![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative. This document is developed in accordance with the rules given in GB/T 1.1-2020 Directives for standardization—Part 1: Rules for the structure and drafting of standardizing documents. This document replaces GB/T 20368-2012 Production, storage and handling of liquefied natural gas (LNG). In addition to structural adjustment and editorial changes, the following main technical changes have been made compared with GB/T 20368-2012: a) The requirements of scope are modified (see Clause 1 hereof; Clause 1 of Edition 2012); b) The normative references are modified (see Clause 2 hereof; Clause 2 of Edition 2012); c) Terms and definitions such as "liquefied natural gas plant, sources of ignition, tank system, transfer systems, liquefied natural gas pressure tank, primary container, secondary container, vapor cloud, setback distance, automatic product retention valve, piping system, cryogenic pipe-in-pipe system" are added; terms and definitions such as "liquefied natural gas, noncombustible material, impounding area, impounding wall, single containment tank, double containment tank, full containment tank, membrane tank, vaporizer, ambient vaporizer, heated vaporizer, integral heated vaporizer, remote heated vaporizer, etc.” are modified, and terms and definitions such as “approved, bunkering, cargo tank vehicle, components, container, frozen ground container, pre-stressed concrete container, controllable emergency, design pressure, failsafe, fired equipment, flame spread index, hazardous fluid, LNG plant, maximum allowable working pressure, model, out-of-service, overfilling, transfer area, transition joint and water capacity” are deleted (see Clause 3 hereof; Clause 3 of Edition 2012); d) The requirements for soil protection in cryogenic facilities (see 4.1 hereof, 5.5 of Edition 2012), snow and ice falling (see 4.2 hereof, 5.6 of Edition 2012) are modified; and requirements for corrosion control review (see 4.1 of Edition 2012) and record (see 4.4 of 2012 edition) are deleted; e) The provisions of the country, industry, region, port planning and national industrial policy that the site selection shall comply with are added (see 5.1.2~5.1.3); the selection provisions on the utilization of port resources, the natural conditions of the land area and the surrounding supporting conditions are added (see 5.1.4~5.1.12); the impact assessment requirements of leakage consequence scenarios (combustible or toxic gas diffusion, fire and explosion) are summarized into normative Annex A; provisions are made on the determination of the distance between the plant and the peripheral facilities outside the battery limit, and the determination of the external safety protection distance of the plant; the content of site selection based on risk analysis is changed to “performance-based site selection of liquefied natural gas plant by quantitative risk analysis (QRA)", which was taken as a normative annex (see 5.1.12 and Annex B hereof, and Annex E of Edition 2012); provisions are made on how to carry out QRA for site selection; the requirements related to the division of impounding area, design of impounding area and LNG collection and discharge system in the original Clause 5 are separated into chapters, forming Clause 12 "Impounding area and discharge system" of this document; the general requirements for plane layout are added (see 5.2), and the spacing requirements of LNG tanks are modified (see 5.3.1 and 5.3.2 hereof, and 5.2.4.1 of Edition 2012); the provisions on the layout of double containment tank, full containment tank and membrane tank with adjacent single and double containment tanks are modified (see 5.3.3 hereof, 5.2.4.2 of Edition 2012); the provisions on the fire protection design of outer tank of concrete tank are added (see 5.3.3), the provisions on the spacing of vaporizers are modified (see 5.4 hereof, 5.2.5 of Edition 2012); the provisions on the spacing of combustible gas compressor room are added (see 5.5.2); the provisions on the heat flux in the impounding area are added (see 5.6.4); the provisions on the distance from buildings and structures to the LNG and other dangerous liquids are added (see 5.7 hereof, 5.3 of Edition 2012); and the provisions on the qualification of designers and manufacturers are deleted (see 5.4 of Edition 2012); f) The content about vaporization facilities is moved to process equipment (see 6.3 hereof, Clause 8 of Edition 2012); the general requirements are added (see 6.1 hereof, and 6.1, 6.3, 6.4.1, 6.4.2 and 6.4.3 of Edition 2012); the provisions on the installation of internal combustion engines or gas turbines are deleted (see 6.4.4 of Edition 2012); the provisions for aluminum plate-fin heat exchanger are added (see 6.1.8); the provisions for setting shut-off valves at LNG inlet of vaporizer system are modified (see 6.3.6 hereof, and 8.3.1, 8.3.3 and 8.3.5.2 of Edition 2012); the provisions for unattended LNG plant installation are modified (see 6.3.7 hereof; 8.3.5, 8.3.5.1, 8.3.5.2, 8.3.6, 8.3.6.1 of Edition 2012); the provisions for the installation of attended LNG plants are modified (see 6.3.8 hereof, and 8.3.4, 8.3.5.3, 8.3.6.2 of Edition 2012); the content about LNG mobile equipment is moved to process equipment (see 6.4 hereof, and 5.8 of Edition 2012); the provisions for LNG mobile equipment are modified (see 6.4.1 hereof, and 5.8.1 of Edition 2012); g) The provisions governing the qualifications of companies, inspectors and engineers are deleted; the inspection requirements are modified (see 7.3 hereof, and 7.1 of Edition 2012); general requirements, specifying the specifications to be met by several main tank types, are added (see 7.1); the definitions of operational benchmark earthquake (OBE) and safe shutdown earthquake (SSE) for