Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative.
This standard is identical to the standard ISO 11042-1:1996 of International Organization for Standardization (ISO).
The following editorial changes have been made with respect to the original ISO 11042-1:1996:
——the contents of the amendment or technical corrigendum of the international standard are incorporated;
——the standard name is changed;
——the informative annexes are added;
——the content on unit conversion is added.
This standard was proposed by National Technical Committee on Combine-cycle Power Generation Unit in Power Industry of Standardization Administration of China.
This standard is under the jurisdiction of and explained by National Technical Committee on Combine-cycle Power Generation Unit in Power Industry of Standardization Administration of China.
During the process of implementing this standard, the relevant comments and recommendations, whenever necessary, can be fed back to the Standardization Center of the China Electricity Council (No.1, 2nd lane, Baiguang Road, Beijing, 100761, China).
Gas turbine-exhaust gas emission: measurement and evaluation
1 Scope
This standard establishes the methods used for the measurement and evaluation of the emission of the exhaust gases from gas turbines and defines appropriate emission terms. It presents requirements for the test environment and instrumentation as well as the quality of measurement and correction of data. This allows uniform judgment of the exhaust emissions. The relationship between the various forms of expressing the exhaust emissions is also given.
The constituents to be measured in accordance with this standard shall be determined by mutual agreement between the parties involved.
This standard is applicable for all gas turbines producing mechanical shaft power and/or which are used as drivers for electrical generation excluding application in aircraft. For installations which include an exhaust gas heat recuperation system, the definitions of this standard can be used as a basis.
This standard is applicable for gas turbines which utilize the open cycle process. It is also applicable as a basis for gas turbines which utilize the semi-closed cycle and gas turbines equipped with free piston compressors or with special heat sources.
This standard can be used as an acceptance test for gas turbine exhaust gas emissions.
2 Normative references
The following documents for the application of this document are essential. Any dated reference, just dated edition applies to this document. For undated references, the latest edition of the normative document (including any amendments) applies.
GB/T 14100-1993 Gas turbines - Acceptance tests (ISO 2314:1989, IDT)
ISO 2533:1975 Standard atmosphere
ISO 5063:1978 Atomizing oil burners of the monobloc type - Testing
ISO 6141:1984 Gas analysis - Calibration gas mixtures - Certificate of mixture preparation
3 Terms and definitions
For the purpose of this standard, the following terms and definitions apply.
3.1
emissions
constituents which enter the environment with the exhaust gas
In this standard, emissions comprise the following:
nitrogen oxides NOx: sum of NO and NO2, expressed as NO2
nitrogen dioxide NO2
carbon monoxide CO
carbon dioxide CO2
sulfur oxides SOx: sum of SO2 and SO3, expressed as SO2
unburned or partially burned hydrocarbon products UHCs: sum of all individual products, expressed as CH4
volatile organic compounds VOCs: UHCs excluding CH4 and C2H6 but expressed as CH4
ammonia NH3
smoke as measured by the Bacharach method according to ISO 5063:1978
solid particles all solid particles produced by the combustion process
3.2
accuracy
the closeness with which a measurement approaches the true value established independently
3.3
calibration gas
high-accuracy reference gas mixture to be used for setting, adjustment and periodic checks of instruments
3.4
concentration
volume fraction φi of the component of interest in the gas mixture, expressed as volume percentage [(% (V/V)] or as parts per million (ppm )
3.5
interference
instrument response due to the presence of a gas or vapour other than the gas or vapour that is to be measured
3.6
linearity
ability of an instrument to respond proportionally to an input signal
3.7
noise
random variation in instrument output not associated with those characteristics of the sample to which the instrument is responding; distinguishable from its drift characteristics
3.8
parts per million; ppm
volumetric concentration of the component i in 106 volume parts of gas mixture
3.9
parts per million carbon; ppmC1
the mole fraction of hydrocarbon multiplied by 106 measured on a “CH4” equivalence basis
1ppm of methane is indicated as 1ppmC1.
