![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
Standard for design of aero-engine test cell 1 General provisions 1.0.1 This standard is formulated to unify the standard for design of aero-engine test cell, ensure the design quality of test cell, and realize safety, reliability, technology advancement and economical applicability. 1.0.2 This standard is applicable to the design of enclosed test cell of constructed and renovated aviation turbojet engine, turbofan engine, turboprop engine and turboshaft engine using aviation kerosene fuel. 1.0.3 In addition to this standard, the design of enclosed test cell shall also comply with those stipulated in the current relevant national standards. 2 Terms 2.0.1 aero-engine enclosed test cell ground test facility used for running test of aero-engine indoors, usually composed of aero-engine test cell building and aero-engine test equipment, hereinafter referred to as test cell 2.0.2 aero-engine test cell building building used for ground test of the complete aero-engine, usually composed of test chamber, inlet plenum, exhaust stack, and auxiliary functional rooms such as control room, instrument room and preparation room 2.0.3 aero-engine test equipment process equipment for aero-engine test, including test stand, exhaust augmentor, fuel heating device, reverse thrust exhaust collector, test process system, measurement and control system, etc. 2.0.4 test chamber space used for engine test in aero-engine test cell building 2.0.5 inlet plenum passage of external ambient air flowing into the test chamber, composed of structures such as inlet tower or inlet chamber as well as equipment such as silencing device, rectifying device and foreign object protection net 2.0.6 exhaust stack passage of air flow from test chamber to the external environment, composed of structures such as exhaust tower, exhaust silencing room and augmentor room as well as equipment such as exhaust augmentor and silencing device 2.0.7 augmentor room structure used for installing exhaust augmentor and isolating noise 2.0.8 test stand equipment used for fixing aero-engine and measuring its thrust or power 2.0.9 engine handling system suspended rail transport system used for lifting engine and matching test equipment, and completing air transport of engine between test chamber and preparation room 2.0.10 control room room equipped with measuring and control equipment such as control console, and used for engine test control and monitoring 2.0.11 instrument room room equipped with measuring instrument and used for test of engine parameters 2.0.12 hydraulic room room equipped with lubricating oil and hydraulic equipment for test 2.0.13 preparation room room used for preparation of engine and aero-engine test equipment before test and temporary storage after test 2.0.14 electrical room room equipped with equipment such as power supply and electrical cabinet for test 2.0.15 fuel room room equipped with equipment such as fuel pipeline, filter, valve and flow measuring device for test 2.0.16 fuel heating room room equipped with fuel heating equipment for test 3 Process 3.1 General requirements 3.1.1 During the design of test cell, the structural type and technical index of test cell shall be determined according to the type and parameters of engine. 3.1.2 When the exhaust direction of the engine deviates from its centerline, the exhaust system of test cell shall be kept smooth. 3.1.3 The test cell with engine reverse thrust test function shall be equipped with a reverse thrust exhaust collector. 3.1.4 The high-temperature exhaust stack of engine and normal-temperature exhaust stack of propeller should be arranged separately on the turboprop engine test cell. 3.1.5 The basic design parameters of test cell should include sectional area of inlet plenum, length of test chamber, sectional area of test chamber, sectional area of exhaust stack, diameter of exhaust augmentor, length of exhaust augmentor and center elevation of engine. 