Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative.
This part is one of the series standards for 5G digital cellular mobile telecommunication network — eMBB user equipment (Phase 1), which are composed of the following ones:
a) YD/T 3627-2019 5G digital cellular mobile telecommunication network — Technical requirements of eMBB user equipment (Phase 1)
b) 5G digital cellular mobile telecommunication network — Testing Methods of eMBB user equipment (Phase 1)
As the technology develops, subsequent standards will be developed.
This standard is developed in accordance with the rules given in GB/T 1.1-2009.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. The issuing body of this standard shall not be held responsible for identifying any or all such patent rights.
This standard was proposed by and is under the jurisdiction of China Communications Standards Association.
Drafting units of this standard: China Academy of Information and Communications Technology (CAICT), China Mobile Communications Group Co., Ltd., China Telecom Group Co., Ltd., China United Network Communications Group Co., Ltd., Huawei Technologies Co., Ltd., Beijing Xiaomi Mobile Software Co., Ltd., Guangdong OPPO Mobile Communications Co., Ltd., Vivo Mobile Communications Co., Ltd., MediaTek Bodong Technology ( Beijing) Co., Ltd., Beijing Zhanxun Hi-Tech Communication Technology Co., Ltd., Zhongxing Telecom Equipment (ZTE) Corporation, Qualcomm Wireless Communication Technology (China) Co., Ltd., National Radio Monitoring Center Testing Center, Datang Telecom Technology Industry Group (Telecommunications Science and Technology Research Institute), Intel (China) Co., Ltd., Shanghai Nokia Bell Co., Ltd., Dingqiao Communication Technology Co., Ltd. and Beijing Samsung Communication Technology Research Co., Ltd..
Main drafters of this standard: Li Xing, Lu Songhe, Jin Chenguang, He Weijun, Zhang Nuoya, Zhou Jing, Shi Yu, Shen Li, Liu Yang, Yang Ning, Zhang Yuan (Vivo Mobile Communications Co., Ltd.), Wang Yunqi, Shi Yanshan, Ma Wei, Chen Shuping, Yuan Bo, Xing Yanping, Zhang Yuan (Intel (China) Co., Ltd.) and He Jing.
5G Digital Cellular Mobile Telecommunication Network — Technical Requirements of eMBB User Equipment (Phase 1)
1 Scope
This standard specifies the transmission capability, service capability, basic protocol function, radio frequency, power consumption, interface, security and other requirements of 5G enhanced mobile broadband (eMBB) user equipment in the frequency band below 6GHz.
This standard is applicable to 5G UEs facing Non-Stand Alone (NSA) and Stand Alone (SA) that support eMBB scenarios in the frequency band below 6GHz.
2 Normative References
The following documents are normatively referenced in this document and are indispensable for its application. For dated reference, only the edition cited applies. For undated references, the latest edition of the referenced documents (including any amendments) applies.
YD/T 2575-2016 Technical Requirements for User Equipment of TD-LTE Digital Cellular Mobile Telecommunications Network (Phase 1)
YD/T 2577-2013 Technical Requirements for User Equipment of LTE FDD Digital Cellular Mobile Telecommunications Network (Phase 1)
3GPP TS 23.501 System Architecture for the 5G System (Release 15)
3GPP TS 24.301 Non-Access-Stratum (NAS) Protocol for Evolved Packet System (EPS); Stage 3 (Release 15)
3GPP TS 24.501 Non-Access-Stratum (NAS) Protocol for 5G System (5GS); Stage 3 (Release 15)