Note: to convert ppm concentration of any hydrocarbon to an equivalent ppmC1 value, multiply ppm concentration by the number of carbon atoms per molecule of the gas; e.g. 1ppm propane translates as 3ppmC1 hydrocarbon; 1ppm hexane as 6ppmC1 hydrocarbon.
3.10
repeatability
the closeness with which a measurement upon a given invariant sample can be produced on a short-term basis with no adjustment of the instruments
3.11
resolution
smallest detectable change in a measurement
3.12
response
change in instrument output signal that occurs with change in sample concentration; output signal corresponding to a given sample concentration
3.13
stability/calibration drift
time-related deviations of the output signal of the instrument measuring a calibration gas for a given set point
3.14
relative hydrocarbon response
the different response of the test equipment to the sample hydrocarbon concentrations expressed as equivalent ppmC1, dependent on the class or admixture of classes of hydrocarbon components
3.15
zero air
mixture of oxygen and nitrogen having the same proportion of oxygen as atmospheric air, free from other components
3.16
zero drift
time-related deviation of instrument output from zero set point when it is operating on a gas free of the component to be measured
3.17
zero gas
has to be used in establishing the zero, or no-response, adjustment of an instrument
4 Symbols
See Tables 1 and 2.
Table 1 General symbols
Symbol Term Unit
en Net specific energy, lower calorific value kJ/kg
E Exhaust gas emission value —
EMi Exhaust gas emission value as constituent concentration of component i at 0℃ and 101.3kPa mg/m3
EMi,15,dry Same as EMi, related to an oxygen volumetric concentration of 15% in dry exhaust gas mg/m3
EMi,f Same as EMi, related to consumed fuel energy g/GJ
EMi,p Same as EMi, related to power supplied g/kWh
EP Exhaust gas emission value for solid particles mg/m3
ES Exhaust gas emission value for smoke —
EV Exhaust gas emission value as a volumetric concentration cm3/m3
EVi Exhaust gas emission value as a volumetric concentration of component i cm3/m3
EVi,15,dry Same as EVi, related to an oxygen volumetric concentration of 15% in dry exhaust gas cm3/m3
m Mass kg
M Molar mass kg/kmol
Mtot Total molar mass kg/kmol
n Quantity of component kmol
ni Quantity of component i kmol
ntot Total quantity of components kmol
P Shaft power output of gas turbine kW
qm Mass flow kg/s
qV Volume flow m3/s
Vi Volume of component i m3
Vmn Molar specific volume m3/kmol
Vn,dry Volume of dry exhaust gas at normal conditions a m3
Vn,15,dry Volume of dry exhaust gas at normal conditions related to an oxygen content of 15% m3
Vn,wet Volume of wet exhaust gas at normal conditions a m3
Vtot Total volume of components i m3
xi Partial quantity, equal to ni/ntot 1
z Limiting number 1
Z Real gas factor (compressibility) 1
ρ Density kg/m3
ρpa Density of particle material kg/m3
Volumetric concentration as percentage of CO2 in dry exhaust gas %
Volumetric concentration as percentage of CO2 in dry exhaust gas with stoichiometric combustion of the fuel used %
Volumetric concentration as percentage of water vapour in exhaust gas %
φi,dry Volumetric concentration in dry exhaust gas cm3/m3
φi,wet Volumetric concentration in wet exhaust gas, equal to Vi/Vtot cm3/m3
Volumetric concentration as percentage of O2 in dry exhaust gas %
Note 1: to identify a particular station along the gas path the subscript g is used, e.g. g7. Subscript 7 identifies the turbine outlet (see ISO 2314:1989).
Note 2: in this standard, 15% O2 is used as a typical value; alternative oxygen contents may be used by agreement.