3.1.6 The room for development should be reserved in the design of building and main equipment. 3.1.7 The exhaust emission design of test cell shall meet the relevant requirements of the current national standard GB 16297 Comprehensive emission standard of air pollutants. 3.2 Aerodynamic design 3.2.1 The pressure drop of test chamber shall meet the following requirements: 1 the inlet pressure drop of test chamber shall not be greater than 500Pa, and that of test chamber for large-bypass-ratio turbofan engine test cell shall not be greater than 1,000Pa; 2 the static pressure difference between the inlet section and the exhaust section of the engine in test chamber shall not be greater than 100Pa. 3.2.2 The average airflow velocity of test cell shall meet the following requirements: 1 the average airflow velocity in the test chamber for the test cell of turbojet engine, small-bypass-ratio turbofan engine, turboprop engine tested without propeller and turboshaft engine shall not be greater than 10m/s; 2 the average airflow velocity in the test chamber for the test cell of large-bypass-ratio turbofan engine and turboprop engine tested with propeller should not be greater than 15m/s, and the ejector coefficient of large-bypass-ratio turbofan engine test cell shall not be less than 0.8; 3 the average airflow velocity in the inlet silencing device channel for test cell of turbojet engine and small-bypass-ratio turbofan engine shall not be greater than 20m/s; 4 the average airflow velocity in the inlet silencing device channel for test cell of large-bypass-ratio turbofan engine and turboprop engine tested with propeller should not be greater than 30m/s; 5 the average airflow velocity in the exhaust silencing device channel should not be greater than 50m/s; 6 the average airflow velocity at the outlet of exhaust stack should not be greater than 30m/s. 3.2.3 The air flow field and assurance facilities of the test chamber shall meet the following requirements: 1 the airflow field at the engine inlet shall be uniform and stable, and the uniformity of the air flow field at the inlet section of test chamber shall meet the requirements of engine test; 2 the distance from the front face of engine inlet or propeller disk face to inlet plenum shall not be too small. For vertical inlet plenum, the distance shall be greater than the length of diagonal in test chamber cross section, and for horizontal inlet plenum, the distance shall be greater than the height of test chamber; 3 the turboprop engine test cell should be equipped with a guide ring at the propeller disk surface; 4 where vertical or turning inlet plenum is adopted, the test cell should be equipped with a deflector or rectifying device at the air flow turning; 5 the engine installation centerline on test cell of large-bypass-ratio turbofan engine or turboprop engine tested with propeller should be the same as the geometric centerline of the cross section of the test chamber; 6 the windward area of the test stand and the distance between the front edge of test stand and the propeller disk surface shall not adversely affect the vibration and other performance of the engine; 7 the exhaust stack shall collect all the engine exhaust, the test chamber shall not produce exhaust backflow and exhaust back pressure oscillation, and the airflow discharged from the test cell shall not flow into the inlet plenum again. 3.2.4 Cooling measures shall be taken for the exhaust of test cell of turbojet engine and turbofan engine. 