Codeofchina.com is in charge of this English translation. In case of any doubt about the contents of English translation, the Chinese original shall be considered authoritative.
This standard was drafted in accordance with the rules given in GB/T 1.1-2009.
This standard replaces GB/T 9711-2011 Petroleum and Natural Gas Industries — Steel Pipe for Pipeline Transportation Systems. In addition to a number of editorial changes, the following technical deviations have been made with respect to the GB/T 9711-2011 (the previous edition):
— In Clause 2, 2.1 "Units of Measurement", addition of the purchaser shall specify the International System (SI) or US Customary (USC) system of measurements. For a specific order item, or the same inspection document or in the same required marking sequence, only one system of units shall be used.
— Clause 3:
1) Series professional standards for nondestructive testing of steel pipe (SY/T 6423) and disabled ISO standards for nondestructive testing are deleted; and addition of ISO 10893 and other series standards for nondestructive testing of steel pipe;
2) GB/T 228 and other national standards are deleted, which are replaced corresponding ISO and ASTM standards;
3) Addition of API TR 5T1 Standard on Imperfection Terminology and other normative references.
— Clause 4: Addition of API TR 5T1 Standard on Imperfection Terminology as a foundation terminology standard; addition of Mother Coil and a dozen or more terms.
— Clause 5: Addition of abbreviated terms of COW, GMAW, MT, PT, SAW, SMAW and UT for welding and nondestructive testing.
— Clause 6: Addition of in steel grade L625Q/X90Q and L690Q/X100Q suitable for seamless pipe in Table 1 "Pipe Grades, Steel Grades and Acceptable Delivery Conditions"; and addition of relevant provisions in corresponding standard text of mechanical properties.
— Clause 7: Information to be supplied by the purchaser:
Addition in 7.2, b):
1) Product analysis method (see 10.2.4.1);
2) Alternate method for diameter measurement for D ≥ 508 mm (20.000 in) (see 10.2.8.1);
3) Steel pipe weld seam type of jointers (see A.1.1);
4) Alternate IQI type (see E.4.3.1).
Addition in 7.2, c):
1) Alternative fraction jointers of 12 m and 24 m comprising two or three pieces;
2) Multiple grade marking;
3) NDT of electric welding (EW) seam welds after hydrotest;
4) Specific expanding mode of cold-expanded pipes (hydrostatic or mechanical);
5) Application of Annex G to PSL 2 pipe with resistance to ductile fracture propagation and of steel grade not less than L485/X70, where purchaser should specify the specific requirements for grain size, banded structure and impurity of raw material.
Deletion in 7.2, c):
1) Ultrasonic inspection of strip and plate for laminations or mechanical damage of pipe for sour service;
2) Delivery and non-destructive inspection of helical seam-welded pipe containing strip-plate end welds for sour service;
3) Agreement requirements of hardness test and hardness deviation of steel pipes for sour service and offshore service.
— Addition in Clause 8 Manufacturing:
1) Application of Annex G to PSL 2 pipe with resistance to ductile fracture propagation and of strength grade not less than L485/X70, where purchaser should specify the specific requirements for grain size, banded structure and impurity of raw material (includes acceptance limit and acceptance method);
2) Processes requiring validation for non expanded and expanded SAW and COW steel pipe;
3) The requirements of supplying steel and rolling mill(s) shall have a documented quality management system (8.3.1);
4) Open hearth process only in combination with a ladle refining process;
5) Addition of steel grade ">L690/X100 to L830/X120" in "PSL 2 pipe grade" column of Acceptable Processes of Manufacture and Product Specification Levels;
6) For starting materials used for pipe manufacturing, critical variables of the coil/plate rolling practice (e.g. reheating, rolling and cooling temperatures, times and tolerances) shall be defined, and the control requirements of permissible ranges are added.
— In Clause 9 Acceptance Criteria:
1) The maximum tensile strength of three steel grades L245/B, L290/X42 and L320/X46 are modified (reduced) to 655MPa;
2) When there are abnormal fracture occurs in the DWT test, it is recommended that the fracture shall be evaluated according to Annex M;
3) Tolerances for partial diameter and out-of-roundness and the internal taper of steel pipe are modified;
— In Clause 10 Inspection:
1) Modification of inspection frequency for partial tests of PSL 1 and PSL 2 steel pipes;
2) Modification of the gap position of CVN sample;
3) Addition of diameter measuring devices of micrometer, ovality gauge or coordinate measuring machine;
4) Addition of the requirements of weighing of pipe jointers.
— Clause 11 Marking: Addition of marking of pipe to multiple grades, thread identification and certification, and steel pipe processor markings.
— Clause 14 Pipe Loading: Addition of recommended practices for pipes transported on trucks may refer to API RP 5LT.
— Deletion of Annex L (Informative) Steel Designations.
— Deletion of Annex M (Informative) Correspondence of Terminology between GB/T 9711 and Its Source Documents
— Addition of Annex L (Informative) Comparison Table between Relevant International Standards and National Standards of China
— Addition of Annex M (Informative) Recommended Practice for Abnormal Fracture Evaluation of DWT Test.
This standard has been redrafted and modified adoption of International Standard ISO 3183:2012 Petroleum and Natural Gas Industries — Steel Pipe for Pipeline Transportation Systems.
There are standard structure changes between this standard and the International Standard ISO 3183:2012:
— For the purpose of adapt to the actual requirements of China, partial deletion, reduction and addition had been made on the structure of annexes.
a) Deletion of the Foreword, Annexes M, N, O and P of the ISO Standard, which are irrelevant to the manufacturing, inspection and application of steel pipe in China;
b) Addition of new Annex L (Informative) Comparison Table between Relevant International Standards and National Standards of China, new Annex M (Informative) Recommended Practice for Abnormal Fracture Evaluation of DWT Test and new Annex N (Informative) Technical Deviations and Their Justifications between This Standard and ISO 3183:2012.
There are technical deviations between this standard and the International Standard ISO 3183:2012. A complete list of technical deviations, together with their justifications, is given in Annex N.
For the purposes of this standard, the following editorial changes have also been made:
— Deletion of the second paragraph of 2.1 Units of Measurement "For data expressed in SI units, a comma is used as the decimal separator and a space is used as the thousands separator. For data expressed in USC units, a dot (on the line) is used as the decimal separator and a space is used as the thousands separator.", which is irrelevant to the subject content of this standard; and the comma "," in the digital of ISO 3183 original text is replaced decimal point.
— Deletion of normative references ISO 5173 Destructive Tests on Welds in Metallic Materials — Bend Tests and EN 10168 Steel Products — Inspection Documents — List of Information and Description, which are not mentioned in the text of this standard.
— Deletion of blank Annex N and Annex O, which are only a series number but no specific contents.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. The issuing body of this document shall not be held responsible for identifying any or all such patent rights.
This standard was proposed and prepared by SAC/TC 355 (National Technical Committee 355 on Petroleum and Natural Gas of Standardization Administration of China).
The previous editions of this standard are as follows:
— GB 9711-1988, GB/T 9711-2011;
— GB/T 9711.1-1996;
— GB/T 9711.2-1999;
— GB/T 9711.3-2005.
Introduction
This standard is the result of harmonizing the requirements of the following standards:
— ISO 3183:2012; third edition (published 1 November 2012).
— API Spec 5L; 45th edition (published December 2012; implemented 1 July 2013).
This standard has maintained the concept of two basic levels of standard technical requirements for line pipe expressed as two product specification levels (PSL 1 and PSL 2). Level PSL 1 provides a standard quality level for line pipe. Level PSL 2 has additional mandatory requirements for chemical composition, notch toughness and strength properties and additional non-destructive testing (NDT). Requirements that apply only to PSL 1 or only to PSL 2 are so designated. Requirements that are not designated to a specific PSL designation apply to both PSL 1 and PSL 2 pipe.