Note 3: the reference temperature of 0℃ is chosen because of available chemical data and evaluation methods.
a Normal pressure: pn=101.3kPa
Normal temperature: tn=0℃
Table 2 Chemical symbols and abbreviations
Symbol Compound
CO Carbon monoxide
CO2 Carbon dioxide
H2O Water
N2 Nitrogen
NH3 Ammonia
NO Nitrogen monoxide
NO2 Nitrogen dioxide
NOx Sum of nitrogen oxides
O2 Oxygen
SO2 Sulfur dioxide
SO3 Sulfur trioxide
SOx Sum of sulfur oxides
UHC Unburned or partially burned hydrocarbon products
VOC Volatile organic compounds
5 Conditions
5.1 Gas turbine and fuel
In connection with gas turbine emissions, the following shall be indicated for the respective measurement conditions:
a) Manufacturer of the gas turbine.
b) Type of gas turbine.
c) Power output and exhaust gas mass flow and/or fuel flow at the conditions at which the emission measurements are taken.
d) Ambient conditions, i.e. pressure, temperature and humidity of the surrounding air.
e) Fuel details.
f) Equipment in operation which affects the emissions and which is part of the complete system, e.g. catalytic converters, water or steam injection, evaporative coolers, condensers, etc. Relevant details of all flow rates shall be noted.
Note 1: the definition of the power output, the exhaust gas mass flow rate and/or the fuel flow rate, the measurements and calculations shall be defined by agreement between the parties involved (see ISO 2314:1989).
Note 2: Exhaust gas emissions are affected by the fuel characteristics (e.g. fuel-bound nitrogen). Therefore, relevant details of the fuel shall be noted, including appropriate chemical analysis, temperature, physical properties and flow rates
5.2 Measured values
The following values shall be measured:
a) Volumetric concentration of gaseous constituents related to wet exhaust gas (φi,wet) or to dry exhaust gas (φi,dry).
b) Exhaust gas emission value for smoke - Bacharach number (ES) (smoke number according to ISO 2314:1989).
c) Gravimetric concentration of solid particles within the wet exhaust gas (EP), if specifically agreed upon.
Foreword II
1 Scope
2 Normative references
3 Terms and definitions