3.2.5 The measurement methods for aerodynamic design parameters of test cell, such as inlet pressure drop in test chamber, static pressure difference between inlet section and exhaust section of engine, average airflow velocity in test chamber and ejector coefficient, shall meet the relevant requirement of Annex A. 3.2.6 The aerodynamic load in the structural design of aero-engine test cell building shall meet the following requirements: 1 The aerodynamic load of test chamber shall meet the following requirements: 1) the aerodynamic load of test chamber for engine tested without propeller shall be -1,500Pa; 2) the aerodynamic load of test chamber for engine tested with propeller shall be -1,500Pa in front of propeller disc and 2,000Pa behind propeller disc. 2 The aerodynamic loads of the inlet plenum and exhaust stack shall be determined through aerodynamic calculation. 3.3 Aero-engine test equipment design 3.3.1 The design of test stand shall meet the following requirements: 1 the dynamic characteristics of the test stand shall meet the relevant requirements of national military standards GJB 242A-2018 General specification for engine, aircraft, turbojet and turbofan and GJB 242A-2018 General specification for engines, aircraft, turboprop and turboshaft or meet the technical requirements for aero-engine products; 2 suspended test stand should be adopted for turbojet engine, turbofan engine and turboprop engine tested with propeller, supported test stand should be adopted for turboprop engine and turboshaft engine with dynamometer as measuring equipment, and engine handling system and fast connection device should be arranged for test cell for batch production of aero-engines; 3 the structural strength of the test sand shall be able to bear various loads that may occur during engine test; 4 the layout of various pipelines and cables connected with the engine should reduce the effect on thrust measurement; 5 the test cell shall be able to measure the engine thrust or power, and the allowable deviation of the accuracy of the engine thrust or power measurement system shall be ±0.5%. The accuracy of the engine thrust or power measurement system may also meet the technical requirements for aero-engine products; 6 The test cell of vector thrust engine shall be able to measure the thrust components along three mutually vertical directions, and the allowable deviation of the accuracy of measuring thrust component in heading directions shall be ±0.5%, and that of measuring thrust component vertical to heading direction shall be ±2%; 7 The force transmission route of thrust calibration device of test stand should be consistent with that of engine, and the vector force should be adopted for the test stand for measuring vector thrust for central loading calibration. 3.3.2 The exhaust augmentor shall meet the following requirements: 1 the structural dimensions shall meet the aerodynamic design requirements; 2 the structural strength shall be able to bear the vibration load caused by engine exhaust; 3 the inlet dimension of exhaust augmentor shall meet the engine nozzle deflection requirements; 4 the structural design shall meet the stress requirements caused by thermal expansion; 5 the exhaust augmentor/exhaust pipe installed in the test chamber of the turboshaft engine test cell should be axially telescopic, and heat insulation measures should be taken. 3.3.3 The design of fuel heating device shall meet the following requirements: 1 the heating capability shall meet the requirements of engine fuel heating test; 2 the structural design shall be safe and reliable, and shall be convenient for inspection and maintenance; 3 the heating device shall be arranged in a separate explosion-proof room. 3.3.4 The reverse thrust exhaust collector shall meet the following requirements: 1 the design of the reverse thrust exhaust collector shall ensure that the reverse thrust airflow of the engine is discharged smoothly and shall not be inhaled by the engine; 2 the structure of the reverse thrust exhaust collector, which may be fixed or transportable, shall be safe and reliable. 