This standard also recognized that the petroleum and natural gas industry often specifies additional requirements for particular applications. In order to accommodate such needs, optional additional requirements for special applications are available, as follows:
— PSL 2 pipe ordered with a qualified manufacturing procedure (Annex B);
— PSL 2 pipe ordered with resistance to ductile fracture propagation in gas pipelines (Annex G);
— PSL 2 pipe ordered for sour service (Annex H);
— pipe ordered as “Through the Flowline” (TFL) pipe (Annex I);
— PSL 2 pipe ordered for offshore service (Annex J);
The requirements of the annex(es) apply only when specified on the purchase order. When pipe is ordered for dual or multiple applications, the requirements of more than one annex for special applications can be invoked. In such instances, if a technical conflict arises due to applying the requirements of more than one annex for special applications, the most stringent requirement applicable to the intended service applies.
This standard does not provide guidance on when it is necessary to specify the above supplementary requirements. Instead, it is the responsibility of the purchaser to specify, based upon the intended use and design requirements, which, if any, of the supplementary requirements apply for a particular purchase order.
This standard is the result of a continuing process of harmonizing documents of different heritage. It has been necessary to give consideration to traditional symbols (denoting mechanical or physical properties or their values, dimensions or test parameters) and the format of equations that have been widely used and which (in their traditional format) maintain strong links with other widely used standards and specifications, and with the original scientific work that led to their derivation. Accordingly, some symbols and equations (most specifically those in 9.2 and Table F.1) have been retained in their traditional form to avoid causing confusion in this post-harmonization stage. Where changes have been made, care has been taken to ensure that the new symbol replacing the traditional one has been fully and clearly defined.
Petroleum and Natural Gas Industries — Steel Pipe for Pipeline Transportation Systems
1 Scope
This standard specifies requirements for the manufacture of two product specification levels (PSL 1 and PSL 2) of seamless and welded steel pipes for use in pipeline transportation systems in the petroleum and natural gas industries.
This standard is applicable to the manufacturing, inspection, marking, coating, recording and loading of seamless pipe and welded pipe for pipeline transportation systems of petroleum and natural gas industries.
This standard is not applicable to cast pipe.
2 Conformance
2.1 Manufacturing
In this standard, data are expressed in both International System (SI) units and United States Customary (USC) units. For a specific order item, only one system of units shall be used, without combining data expressed in the other system. Data values expressed in SI and USC units shall not be combined on the same inspection document or in the same required pipe marking sequence.
Where product is tested and verified against requirements using one measurement system (USC or SI), and an inspection document is issued, with data reported in the alternate measurement system units, a statement shall appear on the inspection document indicating that the data presented was converted from the measurement system used for the original inspection.
The purchaser shall specify whether data, drawings, and maintenance dimensions of pipes shall be in the International System (SI) or US Customary (USC) system of measurements. Use of an SI data sheet indicates that the SI measurements shall be used. Use of a USC data sheet indicates that the USC system of measurements shall be used.
2.2 Rounding
Unless otherwise stated in this standard, to determine conformance with the specified requirements, observed or calculated values shall be rounded to the nearest unit in the last right-hand place of figures used in expressing the limiting value, in accordance with ISO 80000-1:2009, Annex B, Rule A.
Note: For the purposes of this provision, the rounding method of ASTM E29-08 [1] is equivalent to ISO 80000-1:2009, Annex B, Rule A.
2.3 Compliance to This Standard
A documented quality system shall be applied to assist compliance with the requirements of this standard.
Note: Documentation of a quality system does not require certification by a third party certification body. Only the creation or adoption of a written quality system is necessary to meet the requirement of this standard. ISO defers to the expertise of responsible quality management personnel to create or adopt the system which best reflects the need of each company. There are many existing quality management systems to which personnel can refer for guidance in the development of an appropriate quality system, including ISO/TS 29001[2] and API Q1[3], which contain provisions specific to the oil and gas industry, or ISO 9001[4], which contains general requirements for quality management systems that are auditable. This list is not exhaustive and is provided for information only.
A contract may specify that the manufacturer shall be responsible for complying with all of the applicable requirements of this standard. It shall be permissible for the purchaser to make any investigation necessary in order to be assured of compliance by the manufacturer and to reject any material that does not comply.
3 Normative References
The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
GB/T 8650-2015 Evaluation of Pipeline and Pressure Vessel Steels for Resistance to Hydrogen-induced Cracking (NACE TM0284:2011, MOD)
GB/T 8923.1-2011 Preparation of Steel Substrates before Application of Paints and Related Products — Visual Assessment of Surface Cleanliness — Part 1: Rust Grades and Related Products — Uncoated Steel Substrates and of Steel Substrates after Overrall Removal of Previous Coatings (ISO 8501-1:2007, IDT)
GB/T 18253-2000 Steel and Steel Products — Types of Inspection Documents (eqv ISO 10474:1991)
GB/T 19348.1-2014 Non-destructive Testing —Industrial Radiographic Films — Part 1: Classification of Film Systems for Industrial Radiography (ISO 11699-1:2008, MOD)
GB/T 23901.1-2009 Non-destructive Testing — Image Quality of Radiographs — Part 1: Image Quality Indicators (Wire Type) — Determination of Image Quality Value (ISO 19232-1:2004 IDT)
SY/T 6423.2-2013 Non-destructive Testing of Steel Tubes — Part 2: Automated Ultrasonic Testing of the Weld Seam of Welded Steel Tubes for the Detection of Longitudinal and/or Transverse Imperfections (ISO 10893-11:2011, IDT)
SY/T 6423.3-2013 Non-destructive Testing of Steel Tubes — Part 3: Automated Ultrasonic Testing for the Detection of Laminar Imperfections in Strip/Plate Used for Manufacture of Welded Steel Tubes (ISO 10893-9:2011, IDT)
SY/T 6423.4-2013 Non-destructive Testing of Steel Tubes — Part 4: Automated Ultrasonic Testing of Seamless and Welded Steel Tubes for the Detection of Laminar Imperfections (ISO 10893-8:2011, IDT)
SY/T 6423.5-2014 Non-destructive Testing of Steel Tubes — Part 5: Digital Radiographic Testing of the Weld Seam of Welded Steel Tubes for the Detection of Imperfections (ISO 10893-7:2011 IDT)
SY/T 6423.6-2014 Non-destructive Testing of Steel Tubes — Part 6: Automated Full Peripheral Flux Leakage Testing of Seamless and Welded (Except Submerged Arc-welded) Ferromagnetic Steel Tubes for the Detection of Longitudinal and/or Transverse Imperfections (ISO 10893-3:2011, IDT)
ISO 148-1 Metallic Materials — Charpy Pendulum Ompact Test — Part 1: Test Method
ISO 404 Steel and Steel Products — General Technical Delivery Requirements