seismic design of onshore tanks are adjusted, and the definition of aftershock level earthquake (ALE) is added (see 7.4.7.2 hereof, and 7.2.2 of Edition 2012); the seismic design of tanks manufactured in onshore factories is deleted (see 7.2.3 of Edition 2012); the flood load requirements are deleted (see 7.2.4 of Edition 2012); the provisions for liquefaction evaluation of tank sites are added (see 7.4.4.2); welding inspection requirements for metal tanks with design operating pressure greater than or equal to 100 kPa are added (see 7.4.5.2~7.4.5.5); the material requirements, and construction, inspection and test requirements for concrete, steel bars and pre-stressed steel bars in concrete tanks are deleted (see 7.4.1~7.4.3); the test of LNG tank is modified and the test requirements of membrane tank are added (see 7.4.8 hereof, and 7.6 of Edition 2012); other requirements for membrane tank are added (see 7.4.9); the provisions on LNG pressure tank type modified (see 7.5.1 hereof, and 7.3.2.1 of Edition 2012); the basic requirements for inner tanks of LNG double-wall tanks are modified (see 7.5.2 hereof, and 7.3.2.2 of Edition 2012); the basic requirements for outer tanks of LNG double-wall tanks are deleted (see 7.3.2.3 of Edition 2012); the basic requirements of LNG single-wall tank are added (see 7.5.3); the design requirements of the inner tank support system of LNG double-wall tanks are modified (see 7.5.9, 7.3.2.6 of Edition 2012); the basic requirements for seismic design of LNG pressure tanks are added (see 7.5.11); the provisions of the liquid level control equipment in LNG pressure tank are added (see 7.5.12); the basic requirements for LNG pressure tank test are added (see 7.5.13); the protection requirements for LNG pressure tanks during transportation are added (see 7.5.14); h) The provisions for fire protection systems are added (see 8.1.1.3); provisions for power system are added (see 8.1.1.4); the earthquake category of LNG facility pipeline is deleted (see 9.1.2.1 of Edition 2012); the piping category (see 8.1.2.1, and 9.1.2.2 of Edition 2012); the maximum value of Category B piping response correction factor is modified (see 8.1.2.1, and 9.1.2.2 of Cotechini Edition 2012); the conditions that shall be met for thermal insulation materials in fire environment are added (see 8.1.4.4); the conditions that sealing is not required for threaded connections are added [see 8.3.1.4 d)]; the provisions for pipe joints (see 8.3.1.7); the disabled pipe connection mode is added (see 8.3.1.8); provisions for other pipe assemblies and flanged connections are added (see 8.3. 1.9); the lower limit of interface caliber is modified (see 8.3.2.5 hereof, and 9.3.2.5 of Edition 2012); the operating mechanism of the emergency shut-off valve is changed (see 8.3.2.7 hereof, and 9.3.2.7 of Edition 2012); the coating requirements for emergency shut-off valves are added (see 8.3.2.11); related contents of brazing (see 8.3.3.4); the content of pipe marking is added [see 8.3.4 d)]; the isolation of hazard sources is added (see 8.4); identification requirements for medium and flow direction are added (see 8.6.2); the setting of replacement nozzle is added (see 8.8.2); provisions for flare and vent pipe are added (see 8.10); the installation requirements of underground or submarine pipelines are added (see 8.12); i) The design of plant facilities, including design classification, plant facilities design is added (see Clause 9), and the fire and explosion design for storage of LNG and flammable fluids is modified (see 9.5 hereof, and 5.3.2 of Edition 2012); j) Electrical, instrumentation and communication are separated into clauses (see Clauses 10 and 11 hereof; Clause 10 of Edition 2012); the provisions on power supply requirements are added (see 10.1); the general requirements for electrical equipment and wiring are deleted (see 10.9.1 of Edition 2012); the division requirements of electrical explosion hazardous areas are modified (see 10.2 hereof. and 10.6.2 of Edition 2012); the sealing requirements between combustible fluid system and electrical piping or wiring are deleted (see 10.6.3 of Edition 2012); other provisions for detecting combustible fluid leakage other than the main seal are deleted (see 10.6.4 of Edition 2012); the provisions on ventilation duct system when combustible gas air mixture is ignited are deleted (see 10.6.5 of Edition 2012); relevant provisions on power device design are added (see 10.3); relevant provisions on electrical lightning protection grounding and anti-static grounding are added (see 10.4); relevant provisions on lighting are added (see 10.5); k) The general requirements for instrumentation and control systems are added (see 11.1.1); changes have been made to the level gauge settings, design, installation, alarm and interlocking requirements (see 11.1.2 hereof, and 10.1 of Edition 2012). The setting requirements of pressure instruments have been changed to distinguish the setting requirements of LNG tanks from those of non-LNG hazardous fluid tanks (see 11.1.3 hereof, and 10.2 of Edition 2012). The setting requirements of temperature instruments have been changed, and the setting requirements of temperature instruments for cryogenic piping have been added (see 11.1.5 hereof, and 10.4 of Edition 2012). The provisions for fail-safe design have been added (see 11.1.6). The setting requirements on emergency shutdown are deleted (see 10.5 of Edition 2012). The setting requirements of emergency stop system are modified (see 11.1.7 hereof, and 12.2 of Edition 2012). The setting requirements of fire and gas detection are modified, and the setting requirements of toxic gas and oxygen content detection are added (see 11.1.8 hereof, and 12.3 of Edition 2012); communication content is added (see 11.2); l) The impounding