3.3.5 The test process system shall meet the following requirements: 1 the functions of the test process system shall meet the requirements of the tested engine, and the equipment should be arranged close to the engine; 2 the technical indexes of the test process system shall meet the technical requirements of the engine and other equipment thereon; 3 the measuring accuracy of design parameters of test process system shall meet the relevant requirements of national military standard JB 241A-2010 General specification for engine, aircraft, turbojet and turbofan and GJB 242A-2018General specification for engines, aircraft, turboprop and turboshaft or meet the technical requirements for aero-engine products; 4 the system design shall be safe and reliable, and shall be convenient for maintenance. 3.3.6 The design of measurement and control system shall meet the following requirements: 1 the measurement and control system shall include the control, measurement, video monitoring and communication system of engine and aero-engine test equipment. The system setting shall meet the requirements of engine control and test. The instruments of measurement and control system shall be accurate and the linkage device shall be reliable; 2 water, oil, gas and other pipelines used for measurement shall not be introduced into the control room; 3 the data recorded by the measurement and control system shall be replayed in the form of curves and printed in the form of data points and curves, and the sampling interval of data points shall truly reflect the change of engine test parameters in transition state; 4 the whole-process data recording and image recording of the measurement and control system shall be able to start and stop automatically, and the recording start should be interlocked with the engine starting; 5 the measurement and control system shall be able to automatically inspect the disk volume and the calibration of sensors, and shall be able to remind the test personnel of the problems automatically found out; 6 the data recorded by the measurement and control system should be stored in the database; 7 the measurement and control system software should have safety functions such as operation authority management, over-limit alarm of important parameters, emergency automatic shutdown, etc.; 8 the electric throttle control system with self-calibration function should be adopted for the engine throttle control, the DC motor should be adopted for actuator, and the sensor matched with the electronic controller should be selected for full authority digital control engine throttle control; 9 the design of measurement and control system shall meet the requirements of shielding and isolation. Twisted pair shielded measuring cable or special cable shall be used for measuring wires and cables with anti-interference requirements. The cable laying shall comply with the relevant requirements of the current national standard GB 50343 Technical code for protection of building electronic information system against lighting. The selection of wires and cables for measurement and control system shall meet the requirements of engine test for wires; 10 clock synchronization equipment should be arranged in the measurement and control system. 3.4 Building layout 3.4.1 The sectional dimensions of test chamber, inlet plenum and exhaust stack shall be determined according to aerodynamic design requirements. 3.4.2 The structural dimensions of test chamber shall meet the requirements of transportation, installation, disassembly, use and maintenance of engines and equipment. Access doors and drainage facilities shall be arranged in the inlet plenum and exhaust stack, and foreign object protection net should be arranged in the inlet plenum. 