Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative.
GB/T 1040 consists of the following parts, under the general titel Plastics — Determination of Tensile Properties:
— Part 1: General Principles;
— Part 2: Test Conditions for Moulding and Extrusion Plastics;
— Part 3: Test Conditions for Films and Sheets;
— Part 4: Test Conditions for Isotropic and Orthotropic Fibre-reinforced Plastic Composites;
— Part 5: Test Conditions for Unidirectional Fibre-reinforced Plastic Composites.
This part is Part 1 of GB/T 1040.
This part is drafted in accordance with the rules given in the GB/T 1.1-2009.
This part replaces GB/T 1040.1-2006 Plastics — Determination of Tensile Properties — Part 1: General Principles in whole. For the purpose of this part, the following technical deviations have been made with respect to the GB/T 1040.1-2006 (the previous edition):
— Poisson’s ratio has been modified;
— defnitions and methods have been optimized for computer controlled tensile test machines;
— the preferred gauge length for use on the multipurpose test specimen has been increased from 50 mm to 75 mm. This is used especially in GB/T 1040.2;
— nominal strain of tensile has been modified;
— addition of method for calculation of standard strain;
— removal of Annex A (Informative) Young's Modulus and Related Calues;
— addition of Annex A (Informative) Determination of Strain at Yield;
— addition of Annex B (Informative) Extensometer Accuracy for the Determination of Poisson’s Ratio;
— addition of Annex C (Informative) Calibration Requirements for the Determination of the Tensile Modulus.
This standard is identical with International Standard ISO 527-1:2012 Plastics — Determination of Tensile Properties — Part 1: General Principles.
The Chinese documents in consistency with corresponding international normative references in this part, are as follows:
GB/T 2918-2018 Plastics — Standard Atmospheres for Conditioning and Testing (ISO 291:2008, MOD)
GB/T 2941-2006 Rubber — General Procedures for Preparing and Conditioning Test Pieces for Physical Test Methods (ISO 23529:2004, IDT)
This part was proposed by China Petroleum and Chemical Industry Federation.
This part is under the jurisdiction of National Technical Committee 15 on Plastic of Standardization Administration of China, Subcommittee 4 on Universal Method Product (SAC/TC 15/SC 4).
This part replaces GB/T 1040.1-2006.
The previous editions of GB/T 1040.1-2006 are as follows:
— GB/T 1039-1979, GB/T 1039-1992;
— GB/T 1040-1979, GB/T 1040-1992.
Plastics — Determination of Tensile Properties — Part 1: General Principles
1 Scope
This part of GB/T 1040 specifies the general principles for determining the tensile properties of plastics and plastic composites under defined conditions. Several different types of test specimen are defined to suit different types of material which are detailed in subsequent parts of this standard.
The methods are used to investigate the tensile behaviour of the test specimens and for determining the tensile strength, tensile modulus and other aspects of the tensile stress/strain relationship under the conditions defined.
The methods are selectively suitable for use with the following materials:
— rigid and semi-rigid (see 3.12 and 3.13, respectively) moulding, extrusion and cast thermoplastic materials, including filled and reinforced compounds in addition to unfilled types; rigid and semi-rigid thermoplastics sheets and films;
— rigid and semi-rigid thermosetting moulding materials, including filled and reinforced compounds; rigid and semi-rigid thermosetting sheets, including laminates;
— fibre-reinforced thermosets and thermoplastic composites incorporating unidirectional or non-unidirectional reinforcements, such as mat, woven fabrics, woven rovings, chopped strands, combination and hybrid reinforcement, rovings and milled fibres; sheet made from pre-impregnated materials (prepregs),
— thermotropic liquid crystal polymers.
The methods are not normally suitable for use with rigid cellular materials, for which ISO 1926 is used, or for sandwich structures containing cellular materials.
