GB/T 1408 Insulating Materials - Test Methods for Electric Strength is classified into the following three parts:
——Part 1: Test at power frequencies;
——Part 2: Additional requirements for tests using direct voltage;
——Part 3: Additional requirements for 1.2/50μs impulse tests.
This part is Part 3 of GB/T 1408.
This part is developed according to the rules specified in GB/T 1.1-2009.
This part replaces GB/T 1408.3-2007 Insulating Materials - Test Methods for Electric Strength - Part 3: Additional Requirements for 1.2/50μs Impulse Tests; the following technical changes have been made with respect to GB/T 1408.3-2007 (the previous edition):
——"GB/T 1408.1-2006" is revised as "GB/T 1408.1-2006" in full text;
——The word “impulse” (脉冲) in full text is changed to “impulse” (冲击);
——The word "virtual" (虚) in Terms is changed to "virtual" (视在) (see 3.3~3.6, 3.3~3.6 of edition 2007);
——Terms "impulse breakdown voltage" and "withstand voltage" are added (see 3.7 and 3.8);
——"Report content" is modified.
The translation method used in this part is identical to IEC 60243-3: 2013 Electric Strength of Insulating Materials - Test Methods - Part 3: Additional Requirements for 1,2/50 μs Impulse Tests (edition 3).
This standard was proposed by the China Electrical Equipment Industrial Association.
This part is under the jurisdiction of SAC/TC 301 Technical Committee on National Electrical Insulating Material and Insulation System Evaluation of Standardization Administration of China.
The previous edition of the standard superseded by this part is:
——GB/T 1408.3-2007.
Insulating Materials - Test Methods for Electric Strength -
Part 3: Additional Requirements for 1.2/50μs Impulse Tests
1 Scope
This part of GB/T 1408 gives requirements additional to those in GB/T 1408.1 for the determination of the electric strength of solid insulating materials under 1,2/50 µs impulse voltage stress.
2 Normative References
The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
GB/T 1408.1-2016 Insulating Materials - Test Methods for Electric Strength - Part 1: Test at Power Frequencies (IEC 60243-1: 2013, IDT)
3 Terms and Definitions
For the purposes of this document, the terms and definitions given in GB/T 1408.1-2016 apply.
3.1
full impulse-voltage wave
aperiodic transient voltage that rises rapidly to a maximum value, then falls less rapidly to zero (see Figure 1)
3.2
peak value of an impulse-voltage wave
Up
maximum value of voltage
3.3
virtual peak value of an impulse-voltage wave
U1
value derived from a recording of an impulse-voltage wave on which high-frequency oscillations, or overshoot of a limited magnitude, may be present
3.4
virtual origin of an impulse-voltage wave
O1
point of intersection O1 with the line of zero voltage of a line drawn through the points of 0,3 and 0,9 times the virtual peak value on the front of an impulse-voltage wave
3.5
virtual front time of an impulse-voltage wave
t1
equal to 1,67 times the interval tf between the instants when the voltage is 0,3 and 0,9 times the peak value (tf, Figure 1)
3.6
virtual front time to half-value
t2
time interval t2 between the virtual origin O1 and the instant on the tail when the voltage has decreased to half the peak value
3.7
impulse breakdown voltage
nominal peak voltage that the wave causing breakdown would have reached if breakdown had not occurred
3.8
withstand voltage
highest nominal peak voltage of a set of three impulses which did not cause breakdown
Figure 1 Full Impulse-voltage Wave
4 Significance of the Test
In addition to the information of Clause 4 of GB/T 1408.1-2016, the following points are of importance in connection with impulse-voltage tests.
High-voltage equipment may be subjected to transient voltage stresses resulting from such causes as nearby lightning strokes. This is particularly true of apparatus such as transformers and switchgears used in electrical power transmission and distribution systems. The ability of insulating materials to withstand these transient voltages is important in establishing the reliability of apparatus insulated with these materials.
Transient voltages caused by lightning may be of either positive or negative polarity. In a symmetrical field between identical electrodes, the polarity has no effect on the electric strength. However, with dissimilar electrodes, there may be a pronounced polarity effect. When asymmetrical electrodes are used for testing materials with which the tester has no previous experience or knowledge, it is recommended that comparative tests be made with both directions of polarity.