area and discharge system are separated into clauses (see Clause 12); m) The provisions on fire-fighting and fire prevention assessment are changed (see 13.1 hereof, and 12.1 of Edition 2012); the provisions on fire-fighting water system are modified (see 13.2 hereof, and 12.4 of Edition 2012); the provisions on mobile fire-fighting facilities are modified (see 13.3 hereof, 12.5 of Edition 2012); the provisions on personal protection is modified (see 13.4 hereof, and 12.7 of Edition 2012); the safety provisions are modified (see 13.5 hereof, and 12.8 of Edition 2012); n) Anti corrosion provisions are added (see Clause 14); o) The provisions on warning signs in the loading and unloading area are deleted (see 11.1.1 of Edition 2012); provisions on analysis of closing time of power shut-off valve are added (see 15.2.2 and 15.2.3); the provisions on berth design requirements are deleted (see 11.4.1 of Edition 2012); the provisions on fire source are deleted (see 11.4.2 of Edition 2012); the provisions on underwater pipeline are deleted (see 11.4.3.2 of Edition 2012); the provisions on tank car transportation and its approval are deleted (see 11.5.1 and 11.5.2 of Edition 2012); the provisions on discharge of loading and unloading pipelines are deleted (see 11.6.6 of Edition 2012); the provisions on hose design are deleted (see 11.7.2 of Edition 2012); the provisions on hose joint, icing and detection are deleted (see 11.7.3, 11.7.5 and 11.7.6 of Edition 2012); the provisions on loading and unloading ship operation test are deleted (see 11.7.7 of Edition 2012); p) The provisions for small LNG facilities are added (see Clause 16); q) Provisions on purging of LNG container are added (see 17.3.5); the commissioning requirements before equipment startup are added (see 17.4); provisions on inspection interval requirements of safety valve are added (see 17.7.3.5~17.7.3.9); and provisions on external surface inspection of LNG tank system are added (see 17.7.4). This standard was proposed by and is under the jurisdiction of National Technical Committee on Petroleum and Natural Gas of Standardization Administration of China (SAT/TC 355). This document was issued in 2006 as first edition, its first revision was issued in 2012, and this is the second revision. Production, storage and handling of liquefied natural gas (LNG) 1 Scope This document specifies the technical requirements for the design, construction, operation and maintenance of liquefied natural gas (LNG) plants. This document is applicable to constructed, extended and renovated LNG plants on land. This document is not applicable to permafrost containers, mobile storage tanks installed or used indoors, LNG filling vehicles and LNG fuel vehicles. 2 Normative references The following documents contain provisions which, through reference in this text, constitute provisions of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. GB/T 150 (All parts) Pressure vessels GB/T 151 Heat exchangers GB 7956.1 Fire fighting vehicles—Part 1: General technical specifications GB 7956.2 Fire fighting vehicles—Part 2: Water tank fire fighting vehicle GB 7956.3 Fire fighting vehicles—Part 3: Foam fire fighting vehicle GB/T 16507 (All parts) Water-tube Boilers GB/T 16508 (All parts) Shell boilers GB/T 18442 (All parts) Static vacuum insulated cryogenic pressure vessels GB/T 20173 Petroleum and natural gas industries—Pipeline transportation systems—Pipeline valves GB/T 20801 Pressure piping code—Industrial piping GB/T 20801.2 Pressure piping code—Industrial piping—Part 2: Materials GB/T 20801.3 Pressure piping code—Industrial piping—Part 3: Design and calculation GB/T 20801.3-2020 Pressure piping code—Industrial piping—Part 3: Design and calculation GB/T 20801.6 Pressure piping code—Industrial piping—Part 6: Safeguarding GB/T 21246 Measurement method for cathodic protection parameters of buried steel pipelines GB/T 21447 Specifications for steel pipeline external corrosion control GB/T 21448 Specification of cathodic protection for underground steel pipelines GB/T 23258 Standard practice controlling internal corrosion in steel pipelines GB/T 26978 (All parts) Design and manufacture of site built, vertical, cylindrical, flat-bottomed steel tanks for the storage of liquefied natural gases GB/T 32270 Pressure piping code—Power piping GB 36894 Risk criteria for hazardous chemicals production unit and storage installations GB/T 37243-2019 Determination method of external safety distance for hazardous chemicals production units and storage installations GB 50009 Load code for the design of building structures GB 50010 Code for design of concrete structures GB 50011 Code for seismic design of buildings GB 50016 Code for fire protection design of buildings GB 50019 Design code for heating ventilation and air conditioning of industrial buildings GB 50034 Standard for lighting design of buildings GB 50052 Code for design electric power supply systems GB 50057 Code for design protection of structures against lightning GB 50058 Code for design of electrical installations in explosive atmospheres GB 50084 Code of design for sprinkler systems GB 50093 Code for construction and quality acceptance of automation instrumentation engineering GB 50116 Code for design of automatic fire alarm system GB 50140 Code for design of extinguisher distribution in buildings GB 50151 Code for design of foam extinguishing systems GB 50160 Fire prevention code of petrochemical enterprise design GB 50183 Code for fire protection design of petroleum and natural gas engineering GB 50193 Code of design for carbon dioxide fire extinguishing systems GB 50219 Technical code for water spray fire protection systems GB 50235-2010 Code for construction of industrial metallic piping engineering GB 50251 Code for design of gas transmission pipeline