ISO 2566-1 Steel — Conversion of Elongation Values — Part 1: Carbon and Low Alloy Steels
ISO 4885 Ferrous Products — Heat Treatments — Vocabulary
ISO 6506 (all parts) Metallic Materials — Brinell Hardness Test
ISO 6507 (all parts) Metallic Materials — Vickers Hardness Test
ISO 6508 (all parts) Metallic Materials — Rockwell Hardness Test
ISO 6892-1 Metallic Materials — Tensile Testing — Part 1: Method of Test at Room Temperature
ISO 6929 Steel Products — Vocabulary
ISO 7438 Metallic Materials — Bencl Test
ISO 7539-2 Corrosion of Metals and Alloys — Stress Corrosion Testing — Part 2: Preparation and Use of Bentbeam Specimens
ISO 8491 Metallic Materials — Tube (in Full Section) — Bend Test
ISO 8492 Metallic Materials — Tube — Flattening Test
ISO 9712 Non-destructive Testing — Qualification and Certification of NDT Personnel
ISO/TR 9769 Steel and Iron — Review of Available Methods of Analysis
ISO 10893-2:2011 Non-destructive Testing of Steel Tubes — Part 2: Automated Eddy Current Testing of Seamless and Welded (Except Submerged Arc-welded) Steel Tubes for the Detection of Imperfections
ISO 10893-4 Non-destructive Testing of Steel Tubes — Part 4: Liquid Penetrant Inspection of Seamless and Welded Steel Tubes for the Detection of Surface Imperfections
ISO 10893-5 Non-destructive Testing of Steel Tubes — Part 5: Magnetic Particle Inspection of Seamless and Welded Ferromagnetic Steel Tubes for the Detection of Surface Imperfections
ISO 10893-6 Non-destructive Testing of Steel Tubes — Part 6: Radiographic Testing of the Weld Seam of Welded Steel Tubes for the Detection of Imperfections
ISO 10893-10:2011 Non-destructive Testing of Steel Tubes — Part 10: Automated Full Peripheral Ultrasonic Testing of Seamless and Welded (Except Submerged Arc-welded) Steel Tubes for the Detection of Longitudinal and/or Transverse Imperfections
ISO 10893-12 Non-destructive Testing of Steel Tubes — Part 12: Automated Full Peripheral Ultrasonic Thickness Testing of Seamless and Welded (Except Submerged Arc-welded) Steel Tubes
ISO 11484 Steel Products — Employer’s Qualification System for Non-destructive Testing (NDT) Personnel
ISO 12135 Metallic Materials — United Method of Test for the Determination of Quasistatic Fracture Toughness
ISO 13678 Petroleum and Natural Gas Industries — Evaluation and Testing of Thread Compounds for Use with Casing, Tubing, Line Pipe and Drill Stem Elements
ISO 14284 Steel and Iron — Sampling and Preparation of Samples for the Determination of Chemical Composition
ISO 80000-1:2009 Quantities and Units — Part 1: General
API Spec 5B Specification for Threading, Gauging, and Thread Inspection of Casing, Tubing, and Line Pipe Threads
API RP5A3 Recommended Practice on Thread Compounds for Casing, Tubing, Line Pipe, and Drill Stem Elements
API RP5L3 Recommended Practice for Conductiong Drop — Weight Tear Tests on Line Pipe
API TR 5T1 Standard on Imperfection Terminology
ASNT SNT-TC-1A Recommended Practice No. SNT-TC-1A — Non-Destructive Testing
ASTM A370 Standard Test Methods and Deinitions for Mechanical Testing of Steel Products
ASTM A435 Standard Specification for Straight — Beam Ultrasonic Examination of Steel Plates
ASTM A578/A578M Sumdard Specification for Straight — Beam Ultrasonic Examination of Rolled Steel Plates for Special Applications
ASTM A751 Standard Test Methods, Practices, and Terminology for Chemical Analysis of Steel Products
ASTM A941 Standard Terminology Relating to Steel, Stainless Steel, Related Alloys, and Ferroalloys
ASTM A956 Standard Test Method for Leeb Hardness Testing of Steel Products
ASTM A1038 Standard Test Method for Portable Hardness Testing by the Ultrasonic Contact Impedance Method
ASTM E18 Standard Test Methods for Rockwell Hardness of Metallic Materials
ASTM E94 Standard Guide for Radiographic Examination
ASTM E110 Standard Test Method for Indentation Hardness of Metallic Materials by Portable Hardness Testers
ASTM E114 Standard Practice for Ultrasonic Pulse — Echo Straight — Beam Contact Testing
ASTM E164 Standard Practice for Contact Ultrasonic Testing of Weldments
ASTM E165 Standard Practice for Liquid Penetrant Examination for General Industry
ASTM E213 Standard Practice for Ultrasonic Examination of Metal Pipe and Tubing
ASTM E273 Standard Practice for Ultrasonic Testing of the Weld Zone of Welded Pipe and Tubing
ASTM E309 Standard Practice for Eddy — Current Examination of Sled Tubular Products Using Magnetic Saturation
ASTM E384 Standard Test Method for Knoop and Vickers Hardness of Materials
ASTM E570 Standard Practice for Flux Leakage Examination of Ferromagnetic Steel Tubular Products
ASTM E587 Standard Practice for Ultrasonic Angle — Beam Contact Testing
ASTM E709 Standard Guide for Magnetic Particle Testing
ASTM E747 Standard Practice for Design, Manufacture and Material Grouping Classification of Wire Image Quality Indicators (IQI) Used for Radiology
ASTM E1290 Standard Test Method for Crack-Tip Opening Displacement (CTOD) Facture Toughness Measurement
ASTM E1806 Standard Practice for Sampling Steel andiron for Determination of Chemical Composition
ASTM E1815-08 Standard Test Method for Classification of Film Systems for Industrial Radiography
ASTM E2033 Standard Practice for Computed Radiology (Photostimulable Luminescence Method)
ASTM E2698 Standard Practice for Radiological Examination Using Digital Detector Arrays
ASTM G39 Standard Practice for Preparation and Use of Bent — Beam Stress — Corrosion Test Specimens
BS 7448-1 Fracture Mechanics Toughness Tests — Method for Determination of Klc, Critical CTOD and Critical J Balues of Metallic Materials
EN 10204: 2004 Metallic Products — Types of Inspection Documents)
NACK TM0177: 2005 Laboratory Testing of Metals for Resistance to Sulide Stress Cracking and Stress Corrosion Cracking in H2S Environments
Note: As part of above foreign standards had been converted to national standards and professional standards of China, for the purpose of application and referrence, Annex L gives a list of corresponding relationship between these foreign standards and Chinese standards (include standard number, issuing title of resign, edition and application degree). For the Chinese standards foreign standards are identical with foreign standards, such foreign standards quoted in the text may be replaced by Chinese standards.
4 Terms and Definitions
For the purposes of this document, the following terms and definitions apply, as well as those given in ISO 6929 or ASTM A941 for steel products, ISO 4885 or ASTM A941 for heat treatment, API TR 5T1 for imperfection terminology, ISO 404, GB/T 18253-2000 or ASTM A370, whichever is applicable, for the types of sampling procedures, inspection and inspection documents,
4.1
as agreed
required to be as agreed upon by the manufacturer and the purchaser, and specified in the purchase order
Note: Associated, for example, with items covered by 7.2 a).
4.2
as-rolled
delivery condition without any special rolling and/or heat-treatment
4.3
coil/plate end weld
weld that joins coil or plate ends together
4.4
cold-expanded pipe
pipe that, while at ambient mill temperature, has received a permanent increase in outside diameter or circumference throughout its length, by internal hydrostatic pressure in closed dies or by an internal expanding mechanical device
4.5
cold-sized pipe
pipe that, after forming (including sizing on electric welding) and while at ambient mill temperature, has received a permanent increase in outside diameter or circumference for all or part of its length, or a permanent decrease in outside diameter or circumference for all or part of its length
4.6
cold finishing
cold-working operation (normally cold drawing) with a permanent strain greater than 1.5%
Note: The amount of permanent strain generally differentiates it from cold expansion and cold sizing.