3GPP TS 36.201 Evolved Universal Terrestrial Radio Access (E-UTRA): LTE physical Layer; General description (Release 15)
3GPP TS 36.211 Evolved Universal Terrestrial Radio Access (E-UTRA): Physical Channels and Modulation (Release 15)
3GPP TS 36.212 Evolved Universal Terrestrial Radio Access (E-UTRA): Multiplexing and Channel Coding (Release 15)
3GPP TS 36.213 Evolved Universal Terrestrial Radio Access (E-UTRA): Physical Layer Procedures (Release 15)
3GPP TS 36.214 Evolved Universal Terrestrial Radio Access (E-UTRA): Physical Layer; Measurements (Release 15)
3GPP TS 36.300 Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN): Overall Description; Stage 2 (Release 15)
3GPP TS 36.302 Evolved Universal Terrestrial Radio Access (E-UTRA): Services Provided by the Physical Layer (Release 15)
3GPPTS 36.304 Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) Procedures in Idle Mode (Release 15)
3GPP TS 36.314 Evolved Universal Terrestrial Radio Access (E-UTRA): Layer 2-Measurements (Release 15)
3GPP TS 36.321 Evolved Universal Terrestrial Radio Access (E-UTRA): Medium Access Control (MAC) Protocol Specification (Release 15)
3GPP TS 36.322 Evolved Universal Terrestrial Radio Access (E-UTRA): Radio Link Control (RLC) Protocol Specification (Release 15)
3GPP TS 36.323 Evolved Universal Terrestrial Radio Access (E-UTRA); Packet Data Convergence Protocol (PDCP) Specification (Release 15)
3GPP TS 36.331 Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC): Protocol Specification (Release 15)
3GPP TS 37.324 Evolved Universal Terrestrial Radio Access (E-UTRA) and NR; Service Data Adaptation Protocol (SDAP) Specification (Release 15)
3GPP TS 37.340 Evolved Universal Terrestrial Radio Access (E-UTRA) and NR; Multi-connectivity; Stage-2 (Release 15)
3GPP TS 38.101-1 NR; User Equipment (UE) Radio Transmission and Reception; Part 1: Range 1 Standalone (Release 15)
3GPP TS 38.101-3 NR; User Equipment (UE) Radio transmission and Reception; Part 3: Range 1 and Range 2 Interworking Operation with Other Radios (Release 15)
3GPPTS 38.201 NR; Physical Layer; General Description (Release 15)
3GPP TS 38.202 NR; Services Provided by the Physical Layer (Release 15)
3GPPTS 38.211 NR; Physical Channels and Modulation (Release 15)
3GPPTS 38.212 NR; Multiplexing and Channel Coding (Release 15)
3GPP TS 38.213 NR; Physical Layer Procedures for Control (Release 15)
3GPP TS 38.214 NR; Physical Layer procedures for data (Release 15)
3GPP TS 38.215 NR; Physical Layer measurements (Release 15)
3GPP TS 38.300 NR; Overall Description; Stage-2 (Release 15)
3GPP TS 38.304 NR; User Equipment (UE) Procedures in idle mode (Release 15)
3GPP TS 38.306 NR; User Equipment (UE) Radio Access Capabilities (Release 15)
3GPP TS 38.307 NR; Requirements on User Equipments (UEs) Supporting a Release-independent Frequency Band (Release 15)
3GPP TS 38.321 NR; Medium Access Control (MAC) protocol Specification (Release 15)
3GPP TS 38.322 NR; Radio Link Control (RLC)Protocol Specification (Release 15)
3GPP TS 38.323 NR; Packet Data Convergence Protocol (PDCP) Specification (Release 15)
3GPP TS 37.324 NR; Service Data Protocol (SDAP) Specification (Release 15)
3GPP TS 38.33l NR; Radio Resource Control (RRC): Protocol Specification (Release 15)
3GPP TS 38.401 NG-RAN; Architecture Description (Release 15)
3 Abbreviations
For the purpose of this document, the following symbols and abbreviated terms apply.