engineering GB 50261 Code for installation and commissioning of sprinkler systems GB 50264 Design code for insulation engineering of industrial equipment and pipe GB 50316 Design code for industrial metallic piping GB 50316-2000 (2008 Edition) Design code for industrial metallic piping GB 50347 Code of design for powder extinguishing systems GB 50370 Code for design of gas fire extinguishing systems GB/T 50393 Technical standard for anti-corrosion engineering of steel petroleum storage tanks GB 50493 Standard for design of combustible gas and toxic gas detection and alarm for petrochemical industry GB 50650 Design code for lightning protection of petrochemical installations GB/T 50698 Standard for AC interference mitigation of buried steel pipelines GB 50779 Code for design of blast resistant control building in petrochemical industry GB 50898 Technical code for water mist fire extinguishing system GB 50974 Code of design on fire protection water supply and hydrant systems GB/T 50991 Technical standard for DC interference mitigation of buried steel pipeline GB 51081 Technical code for application of concrete under cryogenic circumstance GB 51156 Code for design of liquefied natural gas receiving terminal GB 51156-2015 Code for design of liquefied natural gas receiving terminal GB/T 51257 Code for design of low temperature piping of liquefied natural gas GB 51261 Standard for design of natural gas liquefaction plant GB 51309 Technical standard for fire emergency lighting and evacuate indicating system JT/T 617.7 Regulations concerning road transportation of dangerous goods—Part 7: Transport conditions and operational requirements NB/T 47006 Aluminum plate-fin heat exchangers SH 3009 Design specification for combustible gas discharge system in petrochemical industry SH/T 3043 Specification of surface color and mark on equipment, piping and steel structure in petrochemical industry SH/T 3073 Specification for design of piping support in petrochemical industry SH/T 3097 Specification for design of static electricity earthing in petrochemical industry SH/T 3192 Design specification for lighting in petrochemical plants SY/T 0043 Code for painting colors of pipelines and equipments for petroleum and natural gas engineering SY/T 6784 Standard of corrosion control for steel storage tank SY/T 6964 Specification of cathodic protection for petroleum & gas station SY/T 7036 Specification of external coating for piping and equipments in petroleum and gas stations SY/T 7349 Specification for insulation and anti-corrosion of low temperature storage tank SY/T 7350 Specification of coating and cold insulation for low temperature piping and equipment SY/T 7419 Specification for insulation design, construction and acceptance of cryogenic piping TSG 21 Supervision regulation on safety technology for stationary pressure vessel TSG G0001 Boiler safety technical supervision administration regulation XF 39 Fire fighting vehicles—Performance requirements and test methods 3 Terms and definitions For the purposes of this document, the following term and definition apply. 3.1 General 3.1.1 liquefied natural gas; LNG a low-temperature liquid fluid which is mainly composed of methane and may contain small amounts of ethane, propane, nitrogen, or other components commonly found in natural gas [Source: GB 51261-2019, 2.0.1] 3.1.2 liquefied natural gas plant LNG plant plant with natural gas purification and liquefaction, LNG storage and shipment, LNG loading and unloading and regasification functions Note: For example: basic load natural gas liquefaction plant, peak shaving liquefaction plant, LNG receiving station and LNG satellite station. 3.1.3 sources of ignition energy source that can make combustibles react with combustion-supporting substances Note: This kind of energy may be heat energy, light energy, electric energy, chemical energy and mechanical energy. 3.1.4 noncombustible material construction material used under expected conditions, which do not catch fire, burn, support combustion or release combustible vapor in case of fire and heat, and whose combustion performance grade is Grade A 3.1.5 impounding area area delineated by means of an impounding wall or topographic conditions for accommodating accidental spills or leaks of liquefied natural gas or other dangerous liquids 3.1.6 impounding wall structure for preventing overflow of liquefied natural gas or spread of fire in case of a leakage accident of LNG storage tank [Source: GB 51156-2015, 2.0.16] 3.1.7 vapor cloud mixed gas cloud formed by cooling and condensation of water vapor in the atmospheric environment when LNG leaks or overflows to the atmospheric environment [Source: GB/T 8423.3-2018, 5.2.5] 3.1.8 setback distance minimum distance from the automatic product retention valve on the maximum liquid pipeline of LNG container to the building outside the plant or building boundary 3.1.9 transfer systems system in an LNG yard for transferring LNG or other hazardous media between storage containers or tanks and loading and unloading points or loading points by means of pipelines, tank car, tankers, tank containers or ships 3.2 Vaporization facilities 3.2.1 vaporizer device that introduces heat in a controlled way to change a liquid into a vapor or gaseous state 3.2.2 ambient vaporizer device that the main heat source of the vaporizer is not separated from the actual vaporization heat exchanger, and the main heat sources are environment, seawater or geothermal water, etc. Note: Including air temperature vaporizer. [Source: GB 51261-2019, 2.0.16, modified] 3.2.3 heated vaporizer device that the main heat source of the vaporizer comes from fuel combustion, electric heating or waste heat (such as waste heat of boiler or internal combustion engine) [Source: GB 51261-2019, 2.0.13, modified] 3.2.4 integral