4.7
cold forming
process in which a strip or plate is formed into a pipe without heating
4.8
continuous welding (CW)
process of forming a seam by heating the strip in a furnace and mechanically pressing the formed edges together, wherein successive coils of strip had been joined together to provide a continuous flow of strip for the welding mill
4.9
combination welded pipe (COW pipe)
tubular product having one or two longitudinal seams or one helical seam, produced by a combination of gas metal-arc and submerged-arc welding wherein the gas-metal arc weld bead is not completely removed by the submerged-arc welding passes
Foreword IV
Introduction IX
1 Scope
2 Conformance
2.1 Manufacturing
2.2 Rounding
2.3 Compliance to This Standard
3 Normative References
4 Terms and Definitions
5 Symbols and Abbreviated Terms
5.1 Symbols
5.2 Abbreviated Terms
6 Pipe Grade, Steel Grade and Delivery Condition
6.1 Pipe Grade and Steel Grade
6.2 Delivery Condition
7 Information to be Supplied by the Purchaser
7.1 General Information
7.2 Additional Information
8 Manufacturing
8.1 Process of Manufacture
8.2 Processes Requiring Validation
8.3 Starting Material
8.4 Tack Welds
8.5 Weld Seams in COW Pipe
8.7 Weld Seams in Double-seam Pipe
8.8 Treatment of Weld Seams in EW and LW Pipes
8.8.1 PSL 1 EW pipe
8.8.2 LW pipe and PSL 2 HFW pipe
8.9 Cold Sizing and Cold Expansion
8.10 Coil/plate End Welds
8.11 Jointers
8.12 Heat Treatment
8.13 Traceability
9 Acceptance Criteria
9.1 General
9.2 Chemical Composition
9.3 Tensile Properties
9.4 Hydrostatic Test
9.5 Bend Test
9.6 Flattening Test
9.7 Guided-bend Test
9.8 CVN Impact Test for PSL 2 Pipe
9.8.1 General
9.8.2 Pipe body tests
9.8.3 Pipe weld and HAZ tests
9.9 DWT Test for PSL 2 Welded Pipe
9.10 Surface Conditions, Imperfections and Defects
9.10.1 General
9.10.2 Undercuts
9.10.3 Arc burns
9.10.4 Laminations
9.10.5 Geometric deviations
9.10.6 Hard spots
9.10.7 Other surface imperfections
9.11 Dimensions, Mass and Tolerances
9.11.1 Dimensions
9.11.2 Mass per unit length
9.11.3 Tolerances for diameter, wall thickness, length and straightness
9.12 Finish of Pipe Ends
9.12.1 General
9.12.2 Threaded ends (PSL 1 only)
9.12.3 Belled ends (PSL 1 only)
9.12.4 Ends prepared for special couplings (PSL 1 only)
9.12.5 Plain ends
9.13 Tolerances for the Weld Seam
9.13.1 Radial offset of strip/plate edges
9.13.2 Height of the flash or weld bead/reinforcement
9.13.3 Misalignment of the weld beads of SAW and COW pipes
9.14 Tolerances for Mass
9.15 Weldability of PSL 2 Pipe
10 Inspection
10.1 Types of Inspection and Inspection Documents
10.1.1 General
10.1.2 Inspection documents for PSL 1 pipe
10.1.3 Inspection documents for PSL 2 pipe
10.2 Specific Inspection
10.2.1 Inspection frequency
10.2.2 Samples and test pieces for product analysis
10.2.3 Samples and test pieces for mechanical tests
10.2.4 Test methods
10.2.5 Macrographic and metallographic tests
10.2.6 Hydrostatic test
10.2.7 Visual inspection
10.2.8 Dimensional testing
10.2.9 Weighing
10.2.10 Non-destructive inspection
10.2.11 Reprocessing
10.2.12 Retesting
11 Marking
11.1 General
11.2 Pipe Markings
11.3 Coupling Markings
11.4 Marking of Pipe to Multiple Grades
11.5 Thread Identification and Certification
11.6 Pipe Processor Markings
12 Coatings and Thread Protectors
12.1 Coatings and Linings
12.2 Thread Protectors
13 Retention of Records
14 Pipe Loading
Annex A (Normative) Specification for Welded Jointers
Annex B (Normative) Manufacturing Procedure Qualification for PSL 2 Pipe
Annex C (Normative) Treatment of Surface Imperfections and Defects
Annex D (Normative) Repair Welding Procedure
Annex E (Normative) Non-destructive Inspection for Other Than Sour Service or Offshore Service
Annex F (Normative) Requirements for Couplings (PSL 1 Only)
Annex G (Normative) PSL 2 Pipe with Resistance to Ductile Fracture Propagation
Annex H (Normative) PSL 2 Pipe Ordered for Sour Service
Annex I (Normative) Pipe Prdered As “Through the Flowline” (TFL) Pipe
Annex J (normative) PSL 2 pipe ordered for offshore service
Annex K (normative) Non-destructive Inspection for Pipe Ordered for Sour Service and/or Offshore Service
Annex L (Informative) Comparison Table between Relevant International Standards and Chinese Standards
Annex M (Informative) Recommended Practice for Abnormal Fracture Evaluation of DWT Test
Annex N (Informative) Technical Deviations and Their Justifications between ISO 3183:2012 and This Standard
Bibliography
石油天然气工业 管线输送系统用钢管
1 范围
本标准规定了石油天然气工业管线输送系统用无缝钢管(以下简称“无缝管”)和焊接钢管(以下简称“焊管”)的制造要求,其包括两种产品规范水平(PSL1和PSL2)。
本标准适用于石油天然气工业管线输送系统用无缝管和焊管的制造、检验、标志、涂层、记录和装载。
本标准不适用于铸铁管。
2 一致性
2.1 计量单位
本标准采用国际单位制(以下简称“SI单位”)和美国惯用单位制(以下简称“USC单位”)表示数据。对于具体的订货批,只应使用一种单位制表示数据,不应存在兼用另一种单位制表示的数据。用SI单位和USC单位表示的数据不应同事出现在同一检验文件或同一钢管标志中。
在产品依据要求使用某一种计量单位制(SI或USC)对产品进行试验和验证,而随后发出的检验文件的报告数据用其他替代计量单位制表示时,检验文件应说明现有数据是由原检验所使用计量单位制数据换算得出。
对于钢管数据、图和供应尺寸,购方应规定是采用SI单位,还是采用USC单位。数据单采用SI数据表明应使用SI单位,数据单采用USC数据表明应使用USC单位。
2.2 圆整
除本标准规定外,为确保与规定要求的一致性,应根据ISO 80000-1:2009,附录B,规则A,把观测值或计算数值圆整到用于表示极限值的最右边数位的最邻近单位数值。
注:该条款的目的是表明SATM E29-04[1]规定的圆整方法与ISO 80000-1:2009,附录B,规则A相同。
2.3 对本标准的符合性
应运行文件化的质量体系,以助于符合本标准的要求。
注:质量体系文件不要求获得第三方认证机构认证。为满足本标准的要求,仅需创建和采用书面的质量体系即可。应遵从负责质量管理人员的专业意见,以制定或批准能反映各公司需求的最佳体系。在建立适合的质量体系过程中,现存的许多质量管理体系都可为相关人员提供指导,这些体系有包含石油天然气行业特殊固定的ISO/TS 29001[2]和API Q1[3]规范,或者包含质量管理体系审核总要求的ISO 9001[4]。