3.4.3 The control room and instrument room should be arranged on the same side of the test chamber, and their location shall meet the requirements of engine observation, operation and test. 3.4.4 The electrical room should be arranged close to test chamber, hydraulic room and control room. 3.4.5 The pipelines of oil media such as fuel oil, lubricating oil and hydraulic oil shall not pass through the electrical room. 3.4.6 The area of the preparation room shall meet the requirements for temporary storage and preparation of engine and aero-engine test equipment. 3.5 Technical safety measures 3.5.1 The soundproof doors and observation windows of the test chamber shall be kept away from the rotating parts of engine and rotating plane of propeller, and multiple soundproof doors shall be arranged in a staggered way. 3.5.2 Guardrails shall be arranged and anti-skid measures shall be taken for the working platform. 3.5.3 The protection net which is convenient for disassembly and assembly should be arranged at the engine inlet. 3.5.4 The engine starting system shall be interlocked with the state of equipment such as the gate of test chamber and the locking device of test stand. 3.5.5 The fuel supply pipeline in test chamber shall be provided with an emergency cut-off valve with manual and automatic cut-off functions, and the fuel heating device shall be closed in conjunction with the emergency cut-off valve. 3.5.6 Audible and photoelectric warning devices shall be installed in the test chamber. 3.5.7 Video cameras shall be installed in the engine test site in test chamber, hydraulic room and fuel room, and the test personnel shall be able to monitor and record in the control room. 3.5.8 Anti-looseness and locking measures shall be taken for connecting fasteners of equipment in the test chamber. 3.5.9 Measures for eliminating static electricity shall be taken for the fuel pipeline, and human body static electricity elimination facilities shall be arranged at the entrance of fuel room and fuel heating room. 4 Noise control 4.1 General requirements 4.1.1 The noise control design shall be determined according to design parameters such as engine type, aerodynamic characteristics, noise characteristics and protection distance requirements. 4.1.2 Silencing devices and acoustic elements convenient for replacement should be adopted for noise control facilities. The acoustic elements should be streamlined. 4.1.3 Protective measures shall be taken for the members and materials used for noise control according to climate characteristics, temperature and flow velocity in the silencing channel, and substances such as dust and fiber shall not be emitted into the atmosphere. 4.1.4 Low-noise products should be selected for test process system and construction equipment. When the noise still fails to meet the requirements, noise control measures shall be taken for the test process system and construction equipment. 4.1.5 The noise control design shall comply with the current national standards GB/T 50087 Specifications for the design of noise control system in industrial enterprises and GB 12348 Emission standard for industrial enterprises noise at boundary and the relevant requirements of the current national hygienic standards for the design of industrial enterprises. 4.2 Noise control standard 4.2.1 The noise control standard of the control room, instrument room and preparation room in the aero-engine test cell building shall meet the requirements of Table 4.2.1. Table 4.2.1 Noise control standard Location Noise limit [dB(A)] Ergonomic limit [dB(A)] Control room and instrument room ≤80 ≤70 Preparation room ≤85 ≤75 4.2.2 In the building area, the limit of noise radiated by the test cell in the place 30m away from the test chamber, inlet plenum and exhaust stack shall not be greater than 80dB(A). 