heated vaporizer heated vaporizer integrating the main heat source and the vaporizer heat exchanger Note: Including submerged combustion vaporizer. [Source: GB 51261-2019, 2.0.14, modified] 3.2.5 remote heated vaporizer heated vaporizer in which the main heat source is separated from the actual vaporization heat exchanger and the intermediate medium (such as water, isopentane and ethylene glycol) is used as the heating transmission medium Note: Including open shelf vaporizer and intermediate medium vaporizer. [Source: GB 51261-2019, 2.0.15, modified] 3.3 Storage facilities 3.3.1 tank system low-pressure (operating pressure less than 100kPa) field-assembled, vertical, cylindrical, flat-bottomed equipment for storage of LNG or other hazardous liquids Note: Including one or more containers, as well as various accessories, appendages and thermal insulation materials. 3.3.2 primary container container used for holding cryogenic liquids and in direct contact with cryogenic liquids [Source: GB/T 8423.3-2018, 5.2.24] 3.3.3 secondary container container that is generally located outside the primary container, contains cryogenic liquid when leaking, and does not contact with cryogenic liquid under normal operating conditions [Source: GB/T 8423.3-2018, 5.2.25] 3.3.4 single containment tank tank that has only one self-supporting steel storage tank for cryogenic liquids, which can be composed of single-wall or double-wall structures with insulation, and has liquid tightness and air tightness [Source: GB/T 8423.3-2018, 5.2.26] 3.3.5 double containment tank tank composed of a liquid-tight secondary container and a single containment tank built in the secondary container, in which the horizontal distance between the secondary container and the primary container is no more than 6m, and the top is open to the atmosphere [Source: GB/T 8423.3-2018, 5.2.27] 3.3.6 full containment tank tank composed of a secondary container with liquid tightness and air tightness and a primary container built in the secondary container, in which the secondary container is an independent self-supporting closed structure with vault [Source: GB/T 8423.3-2018, 5.2.28] 3.3.7 membrane tank composite structure for cryogenic liquid storage consisting of a thin steel primary container (i.e. membrane), thermal insulation and pre-stressed concrete tank [Source: GB/T 8423.3-2018, 5.2.31] 3.3.8 liquefied natural gas pressure tank LNG pressure tank Factory-manufactured steel container for the storage of liquefied natural gas with an operating pressure greater than or equal to 100kPa 3.4 Piping system and piping component 3.4.1 piping system a group of pipes formed by connecting a plurality of pipes divided according to fluid and design conditions [Source: GB 50316-2000 (Edition 2008), 2.1.7] 3.4.2 cryogenic pipe-in-pipe system cryogenic jacket system consisting of an inner pipe and an outer pipe Note: The inner pipe is used to transport cryogenic medium, while the outer pipe is serviced as a protection mean. 3.4.3 automatic product retention valve valve that can automatically enter the safe state when an accident occurs in LNG tank 4 Basic requirements 4.1 Soil protection in cryogenic facilities During the design and construction of the foundations of LNG tanks, cold boxes, pipes and pipe racks and other cryogenic facilities, measures shall be taken to prevent the destructive force caused by soil freezing or frost heaving. 4.2 Snow and ice falling For the accumulated ice and snow on the top of tall facilities, effective measures shall be taken to prevent personnel injury and equipment damage caused by falling ice and snow. 4.3 Concrete structure design and materials 4.3.1 Concrete structures in long-term or periodic contact with LNG shall be able to withstand design loads, in particular the effects of extreme temperatures. Such structures shall include, but are not limited to, foundations of cryogenic equipment and shall be made of materials in accordance with GB 51081. Materials and design of structures other than LNG containers meet the requirements of GB 50010. 4.3.2 Concrete in contact with LNG under accident shall be inspected and tested immediately after it returns to atmospheric temperature, and repaired if necessary. 4.4 Control room 4.4.1 LNG plant shall be equipped with control rooms, which shall be set according to the scale and characteristics of the plant and in combination with different requirements of management and production modes. The control room shall mainly have the functions of production operation, process control, safety protection, instrument maintenance, etc. 4.4.2 The setting of control room shall meet the following requirements: a) The central control room shall be manned for operation control; b) The unattended control room shall have sound and light alarm function to remind operators; c) When multiple control rooms are set up in LNG plant, standby communication mode shall be set between central control room and other control rooms; d) In case of emergency, the control room shall be able to start audible and visual alarm in all occupied areas. 