The standard wave shape is a 1,2/50 µs wave, reaching peak voltage in approximately 1,2 µs, and decaying to 50 % of peak value in approximately 50 µs after the beginning of the wave. This wave is intended to simulate a lightning stroke that may strike a system without breakdown.
Note: if the object being tested has appreciable inductive characteristics, it may be difficult or impossible to attain the specified wave shape with less than 5 % oscillations, as prescribed in 8.2. However, the procedures given in this standard are for capacitive specimen only. Testing of more complex configurations, such as between coils of completed apparatus or models of such apparatus, should be performed in accordance with the specifications for that apparatus.
Because of the short time involved, dielectric heating, other thermal effects and the influence of injected space-charges may be reduced during impulse testing of most materials. Thus, impulse tests usually give higher values than the peak voltage of short-term ac tests. From comparisons of the impulse electric strength with the values drawn from longer time tests, inferences may be drawn as to the modes of failure under the various tests for a given material.
5 Electrodes and Test Specimens
Clause 5 of GB/T 1408.1-2016 is applicable.
6 Conditioning before Tests
Clause 6 of GB/T 1408.1-2016 is applicable.
7 Surrounding Medium
Clause 7 of GB/T 1408.1-2016 is applicable.
8 Electrical Apparatus
8.1 Voltage source
The test voltage applied to the electrodes shall be provided by an impulse generator having the following characteristics.
A choice of either positive or negative polarity shall be provided, one of the connections to the electrodes being earthed.
Controls within the generator shall be capable of adjusting the shape of the wave applied to the test specimen under test to have a virtual front time t1 of (1,2 ± 0,36) µs, and virtual time to half-value t2 of (50 ± 10) µs (see Figure 1).
The voltage capability and energy-storage capacity of the generator shall be sufficient to apply impulse waves of the proper shape to any test specimens to be tested, up to the breakdown voltage or specified proof voltage of the material.
The peak value of the voltage is taken as the virtual peak value, provided that the conditions of 8.2 are satisfied.
