CB/T 1408 Insulating materials - Insulating materials - Test methods for electric strength includes the following three parts:
——Part 1: Tests at power frequencies;
——Part 2: Additional requirements for tests using direct voltage;
——Part 3: Additional requirements for 1.2/50 μs impulse tests.
This is Part 1 of GB/T 1408.
This part replaces GB/T 1408.1-2006 Insulating materials - Test methods for electric strength - Part 1: Tests at power frequencies. The following main technical changes have been made with respect to GB/T 1408.1-2006:
——the “normative references” are modified (see Clause 2; Clause 2 of 2006 Edition);
——the test requirements of sphere and plate electrodes are added (see Sub-clause 5.2.1.3);
——the test requirements of elastomers are added (see Sub-clause 5.2.6.2.4);
——the “Tests in solid materials” is added (see Sub-clause 7.4);
——the schematic diagram “sphere and plate electrodes” is added [see Figure 1c)];
——Annex B is deleted (see Annex B of Edition 2006).
By translation, this part is identical with IEC 60243-1: 2013 Insulating materials - Test methods for electric strength - Part 1: Tests at power frequencies (Edition 3).
The Chinese documents identical to the normative international documents given in this part are as follows:
——GB/T 1981.2-2009 Varnishes used for electrical insulation - Part2: Methods of test (IEC 60464-1: 2001, IDT)
——GB 2536-2011 Fluids for electrotechnical applications - Unused mineral insulating oils for transformers and switchgear (IEC 60296:2003, MOD)
——GB/T 5471-2008 Plastics - Compression moulding of test specimens of thermoplastic materials (ISO 295: 2004, IDT)
——GB/T 7113.2-2014 Flexible insulating sleeving - Part 2: Methods of test (IEC 60684-2: 2003, MOD)
——GB/T 9352-2008 Plastics - Compression moulding of test specimens of thermoplastic materials (ISO 293: 2004, IDT)
——GB/T 10580-2015 Standard conditions for use prior to and during the testing of solid electrical insulating materials (IEC 60212: 2010, IDT)
——GB/T 15022.2-2007 Resin based reactive compounds used for electrical insulation - Part2: Methods of test (IEC 60455-1: 1998, IDT)
——GB/T 17037.3-2003 Plastics - Injection moulding of test specimens of thermoplastic materials - Part 3: Small plates (ISO 294-3: 2002, IDT)
——GB/T 21218-2007 Specification for unused silicone insulating liquids for electrotechnical purposes (IEC 60836: 2005, IDT)
This part was proposed by China Electrical Equipment Industry Association.
This part is under the jurisdiction of National Technical Committee on Insulating Materials of Standardization Administration of China (SAC/TC 301).
The previous editions of this standard are as follows:
——GB/T 1408-1978, GB/T 1408-1989, GB/T 1408.1-1999, GB/T 1408.1-2006.
Insulating materials - Test methods for electric strength - Part 1: Test at power frequencies
1 Scope
This part of GB/T 1408 provides test methods for the determination of short-time electric strength of solid insulating materials at power frequencies between 48 Hz and 62 Hz.
This standard does not cover the testing of liquids and gases, although these are specified and used as impregnates or surrounding media for the solid insulating materials being tested.
Note: Methods for the determination of breakdown voltages along the surfaces of solid insulating materials are included.
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 293 Plastics - Compression moulding of test specimens of thermoplastic materials
ISO 294-1 Plastics - Injection moulding of test specimens of thermoplastic materials - Part 1: General principles, and moulding of multipurpose and bar test specimens
ISO 294-3 Plastics - Injection moulding of test specimens of thermoplastic materials - Part 3: Small plates
ISO 295 Plastics - Compression moulding of test specimens of thermosetting materials
ISO 10724 Plastics - Injection moulding of test specimens of thermosetting powder moulding compounds
IEC 60212 Standard conditions for use prior to and during the testing of solid electrical insulating materials
IEC 60296 Fluids for electrotechnical applications - Unused mineral insulating oils for transformers and switchgear
IEC 60455-2 Specification for solvent-less polymerizable resinous compounds used for electrical insulation - Part 2: Methods of lest
IEC 60464-2 Varnishes used for electrical insulation - Part 2: Methods of test
IEC 60684-2 Flexible insulating sleeving - Part 2: Methods of test
IEC 60836 Specifications for unused silicone insulating liquids for electrotechnical purposes
IEC 61099 Insulating liquids - Specifications for unused synthetic organic esters for electrical purposes
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
3.1
electric breakdown
severe loss of the insulating properties of test specimens while exposed to electric stress, which causes the current in the test circuit to operate an appropriate circuit-breaker
Note: Breakdown is often caused by partial discharges in the gas or liquid medium surrounding the test specimen and the electrodes which puncture the specimen beyond the periphery of the smaller electrode (or of both electrodes, if of equal diameter).