5 Site selection and layout of plant 5.1 Site selection 5.1.1 For the site selection of liquefied natural gas plant, comprehensive evaluation shall be conducted on the specific sites that can be selected in terms of technology, economy, safety, environment, land acquisition, demolition, management and other aspects according to the topography, geology, hydrology, meteorology, transportation, fire protection, water supply and drainage, power supply, communication, available land and social life of the area to select the optimal site. Foreword i 1 Scope 2 Normative references 3 Terms and definitions 3.1 General 3.2 Vaporization facilities 3.3 Storage facilities 3.4 Piping system and piping component 4 Basic requirements 4.1 Soil protection in cryogenic facilities 4.2 Snow and ice falling 4.3 Concrete structure design and materials 4.4 Control room 5 Site selection and layout of plant 5.1 Site selection 5.2 Layout 5.3 Tank spacing 5.4 Vaporizer spacing 5.5 Process equipment spacing 5.6 Loading and unloading equipment spacing 5.7 Buildings and structures 5.8 Spacing of impounding facilities 6 Process equipment 6.1 General requirements 6.2 Pumps and compressors 6.3 Vaporization facilities 6.4 LNG mobile equipment 7 LNG tanks 7.1 General requirements 7.2 Design requirements 7.3 Inspection 7.4 Liquefied natural gas (LNG) tank system 7.5 Liquefied natural gas pressure tank 8 Piping system and piping component 8.1 General requirements 8.2 Piping system material 8.3 Installation 8.4 Isolation of hazardous medium 8.5 Pipe support 8.6 Pipe identification 8.7 Inspection, examination and test of pipe 8.8 Replacement of piping system 8.9 Safety relief valve 8.10 Flare and vent pipe 8.11 Cryogenic pipe-in-pipe system 8.12 Installation of underground or submarine pipelines 9 Plant facilities 9.1 Design classification 9.2 Factory facilities 9.3 Liquefied natural gas (LNG) tank 9.4 Structures 9.5 Fire and explosion control 9.6 Ventilation 9.7 Combustible gas or evaporative gas control 9.8 Personnel protection 10 Electrical equipment 10.1 Power load classification 10.2 Division of explosive hazardous areas 10.3 Design of electrical device 10.4 Lightning protection and static protection design 10.5 Lighting 11 Instrument and communications 11.1 Instrument and control system 11.2 Communication 12 Impounding area and discharge system 12.1 General requirements 12.2 Impounding area volume 12.3 Cofferdam and impounding wall 12.4 Cofferdams, impounding walls and drainage ditches 12.5 Cold insulation 12.6 Height of impounding wall and distance to tank 12.7 Drainage 13 Fire-fighting and safety 13.1 Fire-fighting and fire prevention assessment 13.2 Fire-fighting water system 13.3 Mobile fire-fighting facilities 13.4 Personal protection 13.5 Safety 14 Anti-corrosion 14.1 General requirements 14.2 Corrosion control of pipeline and equipment in atmospheric environment 14.3 Corrosion control of buried or underwater pipelines and equipment 14.4 Internal corrosion control of pipeline and equipment 14.5 Stray current interference corrosion control 14.6 Corrosion control monitoring 14.7 Repair measures 15 Transfer systems 15.1 General requirements 15.2 Pumps and compressors 15.3 Loading and unloading arm 15.4 Loading/unloading pipeline 15.5 Ship loading and unloading facilities 15.6 Tank car, tanker and tank loading and unloading facilities 15.7 Communication 16 Small LNG facilities 16.1 General requirements 16.2 Control room 16.3 Site selection of plant 16.4 Plant layout 16.5 Process equipment 16.6 LNG tanks 16.7 Piping system and pipeline component 16.8 Instrument, communication and electrical equipment 16.9 Plant facilities 16.10 Impounding area and discharge system 16.11 Transfer systems 16.12 Fire-fighting and safety 16.13 Operation and maintenance 17 Operation and maintenance 17.1 Operation procedure manual 17.2 Emergency procedures 17.3 Operation monitoring 17.4 Test run 17.5 Transport of LNG and flammable liquids 17.6 Maintenance manual 17.7 Maintenance items Annex A (Normative) Analysis of leakage consequences scenario A.1 Determination of leak consequence scenarios A.2 Design leakage A.3 Selection of calculation model A.4 Meteorological data A.5 Diffusion of combustible gases or vapors A.6 Diffusion of toxic gases or vapors A.7 Vapor cloud explosion A.8 Fire Annex B (Normative) Performance-based site selection of liquefied natural gas plant by quantitative risk analysis (QRA) B.1 General B.2 Basis of risk calculation and assessment B.3 Leakage scenarios of liquefied natural gas and other hazardous materials B.4 Leakage frequency and conditional frequency B.5 Modeling conditions and frequency B.6 Hazard and consequence assessment B.7 Risk outcome B.8 Risk datum B.9 Safety improvement measures Annex C (Normative) Seismic design C.1 General C.2 Operational benchmark earthquake (OBE) C.3 Safe shutdown earthquake (SSE) C.4 Aftershock level earthquake (ALE) C.5 Designed response spectrum C.6 Other seismic load Annex D (Normative) Explosive hazardous area division Annex E (Normative) Fire prevention assessment E.1 Basis for design, installation and testing of fire prevention and fire-fighting facilities E.2 Main contents of fire prevention assessment Bibliography Figure 1 Distance from cofferdam or impounding wall to tank Figure D.1 Cofferdam height less than the distance from the tank to the cofferdam (H is less than L) Figure D.2 Cofferdam height higher than the distance from the tank to the cofferdam (H is less than L) Figure D.3 Liquid level in the tank below the ground or the top of cofferdam Figure D.4 Full containment tank and membrane tank system Figure D.5 Division of places for LNG shipment at shipping termination Table 1 Fire separation distance for tanks with operating pressure less than 100kPa Table 2 Fire separation distance layout of aboveground tanks Table 3 Fire separation distance layout of buried tanks with operating pressure greater than or equal to 100kPa Table 4 Environmental factors Table 5 Calculation coefficient of setback distance Table A.1 Concentration limits of toxic substances in plant boundary areas and occupied places Table A.2 Explosion overpressure limit in plant boundary areas and occupied places Table B.1 Failure frequency database Table B.2 Endpoint of vapor diffusion consequences Table B.3 Endpoint of heat radiation consequence Table B.4 Overpressure consequence limit 液化天然气(LNG)生产、储存和装运 1 范围 本文件规定了液化天然气(LNG)站场设计、施工、运行和维护等的技术要求。 本文件适用于陆上新建、扩建和改建的LNG站场。 本文件不适用于冻土容器、在室内安装或使用的移动式储罐、LNG加注车和LNG燃料车。 