4 Symbols
5 Conditions
5.1 Gas turbine and fuel
5.2 Measured values
5.3 Standard conditions
6 Measurements
6.1 Determination of constituents in exhaust gas
6.2 Guidelines for the arrangement of the measurement system
6.3 Performing the test, test report, evaluation
7 Instrumentation
7.1 Types of measuring device
7.2 Specification for NOx analysers
7.3 Specification for NO2 analysers
7.4 Specification for SO2 analysers
7.5 Specification for UHC analysers
7.6 Specification for ammonia analysers
7.7 Specification for oxygen analysers
7.8 Specification for smoke analysers
7.9 Specification for solid particle analysers
8 Quality of measurement
8.1 General
8.2 Methods for calibration
9 Conversion of data
9.1 General
9.2 Conversion between wet and dry exhaust gas
9.3 Conversion to the particular exhaust gas oxygen level
9.4 Conversion to the constituent mass flow related to the dry exhaust gas volume flow at normal conditions and to a specific oxygen content
9.5 Conversion to power output related values
9.6 Conversion to consumed fuel energy related values
Annex A (informative) Typical example of test results and their evaluation
Annex B (informative) Information regarding the major constituents of the exhaust gas
Annex C (Informative) Physical properties of gaseous constituents
Bibliography
燃气轮机烟气排放测量与评估
1 范围
本标准建立了燃气轮机烟气排放的测量和评价方法,并定义了相应的排放术语。提出了对试验环境、使用仪器、测量质量以及数据修正的要求,对烟气排放有了统一的评价标准。同时,也给出了烟气排放不同表述形式之间的关系。
依据本标准进行烟气测量时,需要测量的组分由试验有关各方协商确定。
本标准适用于所有用于机械驱动以及(或)用于发电(用于航空的除外)的燃气轮机。对于配有余热回收装置的系统来说,本标准中的相关定义可作为依据。
本标准适用于采用开式循环的燃气轮机。对于半开式循环以及配有自由式活塞压气机或专门热源的燃气轮机,本标准亦可作为依据。
本标准可用于燃气轮机烟气排放的验收试验。
2规范性引用文件
下列文件对本文件的应用是必不可少的。凡是注日期的引用文件,仅注目期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T 14100—1993燃气轮机验收试验(ISO 2314:1989,IDT)
ISO 2533:1975标准大气(Standard atmosphere)
ISO 5063:1978一体式雾化油燃烧器试验规程(Atomizing oil burners of the monobloc type—Testing)
ISO 6141:1984气体分析—标定混合气体—混合气体制备的合格书(Gas analysis—Calibrationgas mixtures—Certificate of mixture preparation)
3术语和定义
下列术语和定义适用于本标准。
3.1
排放物emissions
是指随燃气轮机排气一起进入大气环境的组分。
本标准中,排放物包括:
氮氧化物 NOx:NO和NO2以NO2表示
二氧化氮 NO2
一氧化碳 CO
二氧化碳 CO2
硫氧化物 SOx:SO2和SO3以SO2表示