ACK: Acknowledgment
AM: Acknowledgment Mode
AMC: Adaptive Modulation and Coding
ARQ: Automatic Repeat-request
BBU: Base Band Unit
BCCH: Broadcast Control Channel
BCH: Broadcast Channel
BER: Bit Error Ratio
BLER: Block Error Ratio
BIT/SK: Binary Phase Shift Keying
CCCH: Common Control Channel
CCE: Control Channel Element
CMAS: Commercial Mobile Alert Service
CP: Cyclic Prefix
CPE: Customer Premise Equipment
CQI: Channel Quality Indicator
CRC: Cyclic Redundancy Check
CSI: Channel State Information
DCCH: Dedicated Control Channel
DCI: Downlink Control Information
DFT-S-OFDMDFT-Spread OFDMDFT
DL: Downlink
DL-SCH: Downlink Shared Channel
DRX: Discontinuous Reception
DTX: Discontinuous Transmission
eNodeB (eNB): Evolved NodeBLTE
EPC: Evolved Packet Core network
EWTS: Earthquake and Tsunami Warning System
GBR: Guaranteed Bit Rate
GP: Guard Period
GPS: Global Positioning System
HARQ: Hybrid Automatic Repeat-request
IR: Incremental Redundancy
LTE: Long Term Evolution
MAC: Media Access Control
MCS: Modulation and Coding Scheme
MIB: Master Information Block
MiFi: Mobile Wi-Fi Hotspot
MIMO: Multiple Input Multiple Output
NACK: Negative Acknowledgment
NSA: Non-Standalone
OFDMA: Orthogonal Frequency Division Multiple Access
PBCH: Physical Broadcast Channel
PCCH: Paging Control Channel
PCH: Paging Channel
PDCCH: Physical Downlink Control Channel
PDCP: Packet Data Convergence Protocol
PDSCH: Physical Downlink Shared Channel
PDU: Packet Data Unit
PHY: Physical Layer
PLMN: Public Lands Mobile Network
PMI: Precoding matrix indicator
PRACH: Physical Random Access Channel
PRB: Physical Resource Block
PUCCH: Physical Uplink Control Channel
PUSCH: Physical Uplink Shared Channel
PSS: Primary Synchronization Signal
QAM: Quadrature Amplitude Modulation
QPSK: Quaternary Phase Shift Keying
RACH: Random Access Channel
RAT: Radio Access Technology
RB: Radio Bearer
REG: RE Group
RI: Rank Indicator
RLC: Radio Link Control
RNTI: Random Access Radio Network Temporary Identifier
ROHC: Robust Header Compression
RRC: Radio Resource Control
RRU: Radio Remote Unit
RS: Reference Signal
RSRP: RS Receiving Power
RSRQRS: Received Quality RS
RV: Redundancy Version
SA: Standalone
SC-FDMA: Single Carrier FDMA
SCH: Synchronization Channel
SDU: Service Data Unit
SIB: System Information Block
SRS: Sounding Reference Signal
SSS: Secondary Synchronization Signal
SUL: Supplementary Uplink
TA: Timing Advance
TDD: Time Division Duplex
TM: Transparent Mode
TPC: Transmit Power Control
TTI: Transmission Time Interval
UCI: Uplink Control Information
UE: User Equipment
UL: Uplink
UL-SCH: Uplink Shared Channel
UM: Un-acknowledgment Mode
UTC: Coordinated Universal Time
URSP: UE Route Selection Policy
VoIMS: Voice Over IMS
VoLTE: Voice Over LTE
4 General
4.1 Classification of User Equipment (UE)
According to the size and application range, user equipment (UE) may be roughly classified as follows:
——Voice data type: such UE (e.g., hand-held user equipment) can support circuit domain (or packet domain) voice services as well as packet domain bearer services;
——Data type: such UE (e.g., Wi-Fi, data card and central processing element (CPE)) dose not support CS domain voice services but packet domain bearer services.
4.2 Power Class of UE
The power class of UE is defined according to the maximum output power of all cellular antennas, as shown in Table 1.
Table 1 Power Class of UE
Power class Max. output power Requirement
2 +26 dBm Mandatory for SA operating mode
3 +23dBm Mandatory for NSA operating mode
4.3 Stand Alone (SA) Operating Mode
SA Mode shall support Option 2. In this mode, the UE accesses the 5G base station (gNB) connected to the 5G core network through the NR air interface. The networking architecture diagram of Option 2 is shown in Figure 1.
Figure 1 Schematic Diagram of Option 2 Networking Architecture
4.4 Non-Stand Alone (NSA) Operating Mode
NSA mode shall support Option 3a and Option 3x, as shown in Figure 2. In this mode, the UE accesses the 4G base station (eNB) and the 5G base station (gNB) connected to the 4G core network through LTE air interface and NR air interface, in which the 4G base station is the main station (MN) and the 5G base station is the auxiliary station.
Figure 2 Schematic Diagram of Option 3a/3x Networking Architecture
5 Capacity Requirements for UE
5.1 Transmission Capability of UE
5.1.1 SA Operating mode
According to the uplink capability configuration, UE in SA operating mode may be divided into two types:
——Type 1 UE: support uplink single transmission, SRS in-turn transmission 1T2R, HPUE (single antenna 26dBm) and uplink 256QAM modulation;
——Type 2 UE: support uplink dual transmission, SRS in-turn transmission 2T4R, HPUE (dual antenna 23 + 23dBm) and uplink 256QAM modulation.