3.2
flashover
loss of the insulating properties of the gas or liquid medium surrounding a test specimen and electrodes while exposed to electric stress, which causes the current in the test circuit to operate an appropriate circuit-breaker
Note: The presence of carbonized channels or punctures through the specimen distinguishes tests where breakdown occurred, from others where flashover occurred.
3.3
breakdown voltage
3.3.1
(tests with continuously rising voltage) voltage at which a specimen suffers breakdown under the prescribed test conditions
3.3.2
(step-by-step tests) highest voltage which a specimen withstands without breakdown for the duration of the time at that voltage level
3.4
electirc strength
quotient of the breakdown voltage and the distance between the electrodes between which the voltage is applied under the prescribed test conditions
Note: The distance between the test electrodes is determined as specified in Sub-clause 5.5, unless otherwise specified.
4 Significance of the test
Electric strength test results obtained in accordance with this standard are useful for detecting changes or deviations from normal characteristics resulting from processing variables, ageing conditions or other manufacturing or environmental situations. However, they are not intended for use in evaluating the behavior of insulating materials in an actual application.
Measured values of the electric strength of a material may be affected by many factors, including:
a) Condition of test specimens:
1) the thickness and homogeneity of the specimen and the presence of mechanical strain;
2) previous conditioning of the specimens, in particular drying and impregnation procedures;
3) the presence of gaseous inclusions, moisture or other contamination.
b) Test conditions:
1) the frequency, waveform and rate of rise or time of application of the voltage;
2) the ambient temperature, pressure and humidity;
3) the configuration, the dimensions, and thermal conductivity of the test electrodes;
4) the electrical and thermal characteristics of the surrounding medium.
The effects of all these factors shall be considered when investigating materials for which no experience exists. This standard defines particular conditions which give rapid discrimination between materials and which can be used for quality control and similar purposes.
The results given by different methods are not directly comparable but each may provide information on relative electric strengths of materials. The electric strength of most materials decreases as the thickness of the specimen between the electrodes increases and as the time of voltage application increases.
The measured electric strength of most materials is significantly affected by the intensity and the duration of surface discharges prior to breakdown. For designs which are free from partial discharges up to the test voltage, it is very important to know the electric strength without discharges prior to breakdown. However, the methods in this standard are generally not suitable for providing this information.
Materials with high electric strength will not necessarily resist long-term degradation processes such as heat, erosion or chemical deterioration by partial discharges, or electrochemical deterioration in the presence of moisture, all of which may cause failure in service at much lower stress.
5 Electrodes and specimens
5.1 General
The metal electrodes shall be maintained smooth, clean and free from defects at all times. Electrode arrangements for tests on boards and sheets perpendicular to the surface are shown in Figure 1.
Note: This maintenance becomes more important when thin specimens are being tested. Stainless steel electrodes e.g. minimize electrode damage at breakdown.
The leads to the electrodes shall not tilt or otherwise move the electrodes, nor affect the pressure on the specimen, nor appreciably affect the electric field configuration in the neighborhood of the specimen.
When very thin films (for example < 5 µm thick) are to be tested, the standards for those materials shall specify the electrodes and special procedures for handling and specimen preparation.
5.2 Tests perpendicular to the surface of non-laminated materials and normal to laminate of laminated materials
5.2.1 Boards and sheet materials, including pressboards, papers, fabrics and films
5.2.1.1 Unequal electrodes
The electrodes shall consist of two metal cylinders with the edges rounded to give a radius of (3 ± 0.2) mm. One electrode shall be (25 ± 1) mm in diameter and approximately 25 mm high. The other electrode shall be (75 ± 1) mm in diameter and approximately 15 mm high. These two electrodes shall be arranged coaxially within 2 mm as in Figure 1a).