4.2.3 The environmental noise emission at boundary of aero-engine test cell building shall be implemented according to the relevant requirements of the current national standard GB 12348 Emission standard for industrial enterprises noise at boundary, and the noise design evaluation indexes shall include equivalent continuous sound level A during the day, equivalent continuous sound level A at night and maximum sound level at night. Engine test noise shall be monitored in representative period or the whole normal working period according to the non-steady noise measurement method. The noise test requirements of test cell shall meet the relevant requirements in Annex B. 4.3 Insulation and absorption design 4.3.1 The weighted sound insulation of test chamber, inlet plenum and exhaust stack enclosure should not be less than 65dB. The weighted sound insulation of the common wall between control room and test chamber should not be less than 70dB. 4.3.2 Soundproof observation windows and sound lock composed of multiple soundproof doors may be arranged on the partition between control room and test chamber, and the corresponding weighted sound insulation should not be less than 55dB. 4.3.3 The weighted sound insulation of the entrance gate of test chamber should not be less than 50dB. 4.3.4 The access door of the inlet plenum and exhaust stack should be arranged in the middle or rear of the multi-section silencing device, and its weighted sound insulation should not be less than 40dB. 4.3.5 The sound absorption characteristics of the sound absorption layer arranged for test chamber shall be determined according to the noise characteristics of the engine. The acoustic ceiling and wall surface in the control room and instrument room shall ensure that the arithmetic average of acoustic absorption coefficient is not less than 0.30 at the frequency of 250Hz, 500Hz, 1,000Hz and 2,000Hz. 4.3.6 Sealing and sound insulation measures shall be taken for wall-through pipes and cables leading from the test chamber to other rooms. Foreword i 1 General provisions 2 Terms 3 Process 3.1 General requirements 3.2 Aerodynamic design 3.3 Aero-engine test equipment design 3.4 Building layout 3.5 Technical safety measures 4 Noise control 4.1 General requirements 4.2 Noise control standard 4.3 Insulation and absorption design 4.4 Noise elimination design 5 Architecture and structure 5.1 General requirements 5.2 Building layout 5.3 Fire and explosion protection design of building 5.4 Span and height of building 5.5 Selection of enclosure structure 5.6 Calculation of main structure 5.7 Seismic design 5.8 Construction of main structure 6 Electric system 6.1 Power supply 6.2 Lighting 6.3 Lightning protection and grounding 6.4 Weak current 7 Water supply, drainage and fire protection facilities 7.1 General requirements 7.2 Water supply 7.3 Drainage 7.4 Fire protection facilities 8 Heating, ventilating and air conditioning 8.1 Heating 8.2 Ventilating and air conditioning 8.3 Fire, explosion and smoke protection, smoke exhausting system 9 Motive power 9.1 Compressed air supply 9.2 Fuel supply 9.3 Waste oil tank Annex A Field measurement and verification method of aerodynamic design parameters of test cell Annex B Requirements for noise test of test cell Annex C Reference mixture ratio and test requirements of special concrete, heat-resistant concrete and heat-resistant mortar Explanation of wording in this standard List of quoted standards 1 总则 1.0.1 为统一航空发动机试车台设计标准,保证试车台设计质量,做到安全可靠、技术先进、经济适用,制定本标准。 1.0.2本标准适用于新建、改建的使用航空煤油类燃料的航空涡轮喷气发动机、涡轮风扇发动机、涡轮螺旋桨发动机和涡轮轴发动机的室内地面试车台设计。 1.0.3航空发动机试车台设计除应符合本标准外,尚应符合国家现行有关标准的规定。 2术 语 2.0.1 航空发动机室内地面试车台 aero-engine enclosed test cell 用于在室内进行航空发动机运行测试的地面试验设施,通常由试车台厂房与试车设备共同组成,简称试车台。 2.0.2试车台厂房 aero-engine test cell building 用于进行航空发动机整机地面试验的厂房,通常由试车间、进气通道、排气通道以及操纵间、测试间、准备待试间等附属功能房间组成。 2.0.3试车设备 aero-engine test equipment 用于航空发动机试车的工艺设备,包括试车台架、排气引射筒、燃油加温装置、反推力排气收集器、试车工艺系统、测控系统等。 2.0.4试车间test chamber 用于在试车台厂房中进行发动机试车的空间。 2.0.5进气通道 inlet plenum 外界环境空气流入试车间的通道,由进气塔或进气室等构筑物与消声装置、整流装置、外来物防护网等组成。 2.0.6排气通道 exhaust stack 气流由试车间排出至外界环境的通道,由排气塔、排气消声间、引射筒间等构筑物与排气引射筒、消声装置等设备组成。 2.0.7引射筒间 augmentor room 用于安装排气引射筒并隔绝噪声的构筑物。 2.0.8试车台架test stand 固定航空发动机并用于测量发动机推力或功率的设备。 2.0.9发动机上部运输系统 engine handling system 用于吊运发动机及配套试车设备,在试车间与准备待试间之间完成发动机空中运输的悬挂轨道运输系统。 