The transmission capability of Type 1 UE in SA operating mode shall meet the requirements of Table 2.
Table 2 Transmission Capability Requirements of Type 1 UE in SA Operating Mode
NR key parameters Requirements
Downlink Downlink waveform CP-OFDM
Max. carrier bandwidth 100 MHz
Downlink subcarrier spacing 15kHz (at access), 30kHz (at service)
Downlink MIMO transmission Transmission of layers 1, 2 and 4
demodulation reference signal (DMRS) signal Type 1
Additional DMRS for high-speed moving scenes 1/2 additional DMRS, mandatory
3 additional DMRS, optional
Downlink CQFRI/PMI/CRI measurement of CSI-RS Port 4, Port 8 and Port 16
Downlink modulation scheme QPSK, 16QAM, 64QAM and 256QAM
PDSCH mapping type Type A, Type B
Allocation method for PDSCH frequency domain resource Type 0 (discontinuous allocation), Type 1 (continuous allocation)
Uplink Uplink waveform CP-OFDM, DFT-S-OFDM
Uplink subcarrier spacing 30kHz
Uplink SIMO transmission Layer 1 transmission
Demodulation reference signal (DMRS) signal Type 1, Type 2
Downlink transmission mode Codebook-based transmission mode
Uplink modulation scheme QPSK, 16QAM, 64QAM and 256QAM
Allocation method for PUSCH frequency domain resource Type 1 (continuous allocation)
PUSCH mapping type Type A, Type B
SRS transmission Port 1
SRS antenna handover 1T2R in-turn transmission, mandatory
1T4R in-turn transmission, optional
Downlink peak rate The calculation is conducted according to the maximum downlink 4-layer MIMO, the maximum downlink 256QAM modulation, the maximum carrier bandwidth of 100 MHz and the carrier spacing of 30kHz:
· For 5 ms single-period frame structure, the theoretical downlink peak value of single carrier is 1.745 Gbit/s.
· For 2.5 ms dual-period frame structure, the theoretical downlink peak value of single carrier is 1.485 Gbit/s
· For 3 ms + 2 ms dual-period frame structure, the theoretical downlink peak value of single carrier is 1.745 Gbit/s
· For 1 ms single-period frame structure, the theoretical downlink peak value of single carrier is 1.17 Gbit/s
· For 2.5 ms single-period (3U1D) frame structure, the theoretical downlink peak value of single carrier is 0.78 Gbit/s
· For 2.5 ms single-period (1U3D) frame structure, the theoretical downlink peak value of single carrier is 1.72 Gbit/s
See 6.1.1.3 for the definition of frame structure
Uplink peak rate The calculation is conducted according to the maximum uplink 1-layer SIMO transmission, the maximum carrier bandwidth of 100 MHz and the carrier spacing of 30 kHz of the UE:
· For 5 ms single-period frame structure, the theoretical uplink peak of single carrier is 95Mbit/s (64QAM) or 127 Mbit/s (256QAM).
· For 2.5 ms dual-period frame structure, the theoretical uplink peak of single carrier is 143Mbit/s (64QAM) or 190 Mbit/s (256QAM)
· For 3 ms + 2 ms dual-period frame structure, the theoretical uplink peak value of single carrier is 95 Mbit/s (64QAM) or 127 Mbit/s (256QAM).
· For 1 ms single-period frame structure, the theoretical uplink peak value of single carrier is 203Mbit/s (64QAM) or 270Mbit/s (256QAM)
· For 2.5 ms single-period (3U1D) frame structure, the theoretical uplink peak of single carrier is 285 Mbit/s (64QAM) or 380 Mbit/s (256QAM).
· For 2.5 ms single-period (1U3D) frame structure, the theoretical uplink peak of single carrier is 95 Mbit/s (64QAM) or 127 Mbit/s (256QAM)
The frame structure is defined in 6.1.1.3
The transmission capability of the type 2 UE in SA operating mode shall meets the requirements listed in Table 3.