Note: Radii for surface not in contact with the electrode are not critical with respect to test results but should avoid partial discharges in the surrounding medium.
5.2.1.2 Equal diameter electrodes
If a fixture is employed, which accurately aligns upper and lower electrodes within 1.0 mm, the diameter of the lower electrode may be reduced to (25 ± 1) mm, the diameters of the two electrodes differing by no more than 0.2 mm. The results obtained will not necessarily be the same as those obtained with the unequal electrodes of 5.2.1.1.
5.2.1.3 Sphere and plate electrodes
The electrodes shall consist of a metal sphere and a metal plate. The upper electrode shall be a sphere of (20 ± 1) mm in diameter and the lower one is a metal plate of (25 ± 1) mm in diameter with the edge rounded to give a radius of 2.5 mm. The discrepancy of the central axes between upper and lower electrodes shall be within 1 mm (see Figure 1c).
5.2.1.4 Tests on thick sample
When specified, boards and sheets over 3 mm thick shall be reduced by machining on one side to (3 ± 0.2) mm and then tested with the high-potential electrode on the non-machined surface.
When it is necessary in order to avoid flashover or because of limitations of available equipment, specimens may be prepared by machining to smaller thicknesses as needed.
5.2.2 Tapes, films and narrow strips
The electrodes shall consist of two metal rods, each (6 ± 0.1) mm in diameter, mounted vertically one above the other in a jig so that the specimen is held between the faces of the ends of the rods.
The upper and lower electrodes shall be coaxial within 0.1 mm. The ends of the electrodes shall form planes at right angles to their axes, with edge radii of (1 ± 0.2) mm. The upper electrode shall have a mass of (50 ± 2) g and shall move freely in the vertical direction in the jig.
Figure 2 shows an appropriate arrangement. If specimens are to be tested while extended, they shall be clamped in a frame holding them in the required position relative to the assembly shown in Figure 2. Wrapping one end of the specimen around a rotatable rod is one convenient way of achieving the required extension.
To prevent flashover around the edges of narrow tapes, the test specimen may be clamped using strips of film or other thin dielectric material overlapping the edges of the tape. Alternatively, gaskets that surround the electrodes may be used, provided that there is an annular space between electrode and gasket of 1 mm to 2 mm. The distance between the bottom electrode and the specimen (before the top electrode comes in contact with the specimen) shall be less than 0.1 mm.
Note: For testing films see IEC 60674-2.
5.2.3 Flexible tubing and sleeving
To be tested according to IEC 60684-2.
5.2.4 Rigid tubes (having an internal diameter up to and including 100 mm)
The outer electrode shall consist of a band of metal foil (25 ± 1) mm wide. The inner electrode is a closely fitting internal conductor, e.g. rod, tube, metal foil or a packing of metal spheres 0.75 mm to 2 mm in diameter, making good contact with the inner surface. In each case, the ends of the inner electrode shall extend for at least 25 mm beyond the ends of the outer electrode.
Where no adverse effect will result, petroleum jelly may be used for attaching the foil to the inner and outer surfaces.
5.2.5 Tubes and hollow cylinders (having an internal diameter greater than 100 mm)
The outer electrode shall be a band of metal foil (75 ± 1) mm wide and the inner electrode, a disk of metal foil (25 ± 1) mm in diameter, flexible enough to conform to the curvature of the cylinder. The arrangement is shown in Figure 3.