未燃烧或部分燃烧后的碳氢化合物 UHC:所有碳氢化合物之和,以CH4表示
挥发性有机化合物 VOC:UHC中除去甲烷和乙烷的部分,以CH4表示
氨 NH3
烟 根据ISO 5063:1978所述Bacharach方法测量
固体颗粒物 燃烧过程中所产生的固体颗粒物
3.2
准确度 accuracy
测量值与独立确定的真实值的接近程度。
3.3
标定气体calibration gas
用于仪表的设定、调整和定期检查的高准确度的标准混合气体。
3.4
浓度 concentration
混合气体各组分的体积分数βi,以体积百分数(%)或者百万分之一(ppm1))表示。
1)ppm代表ml/m3或cm3/m3。
3.5
干扰interference
除待测量的气体或蒸汽成分外,由于存在某种其他气体或蒸汽成分而引起仪器响应。
3.6
线性linearity
仪器对输入信号成比例响应的能力。
3.7
噪声(干扰) noise
在仪器输出中,与正在测量的气体成分特性无关的随机变化部分,它与仪器的漂移特性有区别。
3.8
百万分之几parts per million;ppm
在混合气体的106个体积单位中,气体成分i的体积浓度。
3.9
百万分之几的碳parts per million carbon;ppmC1
以“CH4”为度量的等价基准,将碳氢化合物的摩尔比值乘以106得到的数。
1ppm甲烷表示为1ppmC1。
注:为了把任何一种碳氢化合物ppm浓度转换为等价的ppmC1值,将ppm浓度乘以气体中每一个分子的碳原子数目。例如1ppm丙烷转换为3ppmC1碳氢化合物,1ppm己烷转换为6ppmC1碳氢化合物。
3.10
重复性repeatability
在对仪器不做任何调整情况下,在短期内测量同一样本所得不同测量值之间的接近程度。
3.11
分辨率 resolution
在某个测量过程中可检测到的最小变化。
3.12
响应reponse
采样样品浓度变化引起的仪器输出信号的变化,即对应一个给定的样本浓度的输出信号。
3.13
稳定性/标定漂移stability/calibration drift
当测量一个给定的整定点校准气体时,仪器输出信号随时间而发生的偏差。
3.14
对碳氢化合物变化的响应relative hydrocarbon response
测试设备对碳氢化合物采样浓度的不同响应,可用等价的ppmC1表示,它与碳氢化合物成分的类别或其掺合物的类别有关。
3.15
零空气zero air
氧气与氮气的混合物,不含其他成分,与大气具有相同的氧气比例。
3.16
零位漂移zero drift
当仪器对不含待测成分的气体进行测量时,仪器输出随时间变化而产生的与零点的偏差。
3.17
零气zero gas
仪器对其无响应的气体,用于建立仪器零点调整。
4符号
本标准使用的符号定义见表1和表2。
表1通用符号
符号 术 语 单位
en 净比能,低位发热量 kJ/kg
E 烟气排放值 —
EMi 在温度0℃与压力101.3kPa下,以i成分的组分浓度表示的烟气排放值 mg/m3
EMi,15,dry 与EMi相同,折算到干烟气中氧的体积浓度为15%时 mg/m3
EMi,f 与EMi相同,与消耗的燃料能量相对应 g/GJ
EMi,p 与EMi相同,与燃气轮机发出的功率相对应 g/kWh
EP 烟气中固体颗粒的排放值 mg/m3
ES 烟气中烟的烟度 —
EV 以体积浓度表示的烟气排放值 cm3/m3
EVi 以i成分体积浓度表示的烟气排放值 cm3/m3
EVi,15,dry 与EVi相同,折算到干烟气中氧的体积浓度为15%时 cm3/m3
m 质量 kg
M 摩尔质量 kg/kmol
Mtot 总摩尔质量 kg/kmol
n 成分量 kmol
ni i成分量 kmol
ntot 成分总量 kmol
P 燃气轮机轴功率输出 kW
qm 质量流量 kg/s
qv 体积流量 m3/s
Vi i成分的体积 m3
Vmn 摩尔比容 m3/kmol
Vn,dry 标准状态下的干烟气体积a m3
表1(续)
符号 术 语 单位
Vn,15,dry 在标准状态下,折算到干烟气中氧的体积浓度为15%时的烟气体积 m3
Vn,wet 标准状态下的湿烟气体积a m3
Vtot i成分的体积总量 m3
xi i诚分量在成分总量中的比例,等于ni/ntot 1
z 极限数 1
Z 实际气体因子(可压缩性) 1
ρ 密度 kg/m3
ρpa 颗粒物质的密度 kg/m3
干烟气中的CO2以百分数表示的体积浓度 %
当使用的燃料为化学当量燃烧时,在于烟气中以CO2的百分数表示的体积浓度 %
烟气中的水蒸气以百分数表示的体积浓度 %
φi,dry 干烟气的体积浓度 cm3/m3
φi,wet 湿烟气的体积浓度,等于Vi/Vtot cm3/m3
在干烟气中以O2的百分数表示的体积浓度 %
注1:可使用下标g标识气流通道上某个特定位置,例如,g7,下标7代表燃气轮机出口处(见ISO 2314:1989)。
注2:在本标准中,以15%O2为基准值,经协商同意可使用其他的氧含量。