2规范性引用文件 下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 150(所有部分)压力容器 GB/T 151 热交换器 GB 7956.1消防车 第1部分:通用技术条件 GB 7956.2消防车 第2部分:水罐消防车 GB 7956.3消防车 第3部分:泡沫消防车 GB/T 16507(所有部分)水管锅炉 GB/T 16508(所有部分)锅壳锅炉 GB/T 18442(所有部分)固定式真空绝热深冷压力容器 GB/T 20173石油天然气工业 管道输送系统 管道阀门 GB/T 20801(所有部分)压力管道规范 工业管道 GB/T 20801.2压力管道规范 工业管道 第2部分:材料 GB/T 20801.3压力管道规范 工业管道 第3部分:设计和计算 GB/T 20801.3—2020压力管道规范 工业管道 第3部分:设计和计算 GB/T 20801.6压力管道规范 工业管道 第6部分:安全防护 GB/T 21246埋地钢质管道阴极保护参数测量方法 GB/T 21447 钢质管道外腐蚀控制规范 GB/T 21448埋地钢质管道阴极保护技术规范 GB/T 23258 钢质管道内腐蚀控制规范 GB/T 26978(所有部分)现场组装立式圆筒平底钢质液化天然气储罐的设计与建造 GB/T 32270 压力管道规范 动力管道 GB 36894危险化学品生产装置和储存设施风险基准 GB/T 37243—2019 危险化学品生产装置和储存设施外部安全防护距离确定方法 GB 50009建筑结构荷载规范 GB 50010混凝土结构设计规范 GB 50011建筑抗震设计规范 GB 50016建筑设计防火规范 GB 50019工业建筑供暖通风与空气调节设计规范 GB 50034建筑照明设计标准 GB 50052供配电系统设计规范 GB 50057建筑物防雷设计规范 GB 50058爆炸危险环境电力装置设计规范 GB 50084 自动喷水灭火系统设计规范 GB 50093 自动化仪表工程施工及质量验收规范 GB 50116火灾自动报警系统设计规范 GB 50140建筑灭火器配置设计规范 GB 50151泡沫灭火系统设计规范 GB 50160石油化工企业设计防火标准 GB 50183 石油天然气工程设计防火规范 GB 50193二氧化碳灭火系统设计规范 GB 50219水喷雾灭火系统技术规范 GB 50235—2010工业金属管道工程施工及验收规范 GB 50251输气管道工程设计规范 GB 50261 自动喷水灭火系统施工及验收规范 GB 50264工业设备及管道绝热工程设计规范 GB 50316工业金属管道设计规范 GB 50316—2000(2008年版)工业金属管道设计规范 GB 50347干粉灭火系统设计规范 GB 50370气体灭火系统设计规范 GB/T 50393 钢质石油储罐防腐蚀工程技术标准 GB/T 50493 石油化工可燃气体和有毒气体检测报警设计标准 GB 50650石油化工装置防雷设计规范 GB/T 50698 埋地钢质管道交流干扰防护技术标准 GB 50779石油化工控制室抗爆设计规范 GB 50898细水雾灭火系统技术规范 GB 50974消防给水及消火栓系统技术规范 GB 50991 埋地钢质管道直流干扰防护技术标准 GB 51081 低温环境混凝土应用技术规范 GB 51156液化天然气接收站工程设计规范 GB 51156—2015液化天然气接收站工程设计规范 GB/T 51257 液化天然气低温管道设计规范 GB 51261 天然气液化工厂设计标准 GB 51309消防应急照明和疏散指示系统技术标准 JT/T 617.7 危险货物道路运输规则 第7部分:运输条件及作业要求 NB/T 47006铝制板翅式热交换器 SH 3009石油化工可燃性气体排放系统设计规范 SH/T 3043 石油化工设备管道钢结构表面色和标志规定 SH/T 3073 石油化工管道支吊架设计规范 SH/T 3097 石油化工静电接地设计规范 SH/T 3192 石油化工装置照明设计规范 SY/T 0043 石油天然气工程管道和设备涂色规范 SY/T 6784钢质储罐腐蚀控制标准 SY/T 6964石油天然气站场阴极保护技术规范 SY/T 7036 石油天然气站场管道及设备外防腐层技术规范 SY/T 7349 低温储罐绝热防腐技术规范 SY/T 7350 低温管道与设备防腐保冷技术规范 SY/T 7419低温管道绝热工程设计、施工和验收规范 TSG 21 固定式压力容器安全技术监察规程 TSG G0001 锅炉安全技术监察规程 XF 39消防车 消防要求和试验方法 3术语和定义 下列术语和定义适用于本文件。 3.1 通用 3.1.1 液化天然气liquefied natural gas;LNG 一种低温液态流体,主要组分是甲烷,可能含有少量的乙烷、丙烷、氮或通常存在于天然气中的其他组分。 [来源:GB 51261—2019,2.0.1] 3.1.2 液化天然气站场liquefied natural gas plant LNG站场LNG plant 具有天然气净化和液化、液化天然气储存和装运、液化天然气接卸和再气化功能的站场。 注:如基本负荷型天然气液化工厂、调峰型液化工厂、液化天然气接收站、液化天然气卫星站。 3.1.3 点火源 sources of ignition 能够使可燃物与助燃物发生燃烧反应的能量来源。 注:这种能量既可以是热能、光能、电能、化学能,也可以是机械能。 3.1.4 不燃材料 noncombustible material 在预期条件下使用时,遇火遇热不着火、不燃烧、不助燃或不释放可燃蒸气,且燃烧性能等级为A级的建筑材料。 3.1.5 拦蓄区 impounding area 用拦蓄堤或利用地形条件圈定的用于容纳事故溢出或泄漏液化天然气或其他危险性液体的区域。 3.1.6 拦蓄堤 impounding wall 液化天然气储罐发生泄漏事故时,防止液化天然气漫流或火灾蔓延的构筑物。 [来源:GB 51156—2015,2.0.16] 3.1.7 蒸气云 vapor cloud 当液化天然气泄漏或溢出至大气环境时,将大气环境中的水蒸气冷却、冷凝,形成与之混合的气体云团。 [来源:GB/T 8423.3—2018,5.2.5] 3.1.8 避让距离 setback distance LNG储罐最大液体管线上的自动隔离阀至站外建筑物或建筑界线的最小距离。 3.1.9 转运系统transfer systems LNG站场内在储存容器或储罐与接卸点或装运点之间转运LNG或其他危险介质的系统,转运方式可为管道、槽车、罐车、罐箱或船舶。 3.2气化设施 3.2.1 气化器 vaporizer 以一种可控的方式引入热量使得液体变成蒸气或气态的设备。 3.2.2 环境热源气化器ambient vaporizer 气化器的主要热源与实际的气化换热器不分离,主要热源为环境、海水或地热水等。 注:包括空温式气化器。 [来源:GB 51261—2019,2.0.16,有修改] 3.2.3 加热热源气化器heated vaporizer 气化器的主要热源来自于燃料的燃烧、电加热或废热(如锅炉或内燃机废热)。 [来源:GB 51261—2019,2.0.13,有修改] 3.2.4 整体加热热源气化器integral heated vaporizer 主要热源与气化器换热器为一体的加热热源气化器。 注:包括浸没燃烧式气化器。 [来源:GB 51261—2019,2.0.14,有修改] 3.2.5 远程加热热源气化器remote heated vaporizer 主要热源与实际的气化换热器分离开,中间介质(如水、异戊烷、乙二醇)作为加热传输媒介的加热热源气化器。 注:包括开架式气化器、中间介质气化器。 [来源:GB 51261—2019,2.0.15,有修改] 3.3储存设施 3.3.1 储罐系统tank system 用于储存液化天然气或其他危险液体的低压(操作压力小于100 kPa)现场组装、立式、圆筒、平底的设备。 注:包括一个或多个容器,以及各种附件、附属物和绝热材料。 3.3.2 主容器primary container 用来盛装低温液体,并直接与低温液体接触的容器。 [来源:GB/T 8423.3—2018,5.2.24] 3.3.3 次容器 secondary container 一般位于主容器之外,泄漏时盛装低温液体,正常运行工况下不与低温液体接触的容器。 [来源:GB/T 8423.3—2018,5.2.25] 3.3.4 单容罐 single containment tank 只有一个储存低温液体的自支撑式钢制储罐,该储罐可由带绝热层的单壁或双壁结构组成,具有液密性和气密性。 [来源:GB/T 8423.3—2018,5.2.26] 3.3.5 双容罐double containment tank 具有液密性的次容器和建立在次容器之中的单容罐共同组成的储罐,次容器与主容器水平距离不大于6 m且顶部向大气开口。 [来源:GB/T 8423.3—2018,5.2.27] 3.3.6 全容罐 full containment tank 具有液密性、气密性的次容器和建立在次容器之中的主容器共同组成的储罐,次容器为独立的自支撑带拱顶的闭式结构。 [来源:GB/T 8423.3—2018,5.2.28] 3.3.7 薄膜罐membrane tank 由一个薄的钢制主容器(即薄膜)、绝热层和预应力混凝土罐体共同组成的能储存低温液体的复合结构。 [来源:GB/T 8423.3—2018,5.2.31] 3.3.8 液化天然气压力储罐 liquefied natural gas pressure container LNG压力储罐LNG pressure centainer 由工厂制造的用于储存液化天然气且操作压力大于或等于100 kPa的钢制容器。 3.4管道系统和管道元件 3.4.1 管道系统piping system 简称管系,按流体与设计条件划分的多根管道连接成的一组管道。 [来源:GB 50316—2000(2008年版),2.1.7] 3.4.2 低温管中管系统 cryegenic pipe-in-pipe system 由内管、外管组成的低温夹套系统。 注:内管输送低温介质,外管起保护作用。 3.4.3 自动隔离阀 autonmatic product retention valve LNG储罐事故发生时能够自动进入安全状态的阀门。 4基本要求 4.1 低温设施的土壤保护 在设计和施工LNG储罐、冷箱、管道和管架及其他低温设施的基础时,应采取措施防止土壤结冰或冻胀产生的破坏力。 4.2 冰雪坠落 对于高大设施顶部的堆积冰雪,应采取有效措施防止冰雪坠落引起人员伤害和设备损坏。 4.3混凝土结构设计与材料 4.3.1 长期或定期与LNG接触的混凝土结构,应能承受设计荷载,特别是极端温度的影响,此类结构应包括但不限于低温设备的基础,其材料应符合GB 51081的规定。LNG容器以外的其他构筑物的材料和设计应符合GB 50010的规定。 4.3.2事故状态下与LNG接触过的混凝土,应在其恢复到大气温度后立即进行检查和必要的检测,如有必要应进行修补。 4.4控制室 4.4.1 LNG站场应设置控制室,控制室的设置应根据站场的规模和特点,并结合管理和生产模式的不同要求确定。控制室主要具备生产操作、过程控制、安全保护、仪表维护等功能。 4.4.2控制室的设置应符合下列规定: a)中心控制室应有人值守进行操作控制; b)无人值守的控制室应具备声光报警功能以提醒操作人员; c)LNG站场设置多个控制室时,中心控制室与其他控制室之间应设置备用通信方式; d)在紧急状态下控制室能够在所有有人的区域启动声光报警。 5站址选择和平面布置 5.1 站址选择 5.1.1 站场选址应根据所在地区的地形、地质、水文、气象、交通、消防、供排水、供电、通信、可利用土地和社会生活等条件,对可供选择的具体站址进行技术、经济、安全、环境、征地、拆迁、管理等方面的综合评价,选择最优建站场地址。 5.1.2 站场选址应符合当地城镇规划、工业区规划和港区规划,宜选在自然条件有利于废气扩散、废水排放的地区,并宜远离其他环境敏感目标。 5.1.3站场选址应根据LNG进出站场的位置及用地面积确定,并宜选择在天然气需求量大、用户集中的地区。 5.1.4 站场应具备全天候疏散条件。 5.1.5站场宜位于临近城镇或居民区全年最小频率风向的上风侧。 5.1.6公路、地区架空电力线路、地区输油(输气)管道不应穿越站场。 5.1.7站场应位于不受洪水、潮水或内涝威胁的地带,当不可避免时,应采取可靠的防洪、排涝措施。 5.1.8 站场防洪标准应按站场规模设计重现期。 5.1.9站场不应设在下列地区和区段内: a)有土崩、活动断层、滑坡、沼泽、流沙、泥石流的地区和地下矿藏开采后有可能塌陷的地区;以及其他方面不满足工程地质要求的地区; b)抗震设防烈度为9度及以上的地区; c)蓄(滞)洪区; d)饮用水水源保护区; e)自然保护区; f)历史文物、名胜古迹保护区。 5.1.10站场不宜建在抗震设防烈度为8度的Ⅳ类场地地区。 5.1.11 站场与界区外相邻工厂或设施的防火间距应符合GB 50183的规定,并按照附录A规定的泄漏后果场景对影响范围进行核算。 5.1.12站场外部安全防护距离按照GB/T 37243—2019第6章规定计算程序确定,并按照附录B执行。 5.2 平面布置 5.2.1 装置和设备的布置应符合站场的操作和检维修通道要求。 5.2.2装置和设备的布置宜考虑主导风向和点火源。 5.2.3装置和设备的布置应符合人员的紧急逃生要求。 5.3储罐间距 5.3.1 操作压力小于100 kPa的储罐,防火间距应按表1确定。 