Foreword i
1 Scope
2 Normative references
3 Terms and definitions
4 Significance of the test
5 Electrodes and specimens
6 Conditioning before tests
7 Surrounding medium
8 Electrical apparatus
9 Test procedures
10 Mode of increase of voltage
11 Criterion of breakdown
12 Number of tests
13 Test report
Annex A (Informative) Treatment of experimental data
Bibliography
绝缘材料 电气强度试验方法
第1部分:工频下试验
1 范围
GB/T 1408的本部分提出了测定固体绝缘材料工频(即48 Hz~62 Hz)短时电气强度的试验方法。
本部分规定了用液体和气体作为固体绝缘材料试验时的浸渍剂或周围媒质,但不适用于液体和气体的试验。
注:本部分包括测定固体绝缘材料表面击穿电压的方法。
2 规范性引用文件
下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
ISO 293 塑料 热塑性材料压塑试样(Plastics—Compression moulding of test specimens of thermoplastic materials)
ISO 294-1 塑料 热塑性材料注塑试样 第1部分:一般原理及多用途模塑件和条形试样(Plastics—Injection moulding of test specimens of thermoplastic materials—Part 1:General principles,and moulding of multipurpose and bar test specimens)
ISO 294-3 塑料 热塑性材料注塑试样 第3部分:小型平板(Plastics—Injection moulding of test specimens of thermoplastic materials—Part 3:Small plates)
ISO 295 塑料 热固性材料压塑试样(Plastics—Compression moulding of test specimens of thermosetting materials)
ISO 10724(所有部分) 塑料 热固性粉末模塑复合材料注塑试样(Plastics—Injection moulding of test specimens of thermosetting powder moulding compounds)
IEC 60212 固体电气绝缘材料试验时和试验前采用的标准条件(Standard conditions for use prior to and during the testing of solid electrical insulating materials)
IEC 60296 电工用液体 变压器和开关设备用的未使用过的矿物绝缘油(Fluids for electrotechnical applications—Unused mineral insulating oils for transformers and switchgear)
IEC 60455-2 电气绝缘用无溶剂可聚合树脂复合物规范 第2部分:试验方法(Specification for solvent-less polymerizable resinous compounds used for electrical insulation—Part 2:Methods of lest)
IEC 60464-2 电气绝缘用漆 第2部分:试验方法(Varnishes used for electrical insulation—Part 2:Methods of test)
IEC 60684-2 绝缘软套管 第2部分:试验方法(Flexible insulating sleeving—Part 2:Methods of test)
