确定抗震等级; 3 甲类建筑、乙类建筑,应按现行国家标准《建筑工程抗震设防分类标准》GB 50223的规定调整采取抗震措施的烈度后,再按本表确定抗震等级; 4 表中的框架指由框架肋梁、框架梁与柱形成的框架; 5 大跨度框架指跨度不小于18m的框架; 6 抗震设防烈度不高于7度地区,高度不大于80m的结构,当楼梯采取足够的抗震措施时,可作为抗震斜撑考虑; 7 当采用斜撑代替剪力墙作为第一道抗震防线时,应进行专门研究和论证。 4.4.2 筒体结构抗震等级按《高层建筑混凝土结构技术规程》JGJ 3规定执行。 4.4.3 厚空心板柱(框架)—剪力墙结构的抗震等级尚应根据框架承担的倾覆力矩,按《建筑抗震设计规范》GB 50011、《高层建筑混凝土结构技术规程》JGJ 3调整。 4.5 抗侧力体系抗震设计要求 4.5.1 抗震设计时,建筑周边应采用有梁框架,楼梯间、电梯间等楼板较大开洞处,宜设置边梁。 4.5.2 采用现浇混凝土厚空心板楼盖的多、高层建筑房屋,应符合下列规定: 1 厚空心板柱(框架)结构中框架肋梁、柔性支承梁、框架梁与竖向构件形成的抗侧力体系的结构布置、抗震措施及承载力验算等各项要求应满足现行规范《建筑抗震设计规范》GB 50011、《高层建筑混凝土结构技术规程》JGJ 3中框架结构的各项要求; 2 厚空心板柱(框架)—剪力墙结构中框架肋梁、柔性支承梁、框架梁与竖向构件形成的抗侧力体系的结构布置、抗震措施及承载力验算等各项要求应满足现行规范《建筑抗震设计规范》GB 50011、《高层建筑混凝土结构技术规程》JGJ 3中框架—剪力墙结构的各项要求; 3 框架肋梁中线宜与柱中线重合,且应双向布置,梁宽大于柱宽的框架肋梁、扁梁不宜用于一级框架; 4 框架肋梁及其梁柱节点的承载力验算、抗震措施应满足《建筑抗震设计规范》GB 50011、《高层建筑混凝土结构技术规程》JGJ 3、《预应力混凝土结构抗震设计规程》JGJ 140中宽扁梁和框架梁的各项要求; 5 按《建筑抗震设计规范》GB 50011及《混凝土结构设计规范》GB 50010验算柱端抗弯承载力时,梁端弯矩及实配钢筋宜采用柱上板带范围内的全部弯矩及纵筋;当有可靠的依据,能确定楼板翼缘作用的有效范围时,也可按实际范围采用。 4.5.3 采用薄空心板楼盖的多层板柱(框架)结构,应符合下列规定: 1 应在柱间设置框架实心暗梁、框架宽扁梁或框架梁; 2 单列柱数不应少于3根; 3 当楼板长宽比大于2或长度大于32m时,应设置框架梁。 4.5.4 用于抗震设防时的薄空心板柱(框架)结构,扭转位移比不应大于1.35。 4.5.5 薄空心板柱(框架)—剪力墙结构应满足现行规范《建筑抗震设计规范》GB 50011、《高层建筑混凝土结构技术规程》JGJ 3中板柱—剪力墙结构的各项要求。 4.5.6 房屋地下一层顶板作为上部结构的嵌固部位时,在塔楼范围内的地下一层顶板应采用梁板结构,塔楼外的相关范围可采用厚空心板楼盖结构,并按本规程设置框架肋梁且肋梁的高跨比不宜小于1/18。 5 结构分析方法 5.1 一般规定 5.1.1 现浇混凝土空心楼盖应采用满足力学平衡条件和变形协调条件的计算方法进行结构分析。结构分析宜采用弹性分析方法;在有可靠依据时可考虑内力重分布,当进行内力重分布时应考虑正常使用要求。 5.1.2 当楼盖平面布置不规则、填充体布置间距不等、作用有局部集中荷载、局部开洞等特殊情况时,宜作专门的计算分析。结构分析所采用的电算程序应经考核验证,其技术条件应符合本规程和现行国家标准《混凝土结构设计规范》GB 50010的有关规定。 5.1.3 现浇混凝土空心楼板的自重应考虑空心的影响,整体分析时,也可通过折实厚度考虑板自重,可按本规程附录B计算。方案设计时,空心楼板参数也可按本规程附录F取值。 