2.0.10操纵间 control room 设置操纵台等测控设备,用于发动机试车控制和监测的房间。 2.0.11 测试间 instrument room 设置测量仪器设备,用于发动机试车参数测试的房间。 2.0.12工艺设备间hydraulic room 设置试车用滑油、液压等设备的房间。 2.0.13准备待试间preparation room 用于发动机及试车设备进行试车前准备与试车后临时存放的房间。 2.0.14 电气设备间 electrical room 设置试车用电源、电气柜等设备的房间。 2.0.15燃油设备间 fuel room 设置试车用燃油管道、过滤器、阀门、流量测量装置等设备的房间。 2.0.16燃油加温间 fuel heating room 设置试车用燃油加温设备的房间。 3 工 艺 3.1 一般规定 3.1.1 试车台设计应根据发动机类型和参数确定试车台结构形式和技术指标。 3.1.2当发动机排气方向偏离发动机中心线时,试车台排气系统应保持排气顺畅。 3.1.3 具备发动机反推力试车功能的试车台应设置反推力排气收集器。 3.1.4 涡轮螺旋桨发动机试车台的发动机高温排气通道与螺旋桨常温排气通道宜分别设置。 3.1.5 试车台设计基本参数宜包括进气通道截面积、试车间长度、试车间截面积、排气通道截面积、排气引射筒直径、排气引射筒长度和发动机中心标高。 3.1.6厂房和主要设备的设计宜留有发展余地。 3.1.7试车台废气排放设计应符合现行国家标准《大气污染物综合排放标准》GB 16297的有关规定。 3.2气动设计 3.2.1试车间压力降应符合下列规定: 1试车间进气压力降不应大于500Pa,大涵道比涡轮风扇发动机试车台的试车间进气压力降不应大于1000Pa; 2试车间内发动机进气截面与排气截面之间的静压差不应大于100Pa。 3.2.2试车台的平均气流速度应符合下列规定: 1涡轮喷气发动机、小涵道比涡轮风扇发动机、不带螺旋桨试车的涡轮螺旋桨发动机、涡轮轴发动机试车台的试车间内平均气流速度不应大于10m/s; 2大涵道比涡轮风扇发动机和带螺旋桨试车的涡轮螺旋桨发动机试车台的试车间内平均气流速度不宜大于15m/s,大涵道比涡轮风扇发动机试车台的引射系数不应小于0.8; 3 涡轮喷气发动机和小涵道比涡轮风扇发动机试车台的进气消声装置通道内平均气流速度不应大于20m/s; 4大涵道比涡轮风扇发动机和带螺旋桨试车的涡轮螺旋桨发动机试车台的进气消声装置通道内平均气流速度不宜大于30m/s; 5排气消声装置通道内平均气流速度不宜大于50m/s; 6 排气通道出口平均气流速度不宜大于30m/s。 3.2.3试车间的空气流场及保证设施应符合下列规定: 1 发动机进口空气流场应均匀稳定,试车间进气截面气流流场均匀性应满足发动机试车的要求; 2发动机进气口前端面或螺旋桨桨盘面到进气通道的距离不应过小,对于垂直式进气通道,该距离应大于试车间横截面对角线的长度,对于水平式进气通道,该距离应大于试车间的高度; 3涡轮螺旋桨发动机试车台宜在螺旋桨桨盘面处设置导流环; 4 当采用垂直式或转折式进气通道时,试车台宜在气流转弯处设置导流片或整流装置; 5大涵道比涡轮风扇发动机或带螺旋桨试车的涡轮螺旋桨发动机试车台的发动机安装中心线宜与试车间横截面的几何中心线相同; 6试车台架迎风面积以及试车台架的前缘距螺旋桨桨盘面的距离不应对发动机的振动以及其他性能产生不良影响; 7排气通道应收集发动机全部排气,试车间不应产生排气回流及排气反压振荡,试车台排出的气流不应重新流入进气通道。 3.2.4涡轮喷气发动机和涡轮风扇发动机试车台的排气应采取降温措施。 3.2.5试车间进气压力降、发动机进气截面与排气截面之间的静压差、试车间内平均气流速度、引射系数等试车台气动设计参数的测量方法应符合本标准附录A的有关规定。 3.2.6试车台厂房结构设计的气动力负荷应符合下列规定: 1试车间气动力负荷应符合下列规定: 1)不带螺旋桨试车的发动机试车间气动力负荷应为-1500Pa: 2)带螺旋桨试车的发动机试车间气动力负荷在螺旋桨桨盘面前应为-1500Pa,在螺旋桨桨盘面后应为2000Pa。 2进气通道和排气通道的气动力负荷应根据气动力计算确定。 3.3试车设备设计 3.3.1试车台架设计应符合下列规定: 1 试车台架动力特性应符合国家军用标准《航空涡轮喷气和涡轮风扇发动机通用规范》GJB 241A-2010和《航空涡轮螺桨和涡轮轴发动机通用规范》GJB 242A-2018的有关规定或满足航空发动机产品技术要求; 2涡轮喷气发动机、涡轮风扇发动机、带螺旋桨试车的涡轮螺旋桨发动机试车台宜采用悬挂式试车台架,以测功器为测量设备的涡轮螺旋桨发动机和涡轮轴发动机试车台宜采用支撑式试车台架,用于航空发动机批生产的试车台宜设置发动机上部运输系统和快速连接装置; 3 试车台架的结构强度应能承受发动机试车时可能出现的各种载荷; 4 与发动机连接的各种管路、线缆的布置宜减小对推力测量的影响; 5试车台应能测量发动机推力或功率,发动机推力或功率测量系统的精度允许偏差应为±0.5%,发动机推力或功率测量系统的精度也可满足航空发动机产品技术要求; 6矢量推力发动机试车台应能测量发动机推力沿3个互相垂直方向的分量,测量推力航向分量的精度允许偏差应为±0.5%,测量推力垂直航向分量的精度允许偏差应为±2%; 7试车台架推力校准装置的传力路线宜与发动机的传力路线一致,测量矢量推力的试车台架宜采用矢量力进行中心加载校准。 3.3.2排气引射筒设计应符合下列规定: 1 结构尺寸应满足气动力设计要求; 2 结构强度应能承受发动机排气引起的振动载荷; 3排气引射筒入口尺寸应满足发动机喷口偏转的要求; 4结构设计应满足热膨胀引起的受力要求; 5 涡轮轴发动机试车台在试车间内安装的排气引射筒/排气管宜采用轴向伸缩式,并宜采取隔热措施。 3.3.3燃油加温装置设计应符合下列规定: 1 加温能力应满足发动机燃油加温试验的要求; 2结构设计应安全可靠,且应便于检查和维护; 3加温装置应设置在单独的防爆房间内。 3.3.4反推力排气收集器应符合下列规定: 1 反推力排气收集器设计应保证发动机的反推气流顺畅排出,且不应再被发动机吸入; 2反推力排气收集器结构应安全可靠,可采用固定式或可移动式。 3.3.5试车工艺系统应符合下列规定: 1试车工艺系统功能应满足被试发动机试车要求,设备宜靠近发动机布置; 2试车工艺系统技术指标应满足发动机和发动机上其他设备的技术要求; 3试车工艺系统设计参数测量精度应符合国家军用标准《航空涡轮喷气和涡轮风扇发动机通用规范》GJB 241A-2010和《航空涡轮螺桨和涡轮轴发动机通用规范》GJB 242A-2018的有关规定或满足航空发动机产品技术要求; 4系统设计应安全可靠、使用维护方便。 3.3.6测控系统设计应符合下列规定: 1测控系统应包括发动机及试车设备控制、测量、视频监视和通信系统,系统设置应满足被试发动机控制和试车要求,测控系统仪表应准确,联动装置应可靠; 2操纵间不应引入用于测量的水、油、气等管道; 3测控系统记录的数据应能以曲线形式回放和以数据点、曲线形式打印输出,数据点的采样间隔应能真实反映过渡状态发动机试车参数变化; 4 测控系统的全程数据记录和图像记录应能自动开始和停止,记录开始动作宜与发动机起动联锁; 5测控系统应能对磁盘空间及传感器的校验情况进行自动检查,且应能就自动检查出的问题提醒试车人员; 6测控系统记录的数据宜保存在数据库中; 7测控系统软件宜具有操作权限管理、重要参数超限报警、应急自动停车等安全功能; 8发动机油门控制宜采用带自校准功能的电动油门控制系统,执行机构宜采用直流电机,全权限数字控制发动机油门控制宜选择与电子控制器配套的传感器; 9测控系统设计应满足屏蔽和隔离要求,有抗干扰要求的测量用导线和电缆应采用双绞屏蔽测量电缆或专用电缆,电缆敷设应符合现行国家标准《建筑物电子信息系统防雷技术规范》GB 50343的有关规定,测控系统导线和电缆选型应满足发动机试验对导线的要求; 10测控系统中宜设置时钟同步设备。 3.4厂房布置 3.4.1 试车间、进气通道和排气通道截面尺寸应根据气动设计要求确定。 3.4.2试车间结构尺寸应满足发动机及设备运输、安装、拆卸和使用维护等要求。进气通道和排气通道应设置检修门和排水设施,进气通道宜设置外来物防护网。 3.4.3 操纵间、测试间宜布置在试车间的同一侧,房间位置应满足观察、操纵发动机及测试要求。 3.4.4 电气设备间布置宜靠近试车间、工艺设备间和操纵间。 3.4.5燃油、滑油、液压油等油类介质管路不应穿越电气设备间。 3.4.6准备待试间的面积应满足发动机、试车设备临时存放及进行准备工作的需要。 3.5技术安全措施 3.5.1试车间的隔声门和观察窗应避开发动机旋转部件及螺旋桨的旋转平面,多道隔声门之间应错位布置。 3.5.2工作平台应设置护栏,且应采取防滑措施。 3.5.3发动机进气口宜设置便于拆装的防护网。 3.5.4发动机起动系统应具有与试车间大门、试车台架锁紧装置等设备状态的联锁功能。 3.5.5 试车间内的燃油供油管路应设置具有手动和自动切断功能的紧急切断阀,燃油加温装置应能与紧急切断阀联动关闭。 3.5.6试车间内应设置声光电警示装置。 