IEC 60836 电工设备用未使用过的硅绝缘液体规范(Specifications for unused silicone insulating liquids for electrotechnical purposes)
IEC 61099 绝缘液体 电工用未使用过的合成有机酯规范(Insulating liquids—Specifications for unused synthetic organic esters for electrical purposes)
3 术语和定义
下列术语和定义适用于本文件。
3.1
电气击穿 electric breakdown
当试样承受电应力作用时,其绝缘性能严重损失,由此引起试验回路电流促使相应的回路断路器动作。
注:击穿通常是由试样和电极周围的气体或液体媒质中的局部放电引起,并使得小电极(或两电极,如果两电极直径相同的话)边缘的试样遭到破坏。
3.2
闪络 flashover
在电应力作用下,试样和电极周围的气体或液体媒质绝缘性能丧失,由此引起的试验回路电流促使响应的回路断路器动作。
注:出现碳化通道或试样内穿孔,则表明发生击穿,否则为闪络。
3.3
击穿电压 breakdown voltage
3.3.1
(在连续升压试验中)在规定的试验条件下,试样发生击穿时的电压。
3.3.2
(在逐级升压试验中)试样承受住的最高电压,在该电压水平下,整个时间内试样不发生击穿。
3.4
电气强度 electirc strength
在规定的试验条件下,击穿电压与施加电压的两电极之间距离的商。
注:除另有规定外,建议按5.5规定测定两试验电极之间的距离。
4 试验意义
按本部分得到的电气强度试验结果,能用来检测由于工艺变更、老化条件或其他制造或环境情况而引起的性能相对于正常值的变化或偏离,一般不推荐用于直接确定在实际应用中的绝缘材料的性能状态。
材料的电气强度测量值可能受以下多种因素影响,包括:
a) 试样状态:
1) 试样厚度和均匀性,以及是否存在机械应力;
2) 试样的预处理,特别是干燥和浸渍过程;
3) 是否存在气隙、水分或其他杂质。
b) 试验条件:
1) 施加电压的频率、波形和升压速度或加压时间;
2) 环境温度、气压和湿度;
3) 电极形状、电极尺寸及其导热系数;
4) 周围媒质的电、热特性。
在研究还没有实际经验的新材料时,应该考虑到所有这些有影响的因素。本部分规定了一些特定的条件,以便迅速地判别材料,并可用以进行质量控制和类似的目的。
用不同方法得到的结果是不能直接相比的,但每一结果可提供关于材料电气强度的资料。大多数材料的电气强度随着电极间试样厚度的增加而减小,随电压施加时间的增加而减小。
大多数材料测得的电气强度受到击穿前的表面局部放电强度和时间的显著影响。为设计在升压直到试验电压过程中不发生局部放电的电气设备,应知道材料击穿前无放电的电气强度,但本部分的方法通常不适用提供这方面资料。
具有高电气强度的材料未必能耐长时期的劣化过程,例如热老化、腐蚀或由于局部放电而引起化学腐蚀或潮湿条件下的电化学腐蚀,而所有这些过程都可导致材料在运行中于低得多的电场强度下失效。
5 电极和试样
5.1 通则
金属电极应始终保持光滑、清洁和无缺陷。对板材和片材进行试验时,电极装置应垂直于试样表面见图1。
注:当对薄试样进行试验时,电极的维护尤其重要。为了在击穿时尽量减小电极损伤,优先采用不锈钢电极。
接到电极上的导线既不应使得电极倾斜或其他移动或使得试样上压力变化,也不应使得试样周围的电场分布受到显著影响。
试验非常薄的薄膜(例如,厚度小于5.0 μm)时,这些材料的产品标准应规定所用的电极、操作的具体程序和试样的制备方法。
5.2 垂直于非层叠材料表面和垂直于层叠材料层向的试验
5.2.1 板材和片状材料(包括纸板、纸、织物和薄膜)
5.2.1.1 不等直径电极
电极由两个金属圆柱体组成,其边缘倒圆成半径为(3.0±0.2)mm的圆弧。其中一个电极的直径为(25.0±1.0)mm,高约25.0 mm;另一个电极为直径(75.0±1.0)mm,高约15.0 mm。两个电极同轴,误差在2.0 mm内,如图1a)所示。
注:未与电极接触部分的试样半径对结果不是至关重要,但应避免其在周围媒质中的局部放电。