合同可以规定制造商应对产品与本标准所有适用要求的符合性负责。为确保符合性,制造商应允许购方进行任何必要的调查,并允许购方拒收任何不合格的材料。
3 规范性引用文件
下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T 8650—2015 管线钢和压力容器钢抗氢致开裂评定方法(NACE TM0284:2011,MOD)
GB/T 8923.1-2011 涂覆涂料前钢材表面处理 表面清洁度的目视评定 第1部分:未涂覆过的钢材表面和全面清除原有涂层后的钢材表面的锈蚀等级和处理等级(ISO 8501-1:2007,IDT)
GB/T 18253-2000 钢及钢产品检验文件的类型(eqv ISO 10474:1991)
GB/T 19348.1-2014 无损检测 工业射线照相胶片 第1部分:工业射线照相胶片系统的分类(ISO 11699-1:2008,MOD)
GB/T 23901.1-2009 无损检测 射线照相底片像质 第1部分:线型像质计 像质指数的测定(ISO 19232-1:2004 IDT)
SY/T 6423.2-2013 石油天然气工业 钢管无损检测方法 第2部分:焊接钢管焊缝纵向和/或横向缺欠的自动超声检测(ISO 10893-11:2011,IDT)
SY/T 6423.3-2013 石油天然气工业 钢管无损检测方法 第3部分:焊接钢管用钢带/钢板分层缺欠的自动超声检测(ISO 10893-9:2011,IDT)
SY/T 6423.4-2013 石油天然气工业 钢管无损检测方法 第4部分:无缝和焊接钢管分层缺欠的自动超声检测(ISO 10893-8:2011,IDT)
SY/T 6423.5-2014 石油天然气工业 钢管无损检测方法 第5部分:焊接钢管焊缝缺欠的数字射线检测(ISO 10893-7:2011 IDT)
SY/T 6423.6-2014 石油天然气工业 钢管无损检测方法 第6部分:无缝和焊接(埋弧焊除外)铁磁性钢管纵向和/或横向缺欠的全周自动漏磁检测(ISO 10893-3:2011,IDT)
ISO 148-1 金属材料 夏比摆锤冲击试验 第1部分:试验方法(Metallic materials-Charpy pendulum impact test04-Part 1:Test method)
ISO 404 钢和钢产品 一般交货技术条件(Steel and steel products-General technical delivery requirements)
ISO 2566-1 钢 伸长率换算 第1部分:碳钢和低合金钢(Steel-Conversion of elongation val-¬ues-Part 1:Carbon and low alloy steels)
ISO 4885 钢铁产品 热处理 词汇(Ferrous products-Heat treatments-Vocabulary)
ISO 6506(全部) 金属材料 布氏硬度试验(Metallic materials-Brinell hardness test)
ISO 6507(全部)金属材料 维氏硬度试验(Metallic materials-Vickers hardness test)
ISO 6508(全部)金属材料 洛氏硬度试验(Metallic materials-Rockwell hardness test)
ISO 6892-1 金属材料 拉伸试验 第1部分:室温试验方法(Metallic materials-Tensile testing-Part 1:4Method of test at room temperature)
ISO 6929 钢产品 定义和分类(Steel products-Vocabulary)
ISO 7438 金属材料 弯曲试验(Metallic materials-Bencl test)
ISO 7539-2 金属和合金腐蚀 应力腐蚀试验 第2部分:弯梁试样制备和使用(Corrosion of metals and alloys-Stress corrosion testing-Part 2:Preparation and use of bentbeam specimens)
ISO 8491 金属材料 管(全截面) 弯曲试验[Metallic materials-Tube(in full section)-Bend test]
ISO 8492 金属材料 管 压扁试验(Metallic materials-Tube-Flattening test)
ISO 9712 无损检测 人员资质和评定(Non-destructive testing-Qualiication and certiication of NDT personnel)
ISO/TR 9769 钢和铁 现有分析方法评价(Steel and iron-Review of available methods of analysis)
ISO 10893-2:2011 钢管无损检测 第2部分:无缝钢管和焊接(埋弧焊除外)钢管缺欠的自动涡流检测[Non-destructive testing of steel tubes-Part 2:Automated eddy current testing of seamless and welded(except submerged arc-welded)steel tubes for the detection of imperfections]
ISO 10893-4 钢管无损检测 第4部分:焊接钢管焊缝表面缺欠的液体渗透检验(Non-
destructive testing of steel tubes-Part 4:Liquid penetrant inspection of seamless and welded steel tubes for the detection of surface imperfections
ISO 10893-5 钢管无损检测 第5部分:无缝钢管和焊接钢管表面缺欠的磁粉检验(Non-destruc-tive testing of steel tubes-Part 5:Magnetic particle inspection of seamless and welded ferromagnetic steel tubes for the detection of surface imperfections)
ISO 10893-6 钢管无损检测 第6部分:焊接钢管焊缝缺欠的射线检测(Non-destructive testing of steel tubes-Part 6:Radiographic testing of the weld seam of welded steel tubes for the detection of imperfections)
ISO 10893-10: 2011 钢管无损检测 第10部分:无缝钢管和焊接(埋弧焊除外)钢管纵向和/或横向缺欠的自动全周向超声检测[Non-destructive testing of steel tubes—Part 10: Automated full peripheral ultrasonic testing of seamless and welded (except submerged are-welded) steel tubes for the detection of longitudinal and/or transverse imperfections]
ISO 10893-12 钢管无损检测 第12部分: 无缝钢管和焊接(埋弧焊除外)钢管的自动全周向超声壁厚检测[Non-destructive testing of steel tubes—Part 12: Automated full peripheral ultrasonic thickness testing of seamless and welded (except submerged arc-welded) steel tubes]
ISO 11484 钢产品 无损检验(NDT)人员的雇主评定体系[Steel products—Employer’s qualification system for non-destructive testing (NDT) personnel]
ISO 12135 金属材料 准静态断裂韧度的统一试验方法 (Metallic materials—United method of
test for the determination of quasistatic fracture toughness)
ISO 13678 石油和天然气工业 套管、油管和管线钢管螺纹脂的评价和试验 (Petroleum and natural gas industries—Evaluation and testing of thread compounds for use with casing, tubing, line pipe and drill stem elements)
ISO 14284 钢和铁 化学成分试验试样的取样和制备 (Steel and iron—Sampling and preparation of samples for the determination of chemical composition)
ISO 80000-1: 2009 量和单位 第1部分:总则 (Quantities and units—Part 1: General)
API Spec 5BD 套管、油管和管线管螺纹的加工、测量和检验规范(美国惯用单位制) (Specification for Threading, Gauging, and Thread Inspection of Casing, Tubing, and Line Pipe Threads)
API RP5L3 套管、油管和管线钢管用螺纹脂的推荐作法 (Recommended Practice on Thread
Compounds for Casing, Tubing, Line Pipe, and Drill Stem Elements)
API RP5L3 管线钢管落锤撕裂试验推荐作法 (Recommended Practice for Conductiong Drop-Weight Tear Tests on Line Pipe)
API TR 5T1 缺欠术语 (Standard on Imperfection Terminology)
ASNT SNT-TC-1A2) SNT-TC-1A推荐作法 无损检测 (Recommended Practice No. SNT-TC-1A—Non-Destructive Testing)
ASTM A3703) 钢产品力学性能试验的标准试验方法和定义 (Standard Test Methods and Deinitions for Mechanical Testing of Steel Products)
ASTM A435 钢板直射法超声检验规范 (Standard Specification for Straight-Beam Ultrasonic
Examination of Steel Plates)
1) American Petroleum Institute (美国石油学会), 1220 L Street,N.W., Washington, DC 20005, USA.
2) American Society for Nondestructive Testing (美国无损检验学会), 1711 Arlingate Lane,Columbus, OH 43228-0515, USA.
3) ASTM International (美国试验与材料协会), 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, USA.