Table 3 Transmission Capability Requirements of Type 2 UE In SA Operating Mode
NR Key Parameters Requirements
Downlink Downlink waveform CP-OFDM
Maximum carrier bandwidth 100 MHz
Downlink subcarrier spacing 15kHz (at access), 30kHz (at service)
Downlink MIMO transmission Transmission of layers 1, 2 and 4
Demodulation reference signal (DMRS) signal Type 1
Additional DMRS for high-speed moving scenes 1/2 additional DMRS, mandatory
3 additional DMRS, optional
CQI/RI/PMI/CRI measurement of CSI-RS Port 4, Port 8 and Port 16
Downlink modulation scheme QPSK, 16QAM, 64QAM and 256QAM
PDSCH mapping Type Type A, Type B
Allocation method for PDSCH frequency domain resource Type 0 (discontinuous allocation), Type 1 (continuous allocation)
Uplink Uplink waveform CP-OFDM,DFT-S-OFDM
Downlink subcarrier spacing 30kHz
Uplink MIMO transmission Transmission of layers 1 and 2
Demodulation reference signal (DMRS) signal Type 1, Type 2
Downlink transmission mode Codebook-based transmission mode
Uplink modulation scheme QPSK, 16QAM, 64QAM and 256QAM
Allocation method for PUSCH frequency domain resource Type 1 (continuous allocation)
PUSCH mapping type Type A, Type B
SRS transmission Port 1 and Port 2
SRS antenna handover 2T4R in-turn transmission
Downlink peak rate The calculation is conducted according to the maximum downlink 4-layer MIMO, the maximum downlink 256QAM modulation, the maximum carrier bandwidth of 100 MHz and the carrier spacing of 30kHz:
· For 5 ms single-period frame structure, the theoretical downlink peak value of single carrier is 1.745 Gbit/s
· For 2.5 ms dual-period frame structure, the theoretical downlink peak value of single carrier is 1.485 Gbit/s
· For 3 ms + 2 ms dual-period frame structure, the theoretical downlink peak value of single carrier is 1.745 Gbit/s.
· For 1 ms single-period frame structure, the theoretical downlink peak value of single carrier is 1.17 Gbit/s
· For 2.5 ms single-period (3U1D) frame structure, the theoretical downlink peak value of single carrier is 0.78 Gbit/s
· For 2.5 ms single-period (1U3D) frame structure, the theoretical downlink peak value of single carrier is 1.72 Gbit/s
The frame structure is defined in 6.1.1.3
Uplink peak rate The calculation is conducted according to the maximum uplink 2-layer MIMO, maximum carrier bandwidth of 100 MHz and carrier spacing of 30kHz of the UE:
· For 5 ms single-period frame structure, the theoretical uplink peak value of single carrier is 190Mbit/s (64QAM) or 253Mbit/s (256QAM)
· For 2.5 ms dual-period frame structure, the theoretical uplink peak of single carrier is 285Mbit/s (64QAM) or 380Mbit/s (256QAM)
· For 3 ms + 2 ms dual-period frame structure, the theoretical uplink peak value of single carrier is 190Mbit/s (64QAM) or 253Mbit/s (256QAM)
· For 1 ms single-period frame structure, the theoretical uplink peak value of single carrier is 405Mbit/s (64QAM) or 540Mbit/s (256QAM)
· For 2.5 ms single-period (3U1D) frame structure, the theoretical uplink peak value of single carrier is 571Mbit/s (64QAM) or 760Mbit/s (256QAM)
· For 2.5 ms single-period (1U3D) frame structure, the theoretical uplink peak value of single carrier is 190Mbit/s (64QAM) or 253Mbit/s (256QAM)
The frame structure is defined in 6.1.1.3
5.1.2 SA operating mode
The UE adopts EN-DC dual connectivity in NSA operating mode. When its NR connection supports uplink single antenna transmission and downlink four antenna reception, the transmission capacity of this type of UE shall meet the requirements of Table 4.