表1 操作压力小于100 kPa的储罐布置防火间距 单位为米 储罐型式 至站场围墙的最小防火间距 储罐间的最小防火间距 单容罐 0.7D,且不小于30 (拦蓄堤最外缘至围墙) 1/4相邻储罐直径之和 (储罐组内) 双容罐或采用钢质 外罐的全容罐 0.7D,且不小于30 (罐外壁最外缘至围墙) 应按罐顶全面积LNG燃烧的 热辐射计算模型确定, 且不应小于1/4相邻储罐直径之和 薄膜罐或采用预应力 混凝土外罐的全容罐 30 (罐外壁最外缘至围墙) 1/4相邻储罐直径之和 当储罐毗邻无建、构筑物的海域时,储罐至站场围墙的防火间距不限。 注:D为储罐的直径。 双容罐、采用钢质外罐的全容罐罐间防火间距的计算,还应符合以下要求: a)宜考虑站场区域出现频率大于或等于5%的风速、环境温度、相对湿度等气象条件; b)拦蓄区内LNG引燃产生的热辐射量大于或等于30 kW/m2的界线不应超出LNG站场围墙, 当拦蓄区毗邻无建、构筑物的海域时,隔热距离不限; c)站内设施应根据允许接受的热辐射量设置,并应符合以下规定: 1)热辐射量大于或等于4.73 kW/m2的界线以内,不应有办公楼; 2)热辐射量大于或等于9 kw/m2的界线以内,不应有集中控制室、仪表控制间、维修车间、化验室和仓库等建筑物; 3)热辐射量大于或等于15 kW/m2的界线以内,不应有压力容器、工艺设施及金属外壁储罐; 4)热辐射量大于或等于32 kW/m2的界线以内,不应有混凝土外壁储罐。 5.3.2操作压力大于等于100 kPa的储罐,从拦蓄堤或泄漏收集系统设施边沿至站场围墙的防火间距应符合表2和表3的规定。 表2地上储罐布置防火间距 储罐单罐容量,V m3 拦蓄堤或泄漏收集系统设施边沿 至站场围墙的最小防火间距 m 储罐组内储罐间的最小防火间距 m V<4 3 — 4≤V<7.5 5 2 7.5≤V<57 8 2 57≤V<114 15 2 114≤V<265 23 1/4相邻储罐直径之和,且不小于2 V>265 0.7D,且不小于30 当储罐毗邻无建、构筑物的海域时,储罐至站场围墙的防火间距不限。 表3 操作压力大于等于100 kPa的埋地罐布置防火间距 储罐单罐容量,V m3 至临近建筑物和站场围墙的最小防火间距 m 储罐组内储罐间的最小防火间距 m V<16 5 5 16≤V<114 8 5 V>114 13 5 当储罐毗邻无建、构筑物的海域时,储罐至站场围墙的防火间距不限。 5.3.3双容罐、全容罐和薄膜罐应与相邻的单、双容罐的拦蓄区分隔开,避免相邻拦蓄设施内的火灾或泄漏导致储罐受损。应采用工程分析方法确定储罐的罐顶、壁或其拦蓄材料结构的耐火温度,在分析中包括下列条件: a)对液体容器完全泄漏到符合12.2.1要求的拦蓄区的火灾进行分析; b)分析宜考虑以下因素: 1)在预设大气条件下的火灾持续时间、火灾辐射热散发特征和火灾的物理属性; 2)应使用产生最大危险距离的大气条件,但根据该地区的记录数据并使用附录A的火灾模型,但在出现频次少于10%的情况除外; 3)被动安全措施或主动安全措施,以降低表面辐射热或限制表面温度; 4)分析LNG储罐的材料、设计和施工方法。 5.3.4若无防火措施,混凝土外罐应进行外部火灾防火设计,通过热分析来确定温度分布和火灾作用时间: a)对于薄膜罐系统,防火设计时应包含储存液体在设计液位时的静水压力作用。所有类型的储罐在进行防火设计时,应假定内部气体为正压; b)混凝土外罐的设计宜考虑以下因素: 1)火灾情况下,预应力钢筋与罐壁混凝土在高温下的热膨胀系数存在差异,导致罐壁有效预应力减小; 2)由于混凝土外罐温度升高,导致外罐混凝土、钢筋和预应力钢筋的强度和弹性模量降低; 3)由于预应力钢筋在高温下的软化和松弛,导致罐壁有效预应力减少。 5.3.5多个储罐切断阀应留有至少0.9 m的操作空间。 5.3.6大于0.5 m3的LNG储罐不应建于室内。 5.3.7 易燃液体和易燃制冷剂储罐不应布置在第12章规定的LNG储罐拦蓄区内。 5.4气化器间距 5.4.1 除5.4.5的规定外,气化器距站场围墙不应小于30 m。 5.4.2相邻气化器间的距离不应小于1.5 m。 5.4.3当使用可燃介质作为热源的气化器时,除下列情况外,其一次热源与任何点火源的距离不应小于15 m: a)两台以上的气化器在同一区域布置时,相邻气化器或一次热源可不作为点火源考虑; b)气化器与工艺加热器或其他明火设备设有联锁保护时,当气化器正在运行或其管道系统已被冷却或正被冷却,由于联锁气化器不能被操作,上述工艺加热器或明火设备可不作为点火源考虑。 5.4.4 内置加热式气化器距拦蓄堤、集液池、工艺设备不应小于15 m。 5.4.5当气化器与单罐容量小于265 m3的储罐整体安装使用时,气化器与围墙的距离可根据储罐容量按表2确定。 5.4.6气化器与其他设备的距离宜按GB 50183—2004表5.2.1中密闭工艺设备确定。 5.4.7 加热式气化器入口LNG管线的切断阀与其距离不应小于15 m。当加热式气化器布置在室内时,其入口LNG管线切断阀与此建筑物的距离不应小于15 m。 5.4.8采用可燃性中间介质加热的气化器,应在中间介质的冷、热侧均设置切断阀,且切断阀的控制设施与气化器的距离不应小于15 m。 5.5工艺设备间距 5.5.1 含有LNG、制冷剂、易燃液体和可燃气体的工艺设备与点火源、集中控制室、仪表控制间、办公室、厂房和其他有人建、构筑物的距离不应小于15 m。 5.5.2可燃气体压缩机房中如设有控制室,建筑物结构应符合9.5的规定。 5.5.3 明火设备和其他火源到任一拦蓄区或容器开放排放系统的距离不应小于15 m。 5.6装卸设备间距 5.6.1 用于管道输送LNG的码头或停泊位置,应使任何正在装卸或卸载的船舶距任何跨越通航水道的桥梁不应小于30 m。 5.6.2装卸汇管与跨越航道的桥之间的距离,不应小于61 m。 5.6.3 除与装卸操作有直接关联的设备外,LNG和易燃制冷剂的装卸臂到不受控制的点火源、工艺区、储罐、控制室、办公室、车间和其他有人设施或重要站场设施的距离,不应小于15 m。 5.6.4拦蓄区的相对位置应保证区域内产生的火灾热通量不会对LNG运输船造成严重结构性损坏。 5.7 建构筑物 5.7.1 9.4~9.6未涉及的建构筑物宜安装在适当位置或做出其他规定减少可燃气体或蒸发气的进入。 5.7.2 9.4~9.6未涉及的建构筑物距离储罐、船或装有LNG和其他危险液体的设备连接处不应小于15 m。 5.8拦蓄设施间距 5.8.1 拦蓄设施的位置应符合附录A设计泄漏危害不影响场外的规定。 5.8.2拦蓄设施的位置应符合表2的规定。 5.8.3拦蓄设施的位置距离不受控的点火源、控制室、办公室和其他有人建筑或站场的重要结构,不应小于15 m。 6 工艺设备 6.1 一般要求 6.1.1 LNG及其他危险介质的工艺设备安装,应符合下列要求: a)室外安装,应便于操作、人工灭火及事故状态下液体和气体的排放; b)室内安装,封闭式构筑物应符合6.3.12~6.3.16的规定。 6.1.2 工艺设备熔焊和钎焊应符合下列要求: a)工艺设备的熔焊和钎焊应符合设备设计和制造符合6.1.5~6.1.8的规定; b)所有熔焊和钎焊作业应符合TSG 21和GB/T 150(所有部分)的规定。 6.1.3 LNG以外的危险品储存容器和设备应符合附录A的规定。 6.1.4工艺设备应标明最大允许工作压力。 6.1.5 锅炉的设计和制造应符合GB/T 16507(所有部分)、GB/T 16508和TSG G0001的规定。 6.1.6 压力容器的设计和制造应符合GB 150/T(所有部分)和TSG 21的规定。 6.1.7 管壳式换热器的设计和制造应符合GB/T 151和TSG 21的规定。 6.1.8铝制板翅式换热器的设计和制造应符合TSG 21和NB/T 47006的规定。 6.1.9用于系统紧急泄压或其他工艺目的设置的火炬,应符合SH 3009的规定。 6.1.10应设置独立于储罐安全阀的蒸发气处理系统,用于安全处理工艺设备和LNG储罐中产生的蒸发气。 6.1.11 蒸发气应排放到密闭系统或大气安全地点,以免对人员、设备或周边设施造成危害。 6.1.12可能形成真空的工艺设备、管道、冷箱或其他设备,应按照能承受的真空条件进行设计或采取防止真空措施。如采用补气措施,应防止系统内形成可燃混合物。 6.2泵和压缩机 6.2.1 泵和压缩机材料选用应符合设计温度和设计压力的规定。 6.2.2应设置阀门,使每台泵或压缩机维修时能隔离。 6.2.3并联运行的泵或离心式压缩机,每条出口管线应设置止回阀。 6.2.4 当泵和压缩机壳体、下游管道和设备的设计压力低于泵和压缩机的最大排出压力时,泵和压缩机的出口应设置泄压设施,以防止壳体、下游管线和设备超过设计压力。 6.2.5 每台泵应设置放空和/或安全阀防止以最大速度冷却时泵壳体超压。 6.2.6 可燃气体压缩机应在气体正常逸散的各点设置放空口,放空口应用管道引至安全排放点。 6.3 气化设施 6.3.1 如果环境热源气化器天然热源的温度超过100℃,此气化器应视为远程加热热源气化器。 6.3.2如果环境热源气化器的天然热源与实际气化器分离,且在热源与气化器之间使用可控制的传热介质循环,此气化器应视为远程加热热源气化器,并符合加热热源气化器的规定。 6.3.3符合压力容器定义的气化器,其设计、建造和检验应符合TSG 21的规定。 6.3.4气化器设计压力应不小于LNG泵的最大出口压力或供给气化器的加压存储系统设计压力的最大值。 6.3.5 每台气化器出口阀及出口阀与气化器之间的管件(包括安装在气化器出口阀上游的安全阀)应按照气化器操作温度进行设计。 6.3.6气化器或气化器系统的LNG入口应设置至少一个手动或自动切断阀,在出现下列任意情况时应关闭: a)管道失压(即流量过大); b)气化器或切断阀附近发生火灾; c)气化器及出口管道温度超出设计温度范围。 6.3.7无人值守的LNG站场,或安装在距离热源或可燃液体容器15 m范围内的气化器,若在气化器或气化器系统半径3 m范围内安装自动切断阀,自动切断阀的设置应符合11.1.7.2的规定。 6.3.8有人值守的LNG站场,且气化器安装在距离热源或可燃液体容器15 m范围外,应至少在距离气化器、气化系统或气化器建筑物15 m处安装自动或手动切断阀。 6.3.9安装在气化器或气化器系统LNG入口处的手动或自动切断阀,应具有就地操作或远程控制功能。 6.3.10手动或自动切断阀应独立于其他流量控制系统。 6.3.11 采用可燃中间介质的气化器,中间介质系统的冷热管道均应设置切断阀,且切断阀的控制设施应距气化器至少15 m。 6.3.12加热热源气化器或工艺热源气化器的安全阀泄放能力,应在不高于气化器最大允许工作压力10%情况下,为额定气化天然气流量的110%。 6.3.13环境热源气化器的安全阀泄放能力,应在小于等于气化器最大允许工作压力10%情况下,为额定气化天然气流量的150%。 6.3.14如果泄压阀未采取耐高温设计,加热热源气化器上泄压阀的安装位置应保证其在正常运行期间不超过60℃。 6.3.15整体加热热源气化器所需空气或远程加热热源气化器的主要热源,应取自完全封闭的建(构)筑物之外。 6.3.16整体加热热源气化器或远程加热热源气化器的主要热源安装在建筑物内时,应采取措施防止燃烧的有害产物聚集。 6.4 LNG移动式设备 6.4.1在天然气系统维修、改造临时使用LNG移动式设备时,应符合以下要求: a)应采取措施最大限度地减少容器中LNG事故排放的可能性,避免危及邻近财产、重要工艺设备和构筑物或进入地表排水系统; b)可使用移动式和临时容器; c)气化器和控制设施应符合6.3.3~6.3.5、6.3.6 a)、6.3.6 b)和6.3.12~6.3.14的规定; d)加热式气化器应设燃料远程切断设施,且可就地操作; e)设备和工艺管道、管道组件、仪表、电气和传输系统的设计,应符合6.1.4~6.1.8、6.2.2~6.2.5、8.1.1.1、8.1.1.2、8.1.4.1、8.1.4.2c)、8.2.1.1~8.2.1.4、8.2.2和8.2.3的规定,如果使用低温管中管系统应符合8.11、10.1、10.2、10.4、10.5、11.2、13.1和13.2的规定; f)LNG设施间距应符合表2和表3的规定; g)应采取措施最大限度避免泄漏导致的意外起火; h)消防系统应符合11.1.7、11.1.8.1、11.1.8.2c)、13.3.1、13.4.1、13.5.1.1和13.5.1.2的规定; i)应在关键部位配置符合GB 50140规定的手提式或推车式气体灭火器; j)操作和维修应符合11.1.8.2、17.1、17.2、17.5.1、17.5.2.3~17.5.2.6、17.6、17.7.1、17.7.3.1和17.7.3.2的规定。 6.4.2 临时设施需要加臭时,如果设施中可燃加臭剂不超过76 L,则设备间距可不采用表2和表3的规定。 |
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 |
服务热线:400-001-5431 | 电话:010-8572 5110 | 传真:010-8581 9515 | Email: bz@bzfyw.com | |
版权所有: 北京悦尔信息技术有限公司 2008-2020 京ICP备17065875号-1 51La |
本页关键词: |
GB/T 20368-2021, GB 20368-2021, GBT 20368-2021, GB/T20368-2021, GB/T 20368, GB/T20368, GB20368-2021, GB 20368, GB20368, GBT20368-2021, GBT 20368, GBT20368 |