5.2.1.2 等直径电极
如果使用一种可使上下电极准确对中(误差在1.0 mm内)放置的装置,则下电极直径可减小到(25.0±1.0)mm,两电极直径差不大于0.2 mm,如图1b)所示。这样测得的结果未必同5.2.1.1不等直径电极测得的结果相同。
5.2.1.3 球板电极
电极由一个球体和一个金属板组成,其中上电极为直径(20.0±1.0)mm的球体,下电极为直径(25.0±1.0)mm的金属板,其边缘倒圆成半径为2.5 mm的圆弧。上下电极同轴,误差在1.0 mm内,如图1c)所示。
5.2.1.4 厚样品的试验
当有规定时,厚度超过3.0 mm的板材和片材应单面机械加工至(3.0±0.2)mm的厚度。然后,试验时将高压电极置于未加工的面上。
为了避免闪络或受现有设备限制,必要时可根据需要,通过机械装置将试样厚度加工的更薄。
5.2.2 带、薄膜和窄条
两个电极为两根金属棒,每根直径为(6.0±0.1)mm,垂直安装在夹具内,使一个电极在另一个电极上面,试样夹在棒的两个端面之间。
上下电极应同轴,误差在0.1 mm内。两电极端面应与其轴向相垂直,端面的边缘半径为(1.0±0.2)mm。上电极质量为(50.0±2.0)g且应能在夹具内的垂直方向自由移动。
图2示出了一种合适的装置。如果需要使试样在拉伸状态下进行试验,则应将试样夹在架子中,使试样放在如图2所示的规定的位置上。为达到所需的拉伸,方便的方法是将试样一端缠在旋转的圆棒上。
为了防止窄条边缘发生闪络,可用薄膜或其他薄的绝缘材料条搭盖在窄条边缘并夹住试样。此外,电极周围还可以采用防弧密封圈,只要电极和密封圈之间留有1.0 mm~2.0 mm的环状间隙。下电极与试样之间的间隙(在上电极与试样接触之前)应小于0.1 mm。
注:对薄膜的试验,见IEC 60674-2。
5.2.3 软管和软套管
按IEC 60684-2进行试验。
5.2.4 硬管(内径100 mm及以下)
外电极是(25.0±1.0)mm宽的金属箔带。内电极是与内壁紧配合的导体,例如圆棒、管、金属箔或充填直径0.75 mm~2.0 mm的金属球,使与管材的内表面有良好接触。内电极的每端应至少伸出外电极25 mm。
当无不利影响时,可用凡士林将金属箔贴到试样的内外表面。
5.2.5 管类和空心圆筒(内径大于100 mm)
外电极是(75.0±1.0)mm宽的金属箔带,内电极是直径(25.0±1.0)mm的圆形金属箔,金属箔应相当柔软使之足以适应圆筒的曲率,装置如图3所示。
5.2.6 浇注及模塑材料
5.2.6.1 浇注材料
按IEC 60455-2制样和试验。
5.2.6.2 模塑材料
5.2.6.2.1 通则
应用一对球电极,每个球的直径为(20.0±0.1)mm,在排列电极时,要使得它们共有的轴线与试样平面垂直(见图4),如果试样是弹性体,应按5.2.1.3中的球板电极[见图1c)]。
5.2.6.2.2 热固性材料
厚度为(1.0±0.1)mm的试样,可按ISO 295压缩模塑成型或按ISO 10724注塑成型,其侧面尺寸应足以防止闪络(见5.4)。
如果不能应用(1.0±0.1)mm厚的试样,则可用(2.0±0.2)mm厚的试样。
5.2.6.2.3 热塑性材料
应用按ISO 294-1和ISO 294-3中D1型注塑成型试样,尺寸为60 mm×60 mm×1 mm。如果该尺寸不足以防止闪络(见5.4)或按有关材料标准规定要求用压缩模塑成型试样,此时应按ISO 293压塑成型的平板试样,其直径至少100.0 mm,厚(1.0±0.1)mm。
注塑或压塑的条件见有关材料标准。如果没有可适用的材料标准,则这些条件应经供需双方协商。
5.2.6.2.4 弹性体
应用厚度为(1.0±0.1)mm的试样,这些试样按标准条件成型,其侧面尺寸应足以防止闪络(见5.4)。如果没有有效的标准,则这些条件应经供需双方协商。
对于电极装置,应使用5.2.1.3中的球板电极[见图1c)]。至于硬度低的弹性体,例如硅橡胶,应分别使用适当的浇注材料,作为填充材料或周围媒质。
5.2.7 硬质成型件
对不能将其置于平面电极间的成型绝缘件,应采用对置的等直径球电极。通常用作这类试验的电极直径为12.5 mm或20.0 mm(见图5)。
5.2.8 清漆
按IEC 60464-2进行试验。