ASTM A578/A578M 特殊用途用普通钢板和复合钢板直射法超声检验标准规范 (Sumdard Specification for Straight—Beam Ultrasonic Examination of Rolled Steel Plates for Special Applications)
ASTM A751 钢产品化学分析用标准试验方法、作法和术语 (Standard Test Methods, Practices, and Terminology for Chemical Analysis of Steel Products)
ASTM A941 钢、不锈钢、合金和铁合金术语 (Standard Terminology Relating to Steel, Stainless Steel, Related Alloys, and Ferroalloys)
ASTM A956 钢产品里氏硬度标准试验方法 (Standard Test Method for Leeb Hardness Testing of Steel Products)
ASTM A1038超声波接触阻抗法便携式硬度仪测试硬度的标准作法 (Standard Test Method for Portable Hardness Testing by the Ultrasonic Contact Impedance Method)
ASTM E18 金属材料洛氏硬度和洛氏表面硬度标准试验方法 (Standard Test Methods for Rockwell Hardness of Metallic Materials)
ASTM E94 射线检验标准指南 (Standard Guide for Radiographic Examination)
ASTM E110 便携式硬度仪测试金属材料压痕硬度的标准方法 (Standard Test Method for Indentation Hardness of Metallic Materials by Portable Hardness Testers)
ASTM E114 接触式超声脉冲回波直射法检验的标准作法 (Standard Practice for Ultrasonic Pulse—Echo Straight—Beam Contact Testing)
ASTM E164 焊接件的接触式超声检测标准作法 (Standard Practice for Contact Ultrasonic Testing of Weldments)
ASTM E165 液体渗透标准试验方法 (Standard Practice for Liquid Penetrant Examination for
General Industry)
ASTM E213 金属管超声检验标准作法 (Standard Practice for Ultrasonic Examination of Metal Pipe and Tubing)
ASTM E273 焊管焊接区域超声检测标准作法 (Standard Practice for Ultrasonic Testing of the Weld Zone of Welded Pipe and Tubing)
ASTM E309 钢管产品磁饱和涡流检验标准作法 (Standard Practice for Eddy—Current Examination of Sled Tubular Products Using Magnetic Saturation)
ASTM E384 金属材料努氏硬度和维氏硬度标准试验方法 (Standard Test Method for Knoop and Vickers Hardness of Materials)
ASTM E570 铁磁性钢管产品漏磁检验标准作法 (Standard Practice for Flux Leakage Examination of Ferromagnetic Steel Tubular Products)
ASTM E587 接触式超声斜射法检测标准作法 (Standard Practice for Ultrasonic Angle-Beam
Contact Testing )
ASTM E709 磁粉检验标准指南 (Standard Guide for Magnetic Particle Testing)
ASTM E747 射线检验用线型像质计 (IQI)的设计、制造和材料组分类标准作法[Standard Practice for Design, Manufacture and Material Grouping Classification of Wire Image Quality Indicators (IQI) Used for Radiology]
ASTM E1290 裂纹尖端张开位移 (CTOD)断裂韧性测量的标准测试方法[Standard Test Method for Crack-Tip Opening Displacement (CTOD) Facture Toughness Measurement]
ASTM E1806 钢铁化学成分检验用试样的取样方法 (Standard Practice for Sampling Steel andiron for Determination of Chemical Composition)
ASTM E1815-08 工业射线检验胶片系统分类的标准试验方法 (Standard Test Method for Classification of Film Systems for Industrial Radiography)
ASTM E2033 计算机射线检测标准作法(光敏发光法)[Standard Practice for Computed
Radiology (Photostimulable Luminescence Method)]
ASTM E2698 用数字检测器阵列进行射线检测的标准作法 (Standard Practice for Radiological Examination Using Digital Detector Arrays)
ASTM G39 弯曲梁应力腐蚀试验试样制备和使用的标准方法 (Standard Practice for Preparation and Use of Bent —Beam Stress—Corrosion Test Specimens)
BS 7448-14) 断裂韧性试验 确定金属材料Klc、临界CTOD、临界J值的方法 (Fracture
mechanics toughness tests—Method for determination of Klc, critical CTOD and critical J values of metallic materials)
EN 10204: 2004 金属产品检验文件类型 (Metallic products—Types of inspection documents)
NACK TM0177: 20055) 金属在H2S环境中抗硫化物应力开裂和应力腐蚀开裂的实验室试验
(Laboratory Testing of Metals for Resistance to Sulide Stress Cracking and Stress Corrosion Cracking in H2S Environments)
注:由于部分引用的国外标准已被转化制定为我国国家标准和行业标准,为方便使用和参考附录L列出了这些国外标准与国内标准的对应关系(包括标准编号、发布年号、版本和采标程度)。如我国标准同步等同采用了国外标准,则可用我国标准代替引用的国外标准。
4 术语和定义
ISO 6929或ASTM A941(有关钢产品)、ISO 4885或ASTM A941(有关热处理)、API TR 5T1(有关缺欠术语)、ISO 404、GB/T 18253—2000或ASTM A370(有关取样方法、检验和检验文件类型,选适用标准)界定的以及下列术语和定义适用于本文件。
4.1
依照协议as agreed
由制造商和购方双方协商形成的要求,且已在订货合同中注明。
注:例如7.2a)包括的条款。
4.2
轧制状态 as-rolled
未进行任何特殊轧制和/或热处理的交付状态。
4.3
钢带(卷)/钢板对头焊缝 coil/plate end weld
将钢带(卷)或钢板端部连接在一起的焊缝。
4.4
冷扩径钢管 cold-expanded pipe
指在工场环境温度下,用内部扩张机械装置,或将钢管置于封闭模中通过内部静水压压力使整根钢管外径或周向尺寸获得永久增加的钢管。
4.5
冷定径钢管 cold-sized pipe
指在丁厂环境温度下,成型(包括EW定径)后,整根或部分长度钢管外径或周向尺寸获得永久增加或永久减少的钢管。
4) BSI, British Standards Institute (英国标准学会), 389 Chiswick High Road, London, W4 4AL, United Kingdom.
5) NACE International (美国腐蚀工程师协会), P.O.Box 201009, Houston, Texas 77216-1009, USA.