3.5.7试车间内的发动机试车部位、工艺设备间和燃油设备间应安装视频摄像机,试车人员应能在操纵间内监控及录像。 3.5.8试车间内设备的连接紧固件应采取防松锁紧措施。 3.5.9燃油管道应设置消除静电的措施,燃油设备间和燃油加温间的入口处应设置人体静电消除设施。 4 噪声控制 4.1 一般规定 4.1.1 噪声控制设计应按发动机类别、气动特性、噪声特性以及防护距离要求等设计参数确定。 4.1.2 噪声控制设施宜采用易于更换的消声装置和声学元件。声学元件宜采用流线型。 4.1.3 用于噪声控制的构件和材料应根据气候特点、消声通道中温度、流速等工作条件采取保护措施,且不应向大气中散发粉尘或纤维等物质。 4.1.4试车工艺系统和建筑设备宜选用低噪声产品。当噪声仍无法达到要求时,试车工艺系统和建筑设备应采取噪声控制措施。 4.1.5 噪声控制设计应符合现行国家标准《工业企业噪声控制设计规范》GB/T 50087、《工业企业厂界环境噪声排放标准》GB 12348和国家现行有关工业企业设计卫生标准的有关规定。 4.2噪声控制标准 4.2.1试车台厂房内操纵间、测试间和准备待试间的噪声控制标准应符合表4.2.1的规定。 表4.2.1噪声控制标准 地 点 噪声限值[dB(A)] 工效限值[dB(A)] 操纵间、测试间 ≤80 ≤70 准备待试间 ≤85 ≤75 4.2.2在厂区内距试车间、进气通道和排气通道30m位置。由试车台辐射的噪声限值不应大干80dB(A)。 4.2.3试车台厂界环境噪声排放应按现行国家标准《工业企业厂界环境噪声排放标准》GB 12348的有关规定执行,噪声设计评价指标应包括昼间等效连续A声级、夜间等效连续A声级和夜间最大声级。发动机试车噪声应按非稳态噪声测量方法对代表性时段或整个正常工作时段监测。试车台噪声测试要求应符合本标准附录B的有关规定。 4.3隔声与吸声设计 4.3.1 试车间、进气通道及排气通道围护结构的计权隔声量不宜小于65dB。操纵间与试车间公用墙的计权隔声量不宜小于70dB。 4.3.2操纵间与试车间的隔墙上可设置隔声观察窗及多道隔声门组成的声锁,其相应的计权隔声量不宜小于55dB。 4.3.3试车间进口大门的计权隔声量不宜小于50dB。 4.3.4进气通道及排气通道的检修门宜设置在多段消声装置中部或后部,检修门的计权隔声量不宜小于40dB。 4.3.5试车间设置的吸声层的吸声特性应根据发动机噪声特性确定。操纵间、测试间内的吸声顶棚和吸声墙面应保证其频率为250Hz、500Hz、1000Hz和2000Hz时吸声系数的算术平均值不小于0.30。 4.3.6 由试车间通往其他房间的管路和电缆穿墙洞应采取密封隔声措施。 4.4消声设计 4.4.1 进气通道宜采用塔式,有防雨顶盖的进气塔宜设置吸声吊顶。 4.4.2一次进气通道或二次进气通道应按进气目的、声源特性和消声量要求选择不同类型、不同长度的消声元件及其组合形式。 4.4.3 采用喷水降温的试车台排气消声装置应采用耐腐蚀的构件,且应对吸声材料采取防水措施。 4.4.4气流平均温度高于350℃的高温排气通道宜采用金属围护结构和耐高温消声装置。 5 建筑结构 5.1 一般规定 5.1.1厂房内不同用途房间的布置应按功能分区确定。 5.1.2厂房墙体及装修设计应满足使用需要和消防安全的要求。 5.1.3 厂房主要部位设计应符合表5.1.3的规定。 表5.1.3 厂房主要部位的设计要求 要求 部 位 进气通道 试车间 引射筒间 排气消声间 操纵间和测试间 防灰屑 √ √ — — — 气动荷载 √ √ — √ — 隔声 √ √ √ √ √ 消声 √ — — √ — 吸声 √ √ — √ √ 耐高温 — — — √ — 隔振 — — — — √ 注:“√”表示有要求,“—”表示无要求。 5.1.4试车台厂房应采取节能设计措施。除试车间、进气通道、引射筒间、排气通道外,试车台厂房其他部分节能设计宜按现行国家标准《工业建筑节能设计统一标准》GB 51245的有关规定执行。 5.2厂房位置 5.2.1试车台厂房与相邻建(构)筑物的防火间距应符合现行国家标准《建筑设计防火规范》GB 50016的有关规定。 5.2.2试车台厂房宜集中布置。 5.2.3试车台厂房布局应符合下列规定: 1 厂房应位于空气洁净地段和全年最小频率风向的下风侧,且不应靠近散发爆炸性、腐蚀性和有害气体及粉尘的场所; 2厂房宜靠近发动机装配厂房、油封包装厂房和油库等配套建筑或设施布置; 3水平式进气通道的进口与相邻建(构)筑物之间的距离不应小于15m; 4厂房建设位置宜远离对噪声敏感的建筑。 5.2.4 出入试车台厂房的道路坡度不宜大于6%。 5.3厂房防火、防爆设计 5.3.1试车台厂房内试车间的生产火灾危险性可按丁类确定,燃油设备间、燃油加温间的火灾危险性应按乙类确定。试车台厂房的生产火灾危险性可按丁类确定。 5.3.2试车台厂房的耐火等级不应低于二级。 5.3.3工艺设备间应采用耐火等级不低于2.00h的防火隔墙与其他部位分隔,墙上的门、窗应采用耐火等级不低于乙级的防火门、窗。 5.3.4试车台厂房内的燃油设备间、燃油加温间宜布置在单层厂房贴邻建筑外墙上的泄压设施或试车间顶层贴邻外墙上的泄压设施的附近,且应采取防爆泄压措施。燃油设备间、燃油加温间的电气防爆应符合现行国家标准《爆炸危险环境电力装置设计规范》GB 50058关于爆炸危险性区域2区的有关规定。 5.3.5 试车台厂房内每个防火分区或一个防火分区内的每个楼层的安全出口数量应计算确定,且不应少于2个。当附楼设置1个直通室外的安全出口,另一个利用通向相邻场所的乙级防火门作为第二安全出口时,应同时符合下列规定: 1 二层及以上附楼的每层建筑面积不应大于500m2; 2 同一时间的作业人数不应大于30人; 3 与相邻场所间应设置耐火极限不低于2.00h的防火隔墙; 4 室内装饰材料的燃烧性能应为A级。 5.3.6 试车间的疏散门不应少于2个,通向操纵间、准备待试间等相邻场所的隔声门可作为疏散门。 5.3.7试车台厂房除试车间、进气通道、引射筒间、排气通道可不设消防救援窗口外,其他部位消防救援窗口的设置应符合现行国家标准《建筑设计防火规范》GB 50016的有关规定。 5.4厂房跨度和高度 5.4.1 厂房跨度和高度应按发动机类型及其布置的合理性确定,并宜符合建筑模数制和满足构件标准要求。厂房主要用房的跨度、高度不宜低于表5.4.1的规定。 表5.4.1 厂房主要用房跨度、高度(m) 名 称 跨 度 高 度 试车间 按气动设计要求确定 按气动设计要求确定 操纵间、测试间 6.0 3.3 设备间 4.0 3.0 准备待试间 12.0 8.0 5.4.2 各房间门的宽度和高度应满足设备安装、维修和运输的需求。 5.5围护结构选型 5.5.1 进气通道应符合下列规定: 1进气通道应采用纵横钢筋混凝土骨架的实心砌体结构或整体钢筋混凝土结构; 2顶盖及挑檐板应采用钢筋混凝土结构,并宜具有防雨水功能; 3 内墙面、地面及顶面应平滑、不起灰、不掉渣。 5.5.2试车间应符合下列规定: 1设置悬挂式试车台架的试车间应采用整体钢筋混凝土的围护结构; 2地面面层应耐磨、耐油、平滑、不起灰,内墙面及顶棚应平滑、不掉渣; 3试车间内有振动的混凝土设备基础、地坑等与地面的混凝土地坪之间应设置变形缝。 5.5.3引射筒间应符合下列规定: 1 引射筒间宜选用钢筋混凝土墙体或实心砖墙体和钢筋混凝土屋盖,引射筒间两端与试车间、排气消声间的变形缝应采取隔声措施,采取隔声措施后变形缝处的隔声量宜与相邻墙体的隔声量相当; 2引射筒间屋面宜按上人屋面设计,屋面保温层宜采用容重较大的保温材料。 5.5.4排气通道应符合下列规定: 1 围护结构应满足不同发动机类型的消声需要; 2迷宫式排气通道的内墙宜设置吸声隔热面层; 3迷宫式排气通道的障板宜采用可自由伸缩的钢筋混凝土板梁,且应采取隔热措施; 4迷宫式排气通道顶层水平障板和地面应做不小于1%的坡度,坡面应朝向排水孔或雨水集水坑。 5.5.5操纵间、测试间应符合下列规定: 1操纵间、测试间宜采用钢筋混凝土框架结构,结构应与试车间的结构脱开,且应采取隔声措施; 2与试车间的通道应设置多道隔声门组成的声锁,隔声门的计权隔声量不应小于30dB; 3楼面、地面应采取防静电措施。 5.5.6工艺设备间应符合下列规定: 1 工艺设备间应设置计权隔声量不小于35dB的隔声门、窗; 2楼面、地面应采取防油渗措施。 |
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 |
服务热线:400-001-5431 | 电话:010-8572 5110 | 传真:010-8581 9515 | Email: bz@bzfyw.com | |
版权所有: 北京悦尔信息技术有限公司 2008-2020 京ICP备17065875号-1 51La |
本页关键词: |
GB 50454-2020, GB/T 50454-2020, GBT 50454-2020, GB50454-2020, GB 50454, GB50454, GB/T50454-2020, GB/T 50454, GB/T50454, GBT50454-2020, GBT 50454, GBT50454 |