Table 4 Transmission Capability Requirements of UE for NR Single Transmission and Four Reception (1T4R) in EN-DC Dual Connectivity Mode
NR Key Parameters Requirements
Downlink Downlink waveform CP-OFDM
Maximum carrier bandwidth 100 MHz
Downlink subcarrier spacing 15kHz (at access), 30kHz (at service)
Downlink MIMO transmission Transmission of layers 1, 2 and 4
Demodulation reference signal (DMRS) signal Type 1
Additional DMRS for high-speed moving scenes 1/2 additional DMRS, mandatory
3 additional DMRS, optional
CQI/RI/PMI/CRI measurement of CSI-RS Port 4, Port 8 and Port 16
Downlink modulation scheme QPSK, 16QAM, 64QAM and 256QAM
PDSCH mapping Type Type A, Type B
Allocation method for PDSCH frequency domain resource Type 0 (discontinuous allocation), Type 1 (continuous allocation)
Uplink Uplink waveform CP-OFDM,DFT-S-OFDM
Downlink subcarrier spacing 30kHz
Uplink SIMO transmission Layer 1 transmission
Uplink LTE and NR shunting Support shunting
Demodulation reference signal (DMRS) signal Type 1, Type2
Downlink transmission mode Codebook-based transmission mode
Uplink modulation scheme QPSK, 16QAM, 64QAM and 256QAM
Uplink Allocation method for PUSCH frequency domain resource Type 1 (continuous allocation)
PUSCH mapping type Type A, Type B
NR SRS transmission Port 1
NR SRS antenna handover 1T2R in-turn transmission, mandatory
1T4R in-turn transmission, optional
Downlink peak rate The calculation is conducted according to the maximum downlink 4-layer MIMO, the maximum downlink 256QAM modulation, the maximum carrier bandwidth of 100 MHz and the carrier spacing of 30kHz of UE NR connection:
· For 5 ms single-period frame structure, the theoretical downlink peak value of single carrier is 1.745 Gbit/s
· For 2.5 ms dual-period frame structure, the theoretical downlink peak value of single carrier is 1.485 Gbit/s
· For 3 ms + 2 ms dual-period frame structure, the theoretical downlink peak value of single carrier is 1.745 Gbit/s.
· For 1 ms single-period frame structure, the theoretical downlink peak value of single carrier is 1.17 Gbit/s
· For 2.5 ms single-period (3U1D) frame structure, the theoretical downlink peak value of single carrier is 0.78 Gbit/s
· For 2.5 ms single-period (1U3D) frame structure, the theoretical downlink peak value of single carrier is 1.72 Gbit/s
See 6.1.1.3 for the definition of frame structure
The transmission capability of LTE connection shall meet the requirements of its LTE UE category
Uplink peak rate The calculation is conducted according the maximum uplink 1-layer SIMO transmission, the maximum carrier bandwidth of 100 MHz, and the carrier spacing of 30 kHz of UE NR connection:
· For 5 ms single-period frame structure, the theoretical uplink peak value of single carrier is 95Mbit/s (64QAM) or 127Mbit/s (256QAM)
· For 2.5 ms dual-period frame structure, the theoretical uplink peak of single carrier is 143Mbit/s (64QAM) or 190 Mbit/s (256QAM)
· For 3 ms + 2 ms dual-period frame structure, the theoretical uplink peak value of single carrier is 95 Mbit/s (64QAM) or 127 Mbit/s (256QAM).
· For 1 ms single-period frame structure, the theoretical uplink peak value of single carrier is 203Mbit/s (64QAM) or 270Mbit/s (256QAM)
· For 2.5 ms single-period (3U1D) frame structure, the theoretical uplink peak value of single carrier is 285Mbit/s (64QAM) or 380Mbit/s (256QAM)
· For 2.5 ms single-period (1U3D) frame structure, the theoretical uplink peak value of single carrier is 95Mbit/s (64QAM) or 127Mbit/s (256QAM)
The transmission capability of LTE connection shall meet the requirements of its LTE UE category
5.2 Service Capabilities of UE
5.2.1 SA operating mode
UE supports the following service types, and the corresponding 5QI is shown in Table 5.
Table 5 Service Type Requirements of UE in SA Mode
Service type Requirements Description
Conversational voice (VoNR) Optional 5QI 1 (GBR)
Conversational video (ViNR) Optional 5QI 2(GBR)
Living game or V2X message Optional 5QI 3(GBR)
Non-conversational video Optional 5QI 4(GBR)
IMS signaling Mandatory 5QI 5 (non-GBR)
Buffered video stream Mandatory 5QI 6(non-GBR)
Voice, video and interactive games Optional 5QI 7(non-GBR)
TCP-based data service Mandatory 5QI 8(non-GBR)
Progressive image video and shared data services Mandatory 5QI 9(non-GBR)
If voice service is supported in SA mode, the UE shall support the following functions:
a) EPS Fallback support is mandatory, and VoLTE service is established in LTE cell;
b) VoNR support is optional, that is, VoIMS voice service is borne on 5G NR.