4.6
冷精整 cold finishing
永久应变大于1.5%的冷加工操作(通常为冷拔)。
注:该永久应变量通常将冷精整与冷扩径和冷定径区分出来。
4.7
冷成型 cold forming
不用加热将钢带或钢板成型为钢管的工艺。
4.8
连续炉焊 (CW) continuous welding
通过在炉子里加热钢带且用机械力将成型的边缘压在一起,形成接缝的工艺。期间连续不断地将钢带卷连接在一起,持续地为焊机提供钢带。
4.9
组合焊 (COW)管 combination welded pipe
采用熔化极气体保护焊和埋弧焊组合工艺制造的带有一或两条点焊缝或一条螺旋焊缝的钢管产品,在焊接过程众,熔化极气体保护焊缝未完全被埋弧焊道熔化。
4.10
螺旋缝组合焊 (COWH)管 combination helical welded pipe
采用熔化极气体保护焊和埋弧焊组合工艺制造的带有一条螺旋焊缝的钢管产品,在焊接过程中,熔化极气体保护焊缝未完全被埋弧焊道熔化。
4.11
直缝组合焊 (COWL)管 combination longitudinal welded pipe
采用熔化极气体保护焊和埋弧焊组合工艺制造的带有一或两条直焊缝的钢管产品,在焊接过程中,熔化极气体保护焊缝未完全被埋弧焊道熔化。
4.12
组合焊 (COW)缝 combination welding seam
采用熔化极气体保护焊和埋弧焊组合工艺焊成的直焊缝或螺旋焊缝,在焊接过程中,熔化极气体保护焊缝未完全被埋弧焊道熔化。
4.13
连续炉焊 (CW)管 continuous welded pipe
采用连续炉焊工艺制造的带有一条直焊缝的钢管产品。
4.14
子带(卷) daughter coil
通过切、割、或剪的方式从母带(卷)上截取的钢带(卷)的一部分,该母带(卷)可用于制造单根或多根钢管。
4.15
子板 daughter plate
通过切、割、或剪的方式从母板上截取的钢板的一部分,该母板可用于制造单根或多根钢管。
4.16
缺陷 defect
尺寸和/或分布密度超出本标准规定的验收极限的缺欠。
4.17
电(阻)焊 (EW) electric welding
借助电的阻力焊接形成焊缝的工艺。其待焊边缘通过机械加压焊接在一起,焊接热量由感应电流
或传导电流流动的阻力产生。
4.18
电(阻)焊 (EW)管 electric welded pipe
采用低频或高频电焊工艺制造的带有一条直焊缝的钢管产品。
4.19
电(阻)焊 (EW)缝 electric welded seam
采用电焊工艺焊成的点焊缝。
4.20
药芯焊丝电弧焊 flux core arc welding
利用管状金属电极中的药芯提供保护,借助该连续填充金属电极与工件之间的电弧热,使金属结合的焊接工艺。
注:在某些情况下,需要用外部提供的气体或混合气体获得补充保护。
4.21
熔化极气体保护焊 gas metal-arc welding
通过连续自消耗的电极与工件之间—个或多个电弧进行加热,从而形成金属结合的一种焊接工艺由外部提供的气体或混合气体对电弧和熔化金属进行保护。
注:不用加压且填充金属来自电极。
4.22
熔炼炉 heat
一次熔炼工艺一次循环所生产的金属。
4.23
高频焊 (HFW)管 high-frequency welded pipe
采用频率等于或大于70 kHz的焊接电流焊接成的EW管。
4.24
如果协议if agreed
如经制造商和购方双方协商,并在订购合同中注明的已确定要求或比已确定要求更严格的要求。
注:例如包含在7.2c)中的相关条款
4.25
缺欠 imperfection
用本标准所述的检查方法检验出来的产品壁厚内部或表面的不连续成不规则。
4.26
指示 indication
通过无损检验获得的证据。
4.27
资料性要素 informative elements
用于识別本文件,介绍其内容,对其产生背景、发展过程、与其他文件的关系进行说明的要素;或用于帮助对本文件的理解或使用而提供的附加信息要素。
注:见ISO /IEC导则第2部分。
4.28
检验 inspection
测量、检查、试验、称重或测定产品的一个或多个特性的活动,几将这些活动的结果与规定要求进行对比,以确定符合性。
注:参见ISO 404。
4.29
设备校准 instrument standardization
将无损检验设备调整到规定参照值的活动。
4.30
对接钢管 jointer
制造商将两根或三根单根管用接箍连接或焊接而形成的钢管。
4.31
钢包精炼 ladle refining
浇铸前进行的首次炼钢过程后的二次炼钢工艺,通过脱气,脱硫及去除非金属夹杂物,并控制夹杂物的形状等多种方法提高钢的质量。
4.32
分层 lamination
内部金属分离形成的片层,通常与钢管表面平行。
4.33
激光焊 (LW) laser welding
采用激光束小孔焊接技术使待焊边缘的金属熔化,并使其焊接在一起的工艺。待焊边缘是否预热均可。采用外部提供的气体或混合气体进行保护。
4.34
低频焊 (LFW)管 low frequency electric welded pipe
采用频率小于70 kHz的焊接电流焊接成的电焊(EW)管。
4.35
激光焊 (LW)管 laser welded pipe
采用激光焊焊接工艺制造的带有一条焊缝的钢管产品。
4.36
制造商 manufacturer
根据本标准的要求,负责生产产品且对产品做标志的工厂、公司或社团。
注1: 如适用,制造商也可是钢管制造厂、加工方、接箍成螺纹的加工厂。
注2: 参见ISO 11961[5]。
4.37
母带(卷) mother coil
采用单个再热钢坯加工的热轧钢带(卷),可用来生产单根或多根钢管。
4.38
母板 mother plate
采用单个再热钢坯加工的热轧钢板,可用来生产单根或多根钢管。
4.39
无损检验(测)non-destructive inspection (testing)/NDT
采用本标准规定的射线、超声或其他方法而使缺欠能显现出来的检验,该检验方法不对材料组织产生干涉、施加应力、破坏。
4.40
正火成型 normalizing formed
钢管的交货状态,形成于成型过程,在此过程中最终变形在一定的温度范围内进行,使材料的状态与经正火处理后材料的状态相当,使得在随后进行的任何正火中,仍能满足规定力学性能要求。
4.41
正火轧制 normalizing rolled
钢管的交货状态,形成于轧制过程,在此过程中最终变形在一定的温度范围内进行,使材料的状态与经正火处理后材料的状态相当,使得在随后进行的任何正火中,仍能满足规定力学性能要求。
4.42
规范性要素 normative elements
用于描述文件范围的要素,并作为本标准所要求的补充条款。
注:见ISO/IEC导则第2部分。
4.43
无缝管管体 SMLS pipe body
对于无缝管,指整根钢管。
4.44
焊管管体 welded pipe body
对于焊管,指不包括焊缝和热影响区的整根钢管。
4.45
钢管等级 pipe garde
表明钢管强度水平的名称。
注:同一等级的钢管可能具有不同的化学成分和/或不同的热处理状态。
4.46
制管厂 pipe mill
操作制管设备的工厂、公司或社团。
注:参见ISO 11960[6]。
4.47
加工方 processor
对制管厂生产的钢管进行热处理加工的工厂、公司或社团。
注:参见ISO 11960[6]。
4.48
产品分析 product analysis
钢管、钢板或钢带(卷)的化学分析。
4.49
购方 purchaser
负责确定产品订货要求且为所购产品付款的一方。
4.50
淬火加回火 quenching and tempering
由淬火硬化和随后进行的回火组成的热处理工艺。
4.51
试块 sample
为制取一个或多个式样,从待检验产品上截取的足够数量的材料。
4.52
埋弧焊(SAW) submerged-are welding
通过一个或数个裸金属自耗电极与工作之间的一个或数个电弧,对电极与工作加热而产生金属熔融结合的焊接工艺。由一层粒状焊剂为电弧和熔融金属提供保护。