Foreword i
1 Scope
2 Normative References
3 Terms and Definitions
4 Significance of the Test
5 Electrodes and Test Specimens
6 Conditioning before Tests
7 Surrounding Medium
8 Electrical Apparatus
9 Procedure
10 Application of Voltage
11 Criterion of Breakdown
12 Number of Tests
13 Report
ICS 29.035.99
K 15
GB
中华人民共和国国标准
GB/T 1408.3-2016/IEC 60243-3:2013
代替GB/T 1408.3—2007
绝缘材料 电气强度试验方法
第3部分:1.2/50μs冲击试验补充要求
Insulating materials—Test methods for electric strength—
Part 3:Additional requirements for 1.2/50μs impulse tests
(IEC 60243-3:2013,Electric strength of insulating materials—
Test methods—Part 3:Additional requirements for 1.2/50 μs
impulse tests,IDT)
2016-12-13发布 2017-07-01实施
中华人民共和国国家质量监督检验检疫总局
中国国家标准化管理委员会 发布
前言
GB/T 1408《绝缘材料 电气强度试验方法》分为以下三个部分:
——第1部分:工频下试验;
——第2部分:对应用直流电压试验的附加要求;
——第3部分:1.2/50μs冲击试验补充要求。
本部分为GB/T 1408的第3部分。
本部分按照GB/T 1.1—2009给出的规则起草。
本部分代替GB/T 1408.3—2007《绝缘材料电气强度试验方法 第3部分:1.2/50μs脉冲试验补充要求》,与GB/T 1408.3—2007相比主要技术变化如下:
——全文将“GB/T 1408.1—2006”修改为“GB/T 1408.1—2016”;
——将全文中的“脉冲”改为“冲击”;
——将术语中的“虚”改为“视在”(见3.3~3.6,2007年版的3.3~3.6);
——增加了“冲击击穿电压”和“耐受电压”术语(见3.7和3.8);
——修改了“报告内容”。
本部分使用翻译法等同采用IEC 60243-3:2013《绝缘材料电气强度 试验方法 第3部分:1.2/50μs冲击试验补充要求》(第3版)。
本部分由中国电器工业协会提出。
本部分由全国电气绝缘材料与绝缘系统评定标准化技术委员会(SAC/TC 301)归口。
本部分起草单位:机械工业北京电工技术经济研究所、嘉兴市新大陆机电有限公司、佛山市顺德区质量技术监督标准与编码所、桂林电器科学研究院有限公司、北京北重汽轮电机有限责任公司。
本部分主要起草人:刘亚丽、陆云峰、陈昊、吴化军、周到、刘晖、王先锋、刘凤娟。
本部分所代替标准的历次版本发布情况为:
——GB/T 1408.3-2007。
绝缘材料 电气强度试验方法
第3部分:1.2/50μs冲击试验补充要求
1 范围
GB/T 1408的本部分对GB/T 1408.1补充了在1.2/50μs冲击电压应力下,对固体绝缘材料电气强度测定的补充要求。
2 规范性引用文件
下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T 1408.1—2016 绝缘材料 电气强度试验方法 第1部分:工频下试验(IEC 60243-1:2013,IDT)
3 术语和定义
GB/T 1408.1-2016界定的术语和定义适用于本文件。
3.1
全冲击电压波 full impulse-voltage wave
迅速升到最大值,然后迅速回落到零的非周期性暂态电压(见图1)。
3.2
冲击电压峰值 peak value of an impulse-voltage wave
Up
电压的最大值。
3.3
冲击电压波视在峰值 virtual peak value of an impulse-voltage wave
U1
从一个具有高频振荡或限制量级过冲的冲击电压波形记录中衍生的数值。
3.4
冲击电压波视在电压起始点 virtual origin of an impulse- voltage wave
O1
交点O1是一条在冲击电压波前端,通过0.3倍视在峰值和0.9倍视在峰值的直线与零电压的交点。
3.5
冲击电压波的视在波前时间 virtual front time of an impulse- voltage wave
t1
t1 的1.67倍,其中t1是0.3倍与0.9倍峰值之间的时间间隔(t1见图1)。
3.6
冲击电压波的视在半峰值时间 virtual front time to half-value
t2
视在电压起始点O1和当电压下降到峰值一半时与波尾交点之间的时间间隔。
3.7
冲击击穿电压 impulse breakdown voltage