5.2.9 充填胶
电极是两个金属球,每个球的直径12.5 mm~13.0 mm。水平同轴放置,除另有规定外,彼此相隔(1.0±0.1)mm并都嵌入填充胶内。应注意避免出现空隙,特别避免两电极间的空隙。由于用不同的电极距离得到的结果不能直接相比,因此应在材料规范和试验报告中注明间隙长度。
5.3 平行于非叠层材料表面和平行于叠层材料层向的试验
5.3.1 通则
如不必区分击穿是贯穿试样的击穿还是沿试样表面的击穿,则可使用5.3.2或5.3.3的电极,而5.3.2的电极应被优先采用。
当要求防止表面破坏时,应采用5.3.3的电极。
5.3.2 平行板电极
5.3.2.1 板材和片材
试验板材和片材时,试样厚度为被试材料厚,试样为长方形,长(100±2)mm,宽(25.0±0.2)mm。试样间长向侧面应切成垂直于材料表面的两个平行平面。试样夹在金属平行板之间,两金属板相距25 mm,厚度不小于10 mm,作为两电极,电压施加在金属板上。对于薄材料可以用两个或3个试样恰当地放置,即使它们的长向侧面形成合适的角度,以支撑上电极。电极应有足够大的尺寸,以覆盖试样边缘至少超过试样各边15 mm,要注意保证试样两侧面的整个面积均与电极良好的接触。电极的边缘应适当倒圆,半径为3 mm~5 mm,以避免电极的边与边之间的闪络(见图6)。
如果现有设备不能使试样击穿,则可以将试样宽度减少至(15.0±0.2)mm或(10.0±0.2)mm。试样宽度的这种减少,须在报告中予以特别说明。
这种电极仅适用于厚度至少为1.5 mm的硬质材料的试验。
5.3.2.2 管材和圆筒
试验管材和圆筒时,试样应为一个完整的环或圆弧长度为100 mm的一段环,其轴向长度为(25±0.2)mm。试样两端应加工成垂直于管或圆筒轴的两个平行面。将试样放在两平行板之间按5.3.2.1所述的板材和片材的试验法进行试验。必要时可用2个~3个试样来支撑上电极。电极应有足够大的尺寸以使电极覆盖试样至少超过试样各边15 mm,应保证试样两侧面的整个面积均与电极良好接触。
5.3.3 锥销电极
在试样上垂直试样表面钻两个相互平行的孔,两孔中心距离为(25±1)mm。两孔的直径这样来确定:用锥度约2%的铰刀扩孔后每个孔的较大的一端的直径不小于4.5 mm而不大于5.5 mm。
钻孔的两孔完全贯穿试样,或如果试样是大管子,则孔仅贯穿一个管壁,并在孔的整个长度上用铰刀扩孔。
在钻孔和扩孔时,孔周围的材料不应有任何形式的损坏,如劈裂、破碎或碳化。
用作电极的锥形销的锥度为(2.0±0.02)%并将其压入,但不要锤打两孔,以使它们能紧密配合,并突出试样每一面至少2 mm(见图7)。
这类电极仅适用于试验厚度至少为1.5 mm的硬质材料。
5.3.4 平行圆柱形电极
对厚度大于15 mm的具有高电气强度的试样进行试验时,将试样切成100 mm×50 mm,并如图8所示钻两个孔,每个孔的直径比圆柱形电极的直径大0.1 mm或以下。圆柱形电极直径为(6.0±0.1)mm,并有半球形端部。每个孔的底部是半球形以便与电极端配合,使得电极端部和孔的底部之间间隙在任何点都不超过0.05 mm。如果在材料规范中没有另外规定,则两孔沿其长度的侧面相距应是(10±1)mm,每孔应延伸到离相对的表面(2.25±0.25)mm以内。两种任选形式的通风电极如图8所示。当使用带小槽的电极时,这些小槽的位置应与电极间的间距正好相反。
5.4 试样
除了上述各条中已叙述过的有关试样的情况外,通常还要注意下面几点:
a) 制备固体材料试样时,应注意与电极接触的试样两表面要平行,而且应尽可能平整光滑;
b) 对于垂直于材料表面的试验,要求试样有足够大的面积以防止试验过程中发生闪络;
c) 对于垂直于材料表面的试验,不同厚度的试样其结果不能直接相比(见第4章)。
5.5 电极间距离
用来计算电气强度的两电极间距离值应为下列之一(按被试材料的规定):
a) 标称厚度或两电极间距离(除非另有规定,一般均采用此值);
b) 对于平行于表面的试验,为试样的平均厚度或两电极间的距离;
c) 在每个试样上击穿点附近直接测得的厚度或两电极间的距离。
6 试验前的条件处理
绝缘材料的电气强度随温度和水分含量而变化。若被试材料已有规定,则应遵循该规定。除非另有商定条件,试样应在温度为(23±2)℃、相对湿度为(50±5)%条件下,即在IEC 60212规定的标准环境大气中处理不少于24 h。