2 Normative References
The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
GB/T 12160-2002 Calibration of Extensometers Used in Uniaxial Testing (ISO 9513:1999, IDT)
GB/T 16825.1-2008 Verification of Static Uniaxial Testing Machines — Part 1: Tension/Compression Testing Machines — Verification and Calibration of the Force-measuring System (ISO 7500-1:2004, IDT)
ISO 291 Plastics — Standard Atmospheres for Conditioning and Testing
ISO 2602 Statistical Interpretation of Test Results — Estimation of the Mean — Confdence Interval
ISO 16012 Plastics — Determination of Linear Dimensions of Test Specimens)
ISO 20753 Plastics — Test Specimens
ISO 23529 Rubber — General Procedures for Preparing and Conditioning Test Pieces for Physical Test Methods)
3 Terms and Definitions
For the purposes of this document, the following terms and definitions apply.
3.1
gauge length
L0
initial distance between the gauge marks on the central part of the test specimen
Note 1: It is expressed in millimeters (mm).
Note 2: The values of the gauge length that are indicated for the specimen types in the different parts of GB/T 1040 represent the relevant maximum gauge length.
3.2
thickness
h
smaller initial dimension of the rectangular cross-section in the central part of a test specimen
Note: It is expressed in millimeters (mm).
3.3
width
b
larger initial dimension of the rectangular cross-section in the central part of a test specimen
Note: It is expressed in millimeters (mm).
3.4
cross-section
A
product of initial width and thickness, A = bh, of a test specimen.
Note: It is expressed in square millimeters, (mm2)
3.5
test speed
v
rate of separation of the gripping jaws
Note: It is expressed in millimeters per minute (mm/min).
3.6
stress
σ
normal force per unit area of the original cross-section within the gauge length
Note 1: It is expressed in megapascals (MPa)
Note 2: In order to differentiate from the true stress related to the actual cross-section of the specimen, this stress is frequently called “engineering stress”
3.6.1
stress at yield
σy
stress at the yield strain
Note 1: It is expressed in megapascals (MPa).
Note 2: It may be less than the maximum attainable stress (see Figure 1, curves b and c)
3.6.2
strength
σm
stress at the first local maximum observed during a tensile test
Note 1: It is expressed in megapascals (MPa).
Note 2: This may also be the stress at which the specimen yields or breaks (see Figure 1).
3.6.3
stress at x% strain
σx
stress at which the strain reaches the specified value x expressed as a percentage
Note 1: It is expressed in megapascals (MPa).
Note 2: Stress at x% strain may, for example, be useful if the stress/strain curve does not exhibit a yield point (see Figure 1, curve d).
3.6.4
stress at break
σb
stress at which the specimen breaks
Note 1: It is expressed in megapascals (MPa).
Note 2: It is the highest value of stress on the stress-strain curve directly prior to the separation of the specimen, i.e directly prior to the load drop caused by crack initiation.
3.7
strain
ε
increase in length per unit original length of the gauge.
Note: It is expressed as a dimensionless ratio, or as a percentage (%).
3.7.1
strain at yield yield strain
εy
the first occurrence in a tensile test of strain increase without a stress increase
Note 1: It is expressed as a dimensionless ratio, or as a percentage (%).
Note 2: See Figure 1, curves b and c.
Note 3: See Annex A (informative) for computer-controlled determination of the yield strain.
3.7.2
strain at break
εb
strain at the last recorded data point before the stress is reduced to less than or equal to 10% of the strength if the break occurs prior to yielding
Note 1: It is expressed as a dimensionless ratio, or as a percentage (%).
Note 2: See Figure 1, curves a and d.
3.7.3
strain at strength
εm
strain at which the strength is reached
Note: It is expressed as a dimensionless ratio, or as a percentage (%).
3.8
nominal strain
εt
crosshead displacement divided by the gripping distance
Note 1: It is expressed as a dimensionless ratio, or as a percentage (%).
Note 2: It is used for strains beyond the yield strain (see 3.7.1) or where no extensometers are used.