未击穿情况下,冲击波导致击穿产生的标称峰值电压。
3.8
耐受电压 withstand voltage
未引发击穿的一组三个冲击的最高标称峰值电压。
图1 全冲击电压波
4 试验的意义
当进行冲击电压试验时,除GB/T 1408.1—2016第4章要求外,还应考虑以下要求。
高电压设备常因附近闪电冲击而遭受短暂过电压应力,特别是在变压器和开关设备用于电力传送和分配系统时。在评定电力设备的可靠性时,绝缘材料耐受暂态电压的能力显得非常重要。
由闪电造成的暂态电压可能是正极性或者负极性的,此时相同电极之间的对称区域中,极性对电气强度没有影响。然而,如果电极是不同的,极性会有明显的影响。用不对称电极测试材料,测试者又对此材料没有以往的经验和知识时,推荐对两种极性做对比试验。
标准波形是一个1.2/50μs波,峰值电压大约在1.2μs,衰减到峰值的一半大约在波形起始后50μs,这种波用来模拟一个不导致绝缘系统击穿的闪电冲击。
注:如果被测试的材料有明显的电感特性,很难甚至不可能获得一个振荡少于5%的波形,如8.2提到的。然而,本部分给出的条款只是针对容性试样。复杂结构的测试,例如,在复杂设备的两线圈之间进行的测试,或者类似模型的测试,应遵照该设备的技术规范。
在多数材料的冲击测试中,由于冲击时间很短,介质发热、其他热效应和空间电荷注入的影响被减弱。这样,冲击测试的值比短时间交流测试的峰电压值要高。通过冲击电压测试和长时间耐压测试的对比,可以推断出不同测试情况下某种特定材料的失效模型。
5 电极和试样
见GB/T 1408.1—2016第5章。
6 试验前的条件处理
见GB/T 1408.1—2016第6章。
7 周围媒质
见GB/T 1408.1—2016第7章。
8 电气设备
8.1 电源
施加于电极间的试验电压应由具有下列特点的冲击发生器提供。
可以选择正或负极性电压,其中一个电极应接地。
这个冲击发生器应能控制并调整施加于试样上电压的波形,使之具有1.2μs±0.36μs视在波前时间t1,50μs±10μs半峰值的视在时间t2(见图1)。
冲击发生器的电压容量和能量存储应足够大,使得加在任意待测的试样上的冲击电压波有合适的形状,要能达到材料的击穿电压或规定耐压值。
在满足8.2的条件下,电压的峰值即为其视在峰值。
8.2 电压测量
采取措施记录施加在试样上的电压波形,并测量电压视在峰值,视在波前时间和半值的视在时间(误差在±5%之内)。
如果电压波振荡幅值不大于峰值的5%,频率大于0.5 MHz,得到的将是一条平均曲线,其最大幅值是视在峰值。如果振荡的幅值过大,频率过低,这种电压波形在标准测试中是不能被接受的。
9 程序
见GB/T 1408.1-2016第9章。
10 施加电压
10.1 击穿试验
击穿电压试验与GB/T 1408.1—2016第11章一致。
采用由3个等峰值电压波为一组的一系列上升电压波来施加冲击电压。初始冲击电压组的峰值电压约为预计击穿电压的70%。
后续组的峰值增量应是初始冲击电压组峰值的5%~10%,GB/T 1408.1—2016的表1是适用的。
在冲击发生器的连续冲击之间应有足够的时间间隔,以便发生器充分充电,一般三倍于充电时间常数的间隔是足够的。
连续冲击之间应有足够的时间间隔,以使注入的空间电荷充分散逸。对于很多材料,冲击发生器的充电时间会最终覆盖这个时间。对于那些空间电荷长时间滞留的材料,其时间需要在材料规范中特殊说明。如果不知道这个时间间隔,但是认为材料有可能存在长时间的空间电荷滞留,应做长的冲击时间间隔的附加测试,以确定击穿电压是否有显著的差别。
当冲击电压施加到两个电压水平而试样不发生击穿时,这样的测试才是有效的,而击穿一般发生在第三个或者后续的电压水平。
电气强度应基于最后一个未发生击穿的3个一组的电压视在峰值。击穿电压是下一组引起击穿的标称电压。
使用不对称电极系统时,初步测试以确定哪个电极得到较低的击穿电压,如果得到明显的差距,应使用得到较低测试结果的电极。
10.2 验证试验
依照GB/T 1408.1—2016的第11章,在试样上施加一组三个规定验证电压(视在值)冲击波,当需要进行校准时,在验证电压之前将三个峰值电压不超过验证电压峰值80%的冲击施加到试样上。
11 击穿判断标准
见GB/T 1408.1—2016第11章。
12 试验次数
见GB/T 1408.1—2016第12章。
13 报告
除非另有规定,报告应包括以下内容:
a) 被试材料的完整鉴别,试样描述和制备方法;
b) 冲击波的极性;
c) 电气强度中间值(单位为kV/mm)和/或击穿电压中间值(单位为kN)(不是用于验证测试的击穿电压);
d) 每一试样的厚度(见GB/T 1408.1-2016的5.4);
e) 试验过程的周围媒质及其特征;
f) 当电极系统非对称时,有极性的电极系统;
g) 电气强度的个别值(单位为kV/mm)和/或击穿电压(单位为kV)(不是用于验证测试的击穿电压);
h) 测试过程中,空气或者试样所在的其他气体的温度、压力和湿度;当试样浸在液体中进行试验时,液体媒质的温度;
i) 测试前的预处理条件;
j) 每个测试试样的最初标称峰值电压水平;
k) 指出测试试样的击穿类型和位置(例如,在电极边缘),对每个测试试样,最后一组三个冲击中的哪个冲击导致了击穿;
l) 对于每个试样,发生击穿的点在电压波形上的位置(波前、峰值或者波尾)。