5.2.2 NSA operating mode
The UE supports the following service types, and corresponding QCI is shown in Table 6.
Table 6 Service Type Requirements of UE in NSA Mode
Service type Requirements Description
Conversational voice (VoLTE) Mandatory QCI 1 (GBR)
Conversational video (ViLTE) Optional QCI 2(GBR)
PS domain conversational video Mandatory QCI 3(GBR)
Stream Optional QCI 4(GBR)
IMS signaling Mandatory QCI 5 (non-GBR)
Interactive games Mandatory QCI 6(non-GBR)
Interactive TCP Optional QCI 7(non-GBR)
Preferred large size TCP data Mandatory QCI 8(non-GBR)
Best effort large size TCP data Mandatory QCI 9(non-GBR)
In EN-DC dual connectivity mode, voice services are carried by LTE, and the UE shall support VoLTE and CSFB voice schemes.
5.3 Support IPv4 and IPv6
The UE shall provide comprehensive support for IPv6. Specific requirements include: supporting PDN/PDP Types such as IPv4, IPv6 and IPv4v6 in SA and NSA modes; and support IPv4, IPv6 header compression function.
5.4 Support SA and NSA modes
The UE shall support both SA and NSA operating modes by default. The UE can log in to SA or NSA network to work according to the actual network deployment and the 4G/5G interoperability strategy of the network.
6 Basic Functional Requirements on Physical Layer
6.1 SA Operating Mode
6.1.1 Parameter set and frame structure
6.1.1.1 Parameter set
The UE supports the OFDM parameter requirements of Table 7.
Table 7 OFDM Parameter Requirements
μ Δf=2μ·15[kHz] CP length Requirements
0 15 Conventional length CP · Mandatory for initial access;
Optional for data services
1 30 Conventional length CP Mandatory
2 60 Conventional length CP Optional
The UE shall support the time slot symbol configuration of Table 8.
Table 8 Number of OFDM Symbol(s) Contained in Each Time Slot (for Conventional CP)
μ Number of symbols in each time slot ( )
The number of time slots in each frame ( )
The number of time slots in each subframe ( )
Requirements
0 14 10 1 Optional
1 14 20 2 Mandatory
2 14 40 4 Optional
6.1.1.2 Signal waveform
The UE shall support the NR signal waveform requirements of Table 9.
Table 9 NR Signal Waveform Requirements
Signal waveform Requirements Description
Uplink Mandatory Support CP-OFDM waveform
Mandatory Support DFT-S-OFDM waveform
Downlink Mandatory Support CP-OFDM waveform
6.1.1.3 Frame structure
The UE shall support the frame structure requirements of Table 10.
Foreword i
1 Scope
2 Normative References
3 Abbreviations
4 General
4.1 Classification of User Equipment (UE)
4.2 Power Class of UE
4.3 Stand Alone (SA) Operating Mode
4.4 Non-Stand Alone (NSA) Operating Mode
5 Capacity Requirements for UE
5.1 Transmission Capability of UE
5.2 Service Capabilities of UE
5.3 Support IPv4 and IPv
5.4 Support SA and NSA modes
6 Basic Functional Requirements on Physical Layer
6.1 SA Operating Mode
6.2 NSA Operating Mode
7 Basic Functional Requirements for Layer
7.1 SA Operating Mode
7.2 NSA Operating Mode
8 Basic Functional Requirements of RRC Layer
8.1 SA Operating Mode