Note 3: It may be calculated based on the crosshead displacement from the beginning of the test, or based on the increment of crosshead displacement beyond the strain at yield, if the latter is determined with an extensometer (preferred for multipurpose test specimens).
3.8.1
nominal strain at break
εtb
nominal strain at the last recorded data point before the stress is reduced to less than or equal to 10% of the strength if the break occurs after yielding
Note 1: It is expressed as a dimensionless ratio, or as a percentage (%).
Note 2: See Figure 1, curves b and c.
3.9
modulus
Et
slope of the stress/strain curve σ(ε) in the strain interval between ε1 = 0.05% and ε2 = 0.25%
Note 1: It is expressed in megapascals (MPa).
Note 2: It may be calculated either as the chord modulus or as the slope of a linear least-squares regression line in this interval (see Figure 1, curve d).
Note 3: This definition does not apply to films.
3.10
Poisson’s ratio
µ
negative ratio of the strain increment Δεn, in one of the two axes normal to the direction of extension, to the corresponding strain increment Δεl in the direction of extension, within the linear portion of the longitudinal versus normal strain curve
Note: It is expressed as a dimensionless ratio.
3.11
gripping distance
L
initial length of the part of the specimen between the grips
Note: It is expressed in millimeters (mm).
3.12
rigid plastic
plastic that has a modulus of elasticity in flexure (or, if that is not applicable, in tension) greater than 700 MPa under a given set of conditions
3.13
semi-rigid plastic
plastic that has a modulus of elasticity in flexure (or, if that is not applicable, in tension) between 70 MPa and 700 MPa under a given set of conditions
Foreword II
1 Scope
2 Normative References
3 Terms and Definitions
4 Principle and Methods
5 Apparatus
6 Test Specimens
7 Number of Test Specimens
8 Conditioning
9 Procedure
10 Calculation and Expression of Results
11 Precision
12 Test Report
Annex A (Informative) Determination of Strain at Yield
Annex B (Informative) Extensometer Accuracy for the Determination of Poisson’s Ratio
Annex C (Normative) Calibration Requirements for the Determination of the Tensile Modulus
Bibliography
塑料拉伸性能的测定
第1部分:总则
1范围
GB/T 1040的本部分规定了在规定条件下测定塑料和复合材料拉伸性能的一般原则,并规定了几种不同形状的试样以用于不同类型的材料,这些材料在本标准的其他部分予以详述。
本方法用于研究试样的拉伸性能及规定条件下测定拉伸强度,拉伸模量和其他方面的拉伸应力/应变关系。
本方法适用于下列材料:
——硬质和半硬质(见3.12和3.13)热塑性模塑,挤塑和浇铸材料,除未填充类型外还包括填充的和增强的混合料,硬质和半硬质热塑性片材和薄膜;
——硬质和半硬质热固性模塑材料,包括填充的和增强的复合材料,硬质和半硬质热固性板材,包括层压板;
——混入单向或无定向增强材料的纤维增强热固性和热塑性复合材料。这些增强材料如毡、织物、无捻粗纱、短切原丝、混杂纤维增强材料、无捻粗纱和碾碎纤维等:预浸渍材料制成的片材(预浸料坯);
——热致液晶聚合物。
鉴于ISO 1926.本方法一般不适用于硬质泡沫材料或含微孔材料的夹层结构材料。
2规范性引用文件
下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T 12160—2002 单轴试验用引伸计的标定( ISO 9513:999,IDT)
GB/T 16825.1—2008静力单轴试验机的检验第1部分:拉力和(或)压力试验机测力系统的检验与校准(ISO 7500-1:2004.1DT)
ISO 291 塑料 试样状态调节和试验的标准环境( Plastics- Standard atmospheres for conditioning and testing)
ISO 2602数据的统计处理和解释 值的估计和置信区间
ISO 16012塑料 试样的线性尺寸测定(Plastics- Determination of linear dimensions of test specimens)
ISO 20753 塑料 试样(Plastics - Test specimens)
ISO 23529橡胶物理试验方法试样制备和调节通用程序(Rubber-General procedures for pre-paring and conditioning test pieces for physical test methods)
3术语和定义
下列术语和定义适用于本文件。
3.1
标距gauge length。
L0
试样中间部分两标线之间的初始距离。
注1:以毫米(mm)为单位。
注2:GB/T 1040不同部分中试样类型的标距值表示相应的最大标距。
3.2
厚度thickness
h
试样中间部分矩形截面的较小初始尺寸
注:以毫米(mm)为单位。
3.3
宽度width
b
试样中间部分矩形截面的较大初始尺寸.