7 周围媒质
7.1 通则
材料应在为防止闪络而选取的周围媒质中试验。符合IEC 60296的变压器油、IEC 60836的硅液体、IEC 61099的酯液体或适当的浇注材料可以作为适用的媒质。且周围媒质在试验时与材料不应有显著的相互作用,如在试验过程引起膨胀。
对击穿电压值相对较低的试样,可在空气中试验,特别是如果要在高温下进行试验,应注意即使在中等的试验电压下,在电极边缘的放电也会对测试值造成很大影响。
如果试图在另一种媒质中对某种材料的性能进行试验评定,则可以应用这种媒质。
选取对试验材料危害影响最小的媒质。
周围媒质对试验结果可能有很大影响,特别是对易吸收的材料,如纸和纸板,因此应在试样制备程序中确定全部的必要步骤(例如,干燥和浸渍),以及试验过程中周围媒质的状态。
须有足够的时间让试样和电极达到所要求的温度,但有些材料会因长期处于高温而受到影响。
7.2 高温空气中试验
在高温空气中试验时,可在任何设计合理的烘箱中进行,烘箱要有足够大的体积来容纳试样和电极,使它们在试验时不发生闪络。烘箱应装有空气循环装置使试样周围的温度在规定温度的±2℃内大体上保持均匀,把温度计、热电偶或其他测量温度的装置按实际可能,放在试验点附近测量温度。
7.3 液体中试验
当试验须在绝缘液体中进行时,应保证绝缘液体有足够的电气强度以免发生闪络。在具有比变压器油更高的相对介电常数的液体中试验的试样,会出现比变压器油中试验时测得到更高的电气强度。变压器油或其他液体的杂质含量,有可能会影响测得的电气强度。
高温下的试验可以在烘箱内的盛液容器中进行(见7.1),也可在以绝缘油作为热传递介质的恒温控制的油浴中进行。在这种情况下,应采用合适的液体循环措施,以使试样周围的温度大致均匀,并保持在规定温度的±2℃内。
7.4 固体材料中试验
对于板状的软质弹性体试样,应使用适当的浇注材料,该浇注材料最好在室温下固化,且介电常数与试验弹性体的相似。在浇注过程中,应避免产生空隙,尤其是在通过真空处理的圆筒状电极和试验板之间的容积内。该浇注材料对电极和试验板表面应具有足够的粘结力。
对于有机硅弹性体,可以是低黏度的硅橡胶,采用双组分室温硫化的方式进行固化。
8 电气设备
8.1 电压源
用一个可变低压正弦电源供给一个升压变压器来获得试验电压。变压器及其电源和它的调节装置应具有如下特性。
在回路中有试样的情况下,对等于或小于试样击穿电压的所有电压,试验电压的峰值与均方根(r.m.s)值之比为 即(1.34~1.48)。
电源的容量应足够大使之在发生击穿之前满足上述要求。对于大多数材料,在使用推荐的电极的情况下,通常40 mA的输出电流容量已足够。对于大多数试验来说,电源容量范围为:对于10 kV及以下的小电容试样的试验,其容量为0.5 kVA;对于试验电压为100 kV以下者则为5 kVA。
可变低压电源调节装置应能使试验电压平滑、均匀地变化,无过冲现象。当施加一个符合第8章规定的电压时,如用一个自耦调节器,所产生的递增的增量不应超过预期击穿电压的2%。
对短时试验或快速升压试验,最好使用马达驱动调节装置。
为了保护电源不致损坏,应装有一个装置使在试样击穿的几个周期以内切断电源。这个装置可以由一个接在高压回路中的电流敏感元件组成。
为了限制在击穿时南电流或电压冲击引起的损伤,要求将一个具有合适值的电阻器与电极串联,电阻值的大小应取决于电极所允许的损伤程度。
应用阻值很高的电阻器可能会导致测得的击穿电压要比应用阻值低的电阻器测得的击穿电压值高。
8.2 电压测量
按等效均方根值记录电压值。较好的方法是用一块峰值电压表并将其读数除以 。电压测量回路的总误差应不超过测得值的5%,该误差中包括了由于电压表的响应时间所引起的误差。在所用的任何升压速率下,该响应时间引起的误差应大于击穿电压的1%。
采用符合上述要求的电压表来测量施加到电极上的电压。最好将它直接接到电极上,也可通过分压器或电压互感器接到电极上。如果使用升压变压器的电位线圈来测量电压,则施加到电极上的电压的指示正确度应不受升压变压器负载和串联电阻器的影响。
希望在击穿后能在电压表上保留最大试验电压的读数值,从而正确地读出并记录击穿电压,但指示器应对在击穿时发生的瞬变现象不敏感。