5.1.4 周边刚性支承的内置填充体现浇混凝土空心楼板,可采用拟板法按本规程第5.2节的规定计算;也可采用拟梁法按本规程第5.3节的规定计算。周边刚性支承的外露填充体现浇混凝土空心楼板宜采用拟梁法按本规程第5.3节的规定计算。 5.1.5 柱支承、柔性支承及混合支承现浇混凝土空心楼盖竖向均布荷载作用下的内力宜采用经验系数法按本规程第5.4节的规定计算;当不符合经验系数法的规定时,可采用等代框架法按本规程第5.5节的规定计算。 5.1.6 竖向荷载作用下无梁楼盖内跨板截面的弯矩,根据板水平约束和厚跨比的大小,可考虑穹顶作用。当采用有限元法进行分析时,可考虑柱、柱帽、墙等支承截面效应的有利影响。 5.1.7 采用或部分采用现浇混凝土空心楼盖的多、高层建筑,在竖向荷载与水平荷载作用下的内力及位移计算,宜优先采用有限元空间模型的计算方法;当符合平面等代框架法的简化条件时,也可采用本规程第5.5节等代框架法计算;厚空心板结构也可采用本规程第5.6节空间等代框架法计算。 5.2 拟板法 5.2.1 现浇混凝土空心楼板按拟板法计算时,应符合下列规定: 1 现浇混凝土空心楼板肋间距宜小于2倍板厚; 2 内置填充体现浇混凝土空心楼板双向刚度相同或相差较小时,可作为各向同性板计算,否则宜按正交各向异性板计算。 5.2.2 刚性支承的现浇混凝土空心楼板应按下列原则计算: 1 两对边刚性支承的现浇混凝土空心楼板可按单向板计算; 2 四边刚性支承的现浇混凝土空心楼板应按下列规定计算: 1) 长边与短边长度之比不大于2时,应按双向板计算; 2) 长边与短边长度之比大于2,但小于3时,宜按双向板计算; 3) 长边与短边长度之比不小于3时,宜按沿短边方向受力的单向板计算,并应沿长边方向布置构造钢筋。 5.2.3 现浇混凝土空心楼板可按下列规定等效为等厚度的实心板计算: 1 当现浇混凝土空心楼板作为各向同性板计算时,各向同性板弹性模量E可按下式计算: (5.2.3-1) 式中:I——计算单元截面惯性矩(mm4),可按本规程第4.2节的规定采用; I0——计算单元等宽度实心板截面惯性矩(mm4); Ec——混凝土弹性模量(N/mm2)。 2 当现浇混凝土空心楼板作为正交各向异性板计算时,正交各向异性板的弹性模量、泊松比、剪变模量可按下列规定确定: 1) x向和y向弹性模量可分别按下列公式计算: (5.2.3-2) (5.2.3-3) 2) x向和y向泊松比可分别按下列公式计算: max(vx,vy)=vc (5.2.3-4) Exvy=Eyvx (5.2.3-5) 3) 对于内置填充体现浇混凝土空心楼板,其剪变模量可按下式计算: (5.2.3-6) 式中:Ix、Iy——x向、y向计算单元截面惯性矩(mm4),可按本规程4.2节规定计算; I0x、I0y——与Ix、Iy对应计算单元等宽度实心板截面惯性矩(mm4); Ex、vx——现浇混凝土空心楼板等效为正交各向异性板的x向弹性模量(N/mm2)和泊松比; Ey、vy——现浇混凝土空心楼板等效为正交各向异性板的y向弹性模量(N/mm2)和泊松比; Gxy——现浇混凝土空心楼板等效为正交各向异性板的剪变模量(N/mm2); vc——混凝土泊松比,取0.2。 5.2.4 现浇混凝土空心楼板等效为正交各向异性板后,可用有限元法进行内力和变形计算;当填充体为内置填充体时,可按本规程附录C提供的等效各向同性板法计算。 5.2.5 刚性支承现浇混凝土空心楼板按拟板法求得的双向板弹性弯矩值,可按下列规定取弯矩控制值: 1 正弯矩:每个方向分别划分为板边区域和跨中区域三个配筋范围(图5.2.5),均按1/4板短跨尺寸分界;板边区域的弯矩控制值可取相应方向最大正弯矩值的1/2,跨中区域的弯矩控制值可取相应方向最大正弯矩值; 2 负弯矩:均可取相应方向负弯矩的最大值。 