注:以毫米(mm)为单位.
3.4
截面积cross-section
A
试样初始宽度和厚度的乘积,A=bh。
注:以平方毫米(mm2)为单位。
3.5
试验速度test speed
v
夹具的分离速度。
注:以毫米每分钟(mm/ min)为单位。
3.6
拉伸应力tensile stress
σ
在试样标距内,每单位原始截面积上所受的法向力。
注1:以兆帕(MPa)为单位。
注2:为便于与试样实际截面积相关的真实应力区分,此应力通常称作工程应力。
3.6.1
拉伸屈服应力tensile stress at yield
σy
屈服应变时的应力。
注1:以兆帕(MPa)为单位。
注2:该应力值可能小于能达到的最大应力值(参见图1中的曲线b和曲线c)
3.6.2
拉伸强度tensile strength
σm
在拉伸试验过程中,观测到的最大初始应力。
注1:以兆帕( MPa)为单位。
注2:该值也可能见试样在屈服或断裂时的应力(参见图1)。
3.6.3
x%拉伸应变应力tensile stress at x% strain
σx
在应变达到规定值(x %)时的拉伸应力。
注1:以兆帕(MPa)为单位。
注2:可用于应力/应变曲线上无明显屈服点的情况(参见图1中的曲线d)。
3.6.4
拉伸断裂应力tensile stress at break
σb
试样破坏时的拉伸应力。
注1:以兆帕(MPa)为单位。
注2:试样断裂前应力应变曲线上的最大应力值,如断裂萌生导致的负荷下降前。
3.7
拉伸应变tensile strain
ε
原始标距单位长度的增量。
注:用无量纲的比值或百分数(%)表示。
3.7.1
拉伸屈服应变tensile strain at yield/ tensile yield strain
εy
拉伸试验中初次出现应力不增加而应变增加时的应变.
注1:用无量纲的比值或百分数(%)表示。
注2:参见图1中的曲线b和曲线c。
注3:参见附录A(资料性附录)计算机控制测定屈服应变。
3.7.2
拉伸断裂应变tensile strain at break
εb
对断裂发生在屈服之前的试样,应力下降至小于或等于强度的10%之前最后记录的数据点对应的应变。
注1:用无量纲的比值或百分数(%)表示。
注2:参见图1中的曲线a和曲线d。
3.7.3
拉伸强度拉伸应变tensile strain at tensile strength
εm
拉伸强度对应的应变。
注:用无量纲的比值或百分数(%)表示。
3.8
拉伸标称应变nominal tensile strain
εt
横梁位移除以夹持距离。
注1:用无量纲的比值或百分数(%)表示。
注2:适用于屈服点后的应变(见3.7.1)或没有引伸计使用的情况。
注3:从试验开始时的横梁位移来计算。如果见用引伸计(优选多用途试样来测定应变的,亦可通过屈服点后横梁位移的增量来计算。
3.8.1
拉伸断裂标称应变nominal tensile strain at break
εtb
对断裂发生在屈服之后的试样.应力下降至小于或等强度的10%之前最后记录的数据点对应的标称应变。
注1:用无量纲的比值或百分数(%)表示。
注2:参见图1中的曲线b和曲线c。
3.9
拉伸弹性模量modulus of elasticity in tension
Et
模量:应力/应变曲线σ(ε)上应变ε1=0.05%与应变ε2=0.25%区间的斜率。
注1:以兆的(MPa)为单位。