注:不需加压,且填充金属部分或全部从电极获得。
4.53
埋弧焊(SAW)管 submerged-are welded pipe
采用埋弧焊接工艺制造的带有一条或两条直焊缝,或一条螺旋焊缝的钢管。
4.54
螺旋缝埋弧焊(SAWH)管 submerged-are helical welded pipe
采用埋弧焊接工艺制造的带有一条螺旋焊缝的钢管。
4.55
直缝埋弧焊(SAWL)关 submerged-are longitudinal welded pipe
采用埋弧焊接工艺制造的带有一条或两条直焊缝的钢管。
4.56
埋弧焊(SAW)缝 submerged-are welding seam
采用埋弧焊接工艺焊成的直焊缝或螺旋焊缝。
4.57
无缝(SMLS)管 seamless pipe
采用热成型工艺制造的不带焊缝的钢管,在热成型后,可以进行冷定径或冷精整,以获得需要的外形、尺寸及性能。
4.58
服役条件 service condition
由购方在订货合同中规定的钢管使用条件。
注:在本标准中,术语“酸性服役”和“海上服役”指服役条件。
4.59
焊条电弧焊(SMAW) shielded metal arc welding
利用包覆金属电极与工件之间的电弧热加热电极和工件,使金属融熔结合的焊接工艺,电极包覆物体的分解物为电弧和融熔金属提供保护。
注:不需加压,分解物来自金属电极。
4.60
定位焊缝 tack weld
在最终焊接前,用来保持对接边缘对齐的间断或连续的焊缝。
4.61
试样 test piece
具有规定尺寸的试块的一部分,经机加工或非机加工方法,使其满足试验所要求的条件。
4.62
试验批 test unit
采用同一熔炼炉,在相同钢管制造条件下,通过相同制管工艺,采用相同热轧工艺的钢带(卷)/钢板(适用于焊管),制成的相同规定外径和规定壁厚的规定数量的钢管。
4.63
热机械成型 thermomechanical forming
钢管的一种热成型工艺,指钢管最终变形在一定温度范围内完成,使得材料具有单独采用热处理无法达到或重视的某些性能。形变后进行冷却,有可能会增加冷却速率,进行或不进行包括自回火的回火处理。
警告——随后温度高于580℃(1075℉)的加热会降低钢管强度值。
4.64
热机械轧制 thermomechanical rolled
钢管的交货状态来源于热机械轧制的钢带(卷)或钢板,在此过程中最终变形在一定的温度范围内进行,使材料具有单独采用热处理无法获得或重现的某些性能,形变后进行冷却,有可能会增加冷却速率,进行或不进行包括自回火的回火处理。
警告——随后温度高于580℃(1075℉)的加热会降低钢管强度值。
4.65
咬边 undercut
焊缝金属在邻近焊趾的母材上形成的凹槽和未充满。
4.66
除另有协议外 unless otherwise agreed
使用的要求,除制造商和购方双方协商由替代要求并在订货合同中规定外。
注:例如7.2b)和7.2c)包括的相关条款。
4.67
焊管 welded pipe
连续炉焊(CW)管、螺旋缝组合焊(COWH)管、直缝组合焊(COWL)管、电(阻)焊(EW)管、高频焊(HFW)管、低频焊(LFW)管、激光焊(LW)管、螺旋缝埋弧焊(SAWH)管或直缝埋弧焊(SAWL)管。
5 符号和缩略语
5.1 符号
下列符号适用于本文件。
α 钢带(卷)/钢板对头焊缝的长度
At 断裂后的延伸率,以百分数表示,且圆整到最邻近的百分数
Agb 导向弯曲试验阳模/辊子的尺寸,用mm(in)表示
Al 钢管的内横截面积,用mm2(in2)表示
Ap 管壁的横截面积,用mm2(in2)表示
AR 端部密封柱塞的横截面积,用mm2(in2)表示
AXC 适用的拉伸试验试样的横截面积,用mm2(in2)表示
b 承载面的制定宽度,用mm(in)表示
B 导向弯曲试验模壁或支架之间的距离,用mm(in)表示
C 常数,取决于使用的单位制
CEHW 碳当量,采用国际焊接学会公式确定
CEpcm 碳当量,采用Ito-Bessyo碳当量公式的化学部分确定
d 钢管的计算内经,用mm(in)表示
D 钢管规定外径,用mm(in)表示
Da 定径后制造商的设计外径,用mm(in)表示
Db 定径前制造商的设计外径,用mm(in)表示
f 频率,以Hz表示(每秒周期数)
Kv 全尺寸夏比V型缺口吸收能,用J(ft•lbf)表示
L 钢管长度,用m(ft)表示
N1 规定最小长度,接箍尺寸,用mm(in)表示
P 静水压试验压力,用Mpa(psi)表示
PR 端部密封柱塞内压,用MPa(psi)表示
Q 接箍尺寸规定的凹槽直径,用mm(in)表示
r 半径,用mm(in)表示
ra 导向弯曲试验阳模半径,用mm(in)表示
rb 导向弯曲试验阴模半径,用mm(in)表示
ro 钢管外半径,用mm(in)表示
Rm 抗拉强度,用MPa(psi)表示
Rp0.2 屈服强度(0.2%非比例伸长),用MPa(psi)表示
Rt0.5 屈服强度(0.5%总延伸),用MPa(psi)表示
St 定径率
S 静水压试验环向应力,用MPa(psi)表示
t 钢管规定壁厚,用mm(in)表示
tmin 钢管最小允许壁厚,用mm(in)表示
U 规定最小抗拉强度,用MPa(psi)表示
Vt 横向超声速率,以m/s(ft/s)表示
W 规定外径接箍尺寸,用mm(in)表示
ε 应变
λ 波长,用m(ft)表示
ρ1 平端钢管单位长度质量,用kg/m(lb/ft)表示
σb 管线钢管设计环向应力,用MPa(psi)表示
5.2 缩略语
下列缩略语适用于本文件。
COW 制造时,对钢管实施的组合焊接工艺
COWH 制造时,对钢管实施的组合螺旋焊接工艺
COWL 制造时,对钢管实施的组合直缝焊接工艺
CTOD 裂纹尖端张开位移
CVN 夏比V型缺口
CW 制造时,对钢管实施的炉焊工艺
DWT 落锤撕裂
EDI 电子数据交换
EW 制造时,对钢管实施的电阻焊或电感应焊接工艺
GMAW 熔化极气体保护电弧焊工艺
HAZ 热影响区
HBW 采用钨类硬质合金球压头的布氏硬度
HFW 制造时,对钢管实施的高频焊接工艺
HIC 氢致开裂
HRC 洛氏硬度,C标尺
HV 维氏硬度
IQI 像质计
LFW 制造时,对钢管实施的低频焊接工艺
LW 制造时,对钢管实施的激光焊接工艺
MT 磁粉检测
NDT 无损检验(测)
PSL 产品规范水平
PT 渗透检测
SAW 制造时,对钢管实施的埋弧焊接工艺
SAWH 制造时,对钢管实施的螺旋埋弧焊接工艺
SAWL 制造时,对钢管实施的直缝埋弧焊接工艺
SMAW 制造时,对钢管实施的焊条电弧焊
SI 国际单位
SSC 硫化物应力开裂
SWC 阶梯开裂
TFL 过出油管
USC 美国惯用
UT 超声监测
6 钢管等级、钢级和交货状态
6.1 钢管等级和钢级
6.1.1 PSL1钢管的钢管等级与钢级(钢名的牌号)相同,且应符合表1规定。钢管等级由字母或字母与数字混排的牌号构成,以识别钢管的强度水平,而且强度水平与钢的化学成分有关。
注:钢级A和钢级B牌号不包括规定最小屈服强度;然而,其他牌号中的数字部分对应于用MPa表示的规定最小屈服强度(SI单位);或用×1000psi表示的规定最小屈服强度(USC单位,向上圆整),后缀P表示钢含有规定含量的磷。
6.1.2 PSL2钢管的钢管等级应符合表1规定。钢管等级由字母或字母与数字混排的牌号构成,以识别钢管的强度水平。钢名(表示为钢级牌号)与钢的化学成分有关,其后缀的单个字母(R、N、Q或M)表示钢管的交货状态(见表3)。
注1:钢级B牌号不包括规定最小屈服强度的参考值;其他牌号中的数字部分对应于SI单位或USC单位的规定最小屈服强度。
注2:酸性服役条件见H.4.1.1。
注3:海上服役条件见J.4.1.1。
6.2 交货状态
6.2.1 对每一订货批,除订货合同规定了特殊的交货状态外,PSL1钢管的交货状态应由制造商选择。表1给出了PSL1和PSL2钢管的交货状态,表3给出了PSL2钢管的附加信息。
6.2.2 PSL2钢管的交货状态应符合订货合同中钢名所规定的状态。