注3:考虑到现有的化学数据和评价方法,选择0℃为基准温度
a标准大气压pn=101.3kPa,基准温度tn=0℃
表2化学符号及缩写
符号 化合物
CO 一氧化碳
CO2 二氧化碳
H2O 水
N2 氮
NH3 氨
NO 一氧化氮
NO2 二氧化氮
NOx 氮氧化物
O2 氧
SO2 二氧化硫
SO3 三氧化硫
SOx 硫氧化物
UHC 未燃烧或部分燃烧后的碳氢化合物
VOC 挥发性有机化合物
5条件
5.1 燃气轮机及燃料
燃气轮机排放的测量条件应表明以下内容:
a)燃气轮机制造商。
b)燃气轮机型号。
c)在烟气排放物测量时,燃气轮机功率输出、排气质量流量与(或)燃料流量。
d)外界大气条件,如环境压力、温度和空气的湿度。
e)燃料组成。
f) 会对燃气轮机排放产生影响的,且属于整个测量系统装置,如催化剂反应器、水或水蒸气注入器、蒸发冷却器、冷凝器等,应表明其所有流量的相关细节。
注1:燃气轮机功率输出、排气质量流量与(或)燃料流量的定义,其测量和计算应由各方协商一致确定(依据ISO 2314:1989)。
注2:烟气排放物受燃料特性影响(燃料中氮)。因此,燃料的相关细节应出示,包括相应的化学分析、温度、物理性质和流量。
5.2测量值
应测量以下值:
a) 基于干烟气或湿烟气的气态组分的体积浓度φi,wet或φi,dry。
b)烟气中的烟度排放值—Bacharach数(ES)(依据ISO 5063:1978)。
c)湿烟气中固体颗粒物的质量浓度(EP),需各方协商。
5.3标准工况
标准工况应为:
a)压力101.3kPa。
b)温度15℃。
c)相对湿度60%。
(见ISO 2314:1989,3.2.1)
注:考虑到现有的化学数据和评价方法,在进行化学计算时选择0℃作为参考温度。
6测量内容
6.1 烟气排放物各组分定义
通常需要测定或计算得到的烟气组分包括:
a) 以NO2表示的总NOx:见7.2。
b)CO和CO2:见7.3。
c) SO2:见7.4。
d)SO3:没有推荐特定的方法。
e) 以SO2表示的总SOx:依据燃料中的硫含量计算得到。
f)H2O:测量或计算得到(考虑空气湿度,利用燃烧计算)。
g)UHC:见7.5。
h)VOC:见.7.5。
i) NH3:见7.6。
j) O2:见7.7,或经试验各方同意采用计算方法。
k)烟度:见7.8。
l) 固体颗粒物:见7.9;进入压气机的空气中,任何对测量结果有较大影响的固体颗粒物应从所测的值中减去。
6.2测量系统布置规范
6.2.1 概述
总体上,应考虑以下三个部分:
a)取样探头。
b)输送和调节系统。
c)分析仪和数据采集系统。
测量过程中应采用连续取样,确保取样有代表性。
在燃气轮机安装之前,取样测点应事先确定:
——利用数学模型,模拟烟气流动(与障碍物、烟气流态—湍流或层流有关);
——或根据管道内烟气平均流速,确定烟气取样代表点;
——或根据现有标准或经验达成一致意见。
单个取样平面通常只需要一套取样装置就可以满足烟气排放物的测量,可以带或者不带附加系统。
如果燃气轮机排气系统仅附带消音器、排气烟道和排向大气的烟囱,而没有其他设备,取样点应布置在离燃气轮机排气口尽可能近且便于操作的位置。如果附带余热回收系统、补燃系统、稀释系统、脱硝装置等,取样点位置应由各方协商确定。
取样截面不应位于有再循环空气进入的烟道内。
6.2.2取样探头
取样探头应能够取到具有代表性的烟气样品。为此推荐使用一种等截面布置的多孔平均烟气取样探头。无论采用何种取样探头,都应对探头取样样品的代表性进行论证。
试验用的取样探头和真空泵应能连续向分析仪提供足够的烟气流量。
如果需要论证在整个烟道横截面取样样品的代表性,应该有足够的取样探头覆盖取样截面。
取样探头应足够长,以对整个烟道横截面进行测量。取样探头的布置方法和步骤应事先由试验参与各方协商确定。
6.2.3输送及调节系统
测量烟度、固体颗粒物、气相组分的取样传输管线应是相互独立的。
通常气态组分的测量系统的主要组件,如图1所示。当使用特殊的分析仪时,系统应做适当相应改动。
根据分析仪操作原理不同,需对样品进行相应的处理。为了避免样品组分的冷凝,整个取样管线应被加热至高出烟气冷凝温度至少10℃。
当样品经过一个水分离装置时,至少到该设备之前的样品管线均应加热。
对于硫含量低于1%(质量比)的天然气或轻烃燃料,需至少被加热至150℃。为此,建议对所有设备(包括泵)进行加热,温度通常应控制在±5℃以内。取样管线中所有设备有以下几点要求:
a)所有与样品有接触的材料应为非反应性材料(不锈钢或等同材料)。
b)为去除出厂时管道内携带的残留溶剂,推荐使用纯氮连续吹扫聚四氟乙烯(PTFE)管。在此过程中,该管线应加热到为分析特殊组分所规定的温度。
c) 需确保所有接头和组件无泄漏。
d)所有组件应设计为能在规定温度的范围内工作。
e) 当不可避免地使用较长管线时,推荐在测量系统中加入一个二级泵以提供足够的烟气流量。
f) 仪器与探头之间的取样传输时间应尽可能短,最好不超过30s。