注2:可用弦模量或此区间(参见图1中的曲线d)线性最小二乘回归线的斜率来计算。
注3:定义不适用于薄膜。
3.10
泊松比Poisson's ratio
μ
在纵向应变对法向应变关系曲线的起始线性部分内,垂直于拉伸方向上的两坐标轴之一的拉伸形变量Δεn与拉伸方向上的形变量Δε1之比的负值。
注:用无量纲的比值表示。
3.11
夹具距离gripping distance
L
夹具间试样部分的初始长度。
注:以毫米(mm)为单位。
3.12
硬质塑料rigid plastic
在规定条件下,弯曲弹性模量或拉伸弹性模量(弯曲弹性模量不适用时)大于700MPa的塑料。
3.13
半硬质塑料semi-rigid plastic
在规定条件下,弯曲弹性模量或拉伸弹性模量(弯曲弹性模量不适用时)在70MPa~700MPa之间的塑料。
图1典型应力/应变曲线
注:曲线a为脆性材料,其断裂应变低并且无屈服。曲线d为类似橡胶的柔软材料。其断裂应变较大(>50%)。
4原理和方法
4.1原理
沿试样纵向主轴方向恒速拉伸,直到试样新裂或其应力(负荷)或应变(伸长)达到某一预定值,测量在这一过程中试验承受的负荷及其伸长。
4.2 方法
4.2.1这些方法适用于模塑制备的选定的尺寸试样,或采用机加工、切割或冲裁等方法从成品或半成品上(如模制件、层压板、薄膜和挤出或浇铸板)制备的试样。试样类型及其制备见关于典型材料的GB/T 1040 的相关部分。某些情况下可使用多用途试样。多用途和小型试样见ISO 20753。
4.2.2此方法规定了试样的优选尺寸。不同尺寸的试样或不同状态调节后的试样试验结果无可比性。另一些因素,如测试速度和试样的状态调节也会影响试验结果。因此,在进行数据比对时,应严格控制这些因素并记录。
5设备
5.1试验机
5.1.1概述
试验机应符合GB/T 16825.1—2008和GB/T 12160—2002 以及本部分5.1.2~5.1.6的规定。
5.1.2试验速度
试验机应能达到表1所规定的试验速度。
表1推荐的试验速度
速度v(mm/min) 允差/%
0.125 ±20
0.25
0.5
1
2
5
10
20 ±10
50
100
200
300
500
5.1.3夹具
夹具用于夹持试样与试验机相连,使试样的主轴方向与通过夹具中心线的拉力方向重合。试样应以这种方式夹持以防止被夹试样相对夹具口滑动。夹具不会引起夹其口处试样过早破坏或挤压夹具中的试样。
例如在拉伸模量的测定中,应变速率的恒定是很重要的,不能由于夹具的移动面改变,特别是在使用楔形夹具时。
注:对于预应力。有必要获得正确的定位(见9.3)和试样放置以及避免应力/应变曲线开始阶段的趾区。
5.1.4负荷指示装置
负荷测量系统应符合GB/T 16825.1-2008定义的I级。
5.1.5应变指示装置
5.1.5.1引伸计
引伸计应符合GB/T 12160-2002规定的1级引伸计的要求,在测量的应变范围内可获得此精度。也可用非接触式引伸计,但要确保其满足相同的精度要求。
引伸计应可测量试验过程中任何时刻试样标距的变化。该仪器最好(但不是必须)能自动记录这种变化。且在规定的试验速度下应基本上无惯性滞后。
在精确测定拉伸模量E,时,设备应能以相关值的1%或更优精度测量标距的变化。当使用1A类型试样时,75mm标距对应的绝对精度为±1.5μm。越小的标距对引伸计的要求越高,见图2。
注。基于使用的标距,1%的精度要求转为测定标距内伸长率的不同绝对精度要求。对于小型试样,由于没有合适的引伸计,不能获得更高的精度(见图2),