8.2 NSA Operating Mode
9 Requirements for the NAS Layer Basic Function
9.1 SA Operating Mode
9.2 NSA Operating Mode
10 Requirements for RF Indexes
10.1 Working Band of NR
10.2 Channel Bandwidth of NR
10.3 NR Channel Spacing
10.4 NR Channel Raster
10.5 NR Synchronization Raster
10.6 Index Requirements for SA Mode Transmitter
10.7 Index Requirements for SA Mode Receiver
10.8 Requirements for Radio Frequency of EN-DC Devices
11 Uplink Enhancement (Optional)
11.1 Basic Functions of Uplink Spectrum Sharing
11.2 Uplink Spectrum Sharing in EN-DC Scenarios
12 5G Network Identity Display Requirements in NSA Mode
13 Requirements for Power Consumption
14 Requirements for Interface
14.1 NR Uu Interface Requirements
14.2 LTE Uu Interface Requirements
14.3 USIM-ME Interface Requirements
15 Safety Requirements
15.1 Safety Requirements for SA Mode
15.2 Safety Requirements for NSA Mode
ICS 33.060.99
M36
中华人民共和国通信行业标准
YD/T 3627—2019
5G数字蜂窝移动通信网 增强移动宽带
终端设备技术要求(第一阶段)
5G digital cellular mobile telecommunication network-
technical requirements of eMBB user equipment(Phase 1)
2019-12-24发布 2019-12-24实施
中华人民共和国工业和信息化部 发布
前言
本标准是5G数字蜂窝移动通信网增强移动宽带终端设备第一阶段系列标准之一,该系列标准的结构和名称预计如下:
a)YD/T 3627—2019《5G数字蜂窝移动通信网 增强移动宽带终端设备技术要求(第一阶段)》;
b)《5G数字蜂窝移动通信网 增强移动宽带终端设备测试方法(第一阶段)》。
随着技术的发展,还将制定后续的相关标准。
本标准按照GB/T 1.1-2009给出的规则起草。
请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别这些专利的责任。
本标准由中国通信标准化协会提出并归口。
本标准起草单位:中国信息通信研究院、中国移动通信集团有限公司、中国电信集团有限公司、中国联合网络通信集团有限公司、华为技术有限公司、北京小米移动软件有限公司、OPPO广东移动通信有限公司、维沃移动通信有限公司、联发博动科技(北京)有限公司、北京展讯高科通信技术有限公司、中兴通讯股份有限公司、高通无线通信技术(中国)有限公司、国家无线电监测中心检测中心、大唐电信科技产业集团(电信科学技术研究院)、英特尔(中国)有限公司、上海诺基亚贝尔股份有限公司、鼎桥通信技术有限公司、北京三星通信技术研究有限公司。
本标准主要起草人:李星、陆松鹤、金晨光、何伟俊、张诺亚、周晶、师瑜、沈丽、刘洋、杨宁、张元(维沃移动通信有限公司)、王韵淇、师延山、马伟、陈书平、袁博、邢艳萍、张元(英特尔(中国)有限公司)、贺敬。
5G数字蜂窝移动通信网 增强移动宽带终端设备技术要求
(第一阶段)
1 范围
本标准规定了6GHz以下频段5G增强移动宽带终端设备的传输能力、业务能力、基本协议功能、射频、功耗、接口、安全等方面的要求。
本标准适用于支持增强移动宽带场景(eMBB)的6GHz以下频段的面向非独立组网(Non-Stand Alone)和独立组网(Stand Alone)的5G终端。
2规范性引用文件
下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
YD/T 2575—2016 TD-LTE数字蜂窝移动通信网终端设备技术要求(第一阶段)。
YD/T 2577—2013 LTE FDD数字蜂窝移动通信网终端设备技术要求(第一阶段)。
3GPP TS 23.501(Release 15)5G系统的系统架构(System Architecture for the 5G System)。
3GPP TS 24.301(Release 15)演进的分组系统(EPS)的非接入层(NAS)协议;第三阶段(Non-Access-Stratum(NAS)protocol for Evolved Packet System(EPS);Stage 3)。
3GPP TS 24.501(Release 15)5G系统(5GS)的非接入层(NAS)协议;第三阶段(Non-Access-Stratum(NAS)protocol for 5G System(5GS);Stage 3)。
3GPP TS 36.201(Release 15)演进通用陆地无线接入(E-UTRA);LTE物理层;综述(Evolved Universal Terrestrial Radio Access(E-UTRA):LTE physical layer;General description)。
3GPP TS 36.211(Release 15)演进通用陆地无线接入(E-UTRA);物理信道和调制(Evolved Universal Terrestrial Radio Access(E-UTRA):Physical channels and modulation)。
3GPP TS 36.212(Release 15)演进通用陆地无线接入(E-UTRA);多工和信道编码(Evolved Universal Terrestrial Radio Access(E-UTRA):Multiplexing and channel coding)。
3GPP TS 36.213(Release 15)演进通用陆地无线接入(E-UTRA);物理层程序(Evolved Universal Terrestrial Radio Access(E-UTRA):Physical layer procedures)。
3GPP TS 36.214(Release