图5.2.5 双向板弹性正弯矩取值示意 注:Mx、My——lx、ly跨度方向计算最大正弯矩(N·m/m),其中lx≥ly。 5.3 拟梁法 5.3.1 现浇混凝土空心楼板按拟梁法计算时,应符合下列规定: 1 所取拟梁宜在相邻区格边间连续; 2 每个区格板内拟梁的数量在各方向上均不宜少于5根(图5.3.1); 3 计算中宜考虑空心楼板扭转刚度的影响。 (a)现浇混凝土空心楼盖示意图 (b)拟梁后楼盖示意图 图5.3.1 拟梁法示意图 1—拟梁对应的空心板宽度;2—拟梁尺寸为bb×h 5.3.2 拟梁的截面可按抗弯刚度相等、截面高度相等的原则确定,拟梁的宽度可按下式计算: (5.3.2) 式中:b0——拟梁对应的空心楼板宽度(mm); bb——拟梁宽度(mm); Ⅰ——拟梁对应空心楼板宽b0范围内截面惯性矩之和(mm4),可按本规程第4.2节的规定计算; I0——拟梁对应空心楼板宽b0范围内按等厚实心板计算的截面惯性矩(mm4)。 5.3.3 在用拟梁法计算现浇混凝土空心楼板的自重时应扣除两个方向拟梁交叉重叠而增加的重量。 5.4 经验系数法 5.4.1 柱支承、柔性支承现浇混凝土空心楼盖在竖向均布荷载作用下,当采用经验系数法进行计算时,应符合下列规定: 1 楼盖为矩形区格,任一区格的长边与短边之比不应大于2; 2 楼盖结构的每个方向至少应有三个连续跨; 3 同一方向相邻跨的跨度差不应超过较长跨的1/3; 4 任一方向柱离相邻柱中心线的偏移距离不应超过该方向跨度的1/10; 5 可变荷载标准值与永久荷载标准值之比不应大于2; 6 楼盖应按纵、横两个方向分别计算,且均应考虑全部竖向荷载的作用; 7 对于柔性支承楼盖,两个垂直方向的梁尚应满足下式要求; (5.4.1-1) 式中:l1、l2——分别为板计算方向和垂直于计算方向的跨度(m),取柱支座中心线之间的距离; α1、α2———分别为计算方向和垂直于计算方向梁与板截面抗弯刚度的比值。 8 计算方向和垂直于计算方向梁与板截面抗弯刚度的比值应按下式计算: (5.4.1-2) 式中:Ecb、Ecs——分别为梁、板的混凝土弹性模量(N/mm2); Ib、Is——分别为梁、板的截面惯性矩(mm4),应分别按本规程5.4.2条和5.4.3条的规定计算。 5.4.2 柔性支承现浇混凝土空心楼盖中,梁的截面惯性矩Ib可按T形或倒L形截面计算,每侧翼缘计算宽度宜取梁高与板厚之差,且不应超过板厚的4倍。 5.4.3 柔性支承现浇混凝土空心楼盖中,楼板的截面惯性矩Is可按本规程第5.4.4条规定的计算板带计算,梁位置按实心板计算,空心楼板部分的截面惯性矩可按本规程第4.2节的规定计算。 5.4.4 计算板带取柱支座中心线两侧区格各自中心线为界的板带。板带可划分为柱上板带和跨中板带,板带宽度应按下列规定取值: 1 柱上板带应为柱支座中心线两侧各自区格宽度的1/4之和; 2 跨中板带应为每侧各自区格宽度的1/4。 5.4.5 计算板带在计算方向一跨内的总弯矩设计值M0(N·m)应按下式计算: |
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 |
服务热线:400-001-5431 | 电话:010-8572 5110 | 传真:010-8581 9515 | Email: bz@bzfyw.com | |
版权所有: 北京悦尔信息技术有限公司 2008-2020 京ICP备17065875号-1 51La |
本页关键词: |
DBJ 15-95-2013, DBJ/T 15-95-2013, DBJT 15-95-2013, DBJ15-95-2013, DBJ 15, DBJ15, DBJ/T15-95-2013, DBJ/T 15, DBJ/T15, DBJT15-95-2013, DBJT 15, DBJT15 |