常用光学引伸计记录就试样表面发生的形变:单面应变测试方法确保低应变不会受到来自试样微小的错位、初始翘曲和在试样的相对面产生不同应变弯曲的影响。推荐使用平均化试样相对面应变的测量方法。这与模量测定有关,但不适于较大应变的测量。
5.1.5.2应变计
试样也可以装纵向应变计,其精度应为相对值的1%或更优。对于测量模量时,相当于应变精度为20×10-6(20μm应变)。应变计表面处理和粘接剂的选择应以能显示被测材料的所有性能为宜。
5.1.6数据的记录
5.1.6.1概述
所需记录数据(负荷、应变、伸长率)的数据采集频率须足够高以满足要求的精度。
5.1.6.2应变数据的记录
应变数据记录的数据采集频率基于
——试验速度v,以mm/min为单位;
——标距和初始夹具距离的比值,L0/L;
——获得准确数据应变信号的最小分辨率r,以mm为单位。一般为精度的一半或更优。从传感器到指示器的整体传输的最小数据采集频率fmin,以Hz为单位,计算如下:
(1)
试验机的采样频率应至少与最小数据采集频率fmin相同。
5.1.6.3负荷数据的记录
要求的采样频率基于试验速度、应变范围、精度和夹具距离。模量、试验速度和夹具距离决定负荷增长率。负荷增长率与所需精度的比值决定采样频率。见下示例。
式(2)给出负荷增长率:
(2)
式中:
E——弹性模量,单位为兆帕(MPa);
A——试样截面积,单位为平方毫米(mm2);
V——试验速度,单位为毫米每分(mm/min);
L——夹具距离,单位为毫米(mm)。
假定相关负荷的测量精度在1%以内,对引伸计而言,在模量范围内,同样以负荷的差值与其精度要求的比值来确定数据采集频率,则可使用如下方程:
ΔF=E·A·(ε2-ε1)=E·A·Δε (3)
精度(1%的一半):
r=5×10-3×ΔF=5×10-3×E·A·Δε (4)
采样频率:
(5)
示例:v=1mm/min,Δε=2×10-3,L=115mm,则采样频率fforce=14.5Hz。
L0=75mm的增量ΔL
L0=50mm的增量ΔL
L0=25mm的增量ΔL
L0=20mm的增量ΔL
图2假定精度为1%,不同标距时模量测定的引伸计精度要求
5.2试样宽度和厚度测量设备
如适用见ISO 16012和ISO 23529。
6试样
6.1形状和尺寸
见本部分与受试材料有关的部分。
6.2试样制备
见本部分与受试材料有关的部分。
6.3标线
见本部分与标距长度条件有关的部分。
如果使用光学引伸计特别是对于薄片和薄膜,应在试样上标出规定的标线,标线与试样的中点距离应相等(±1 mm),两标线间距离的测量精度应达到1%或更优。
标线不能刻划、冲刻或压印在试样上,以免损坏受试材料,应采用对受试材料无影响的标线,而且所划的相互平行的每条标线要尽量窄。
6.4试样的检查
试样应无扭曲,相邻的平面间应相互垂直(见下注)。表面和边缘应无划痕、空洞、凹陷和毛刺。
为使试样符合这些要求,应把其紧贴在直尺、三角尺或平板上,用目视观测或用测数卡尺对试样进行测量检查。
使用尺寸和方向如尖端/刀刃的测量规以便精确测定所需位置的尺寸。
经发现试样有一项或几项不符合要求时应舍弃。对不符合要求的试样进行测试时应说明原因。
注塑试样需要1°~2°的拔模角以方便脱模。此外,注塑试样不可能无凹痕。由于冷却过程的不同,试样中间厚度值一般比边缘小。可接受厚度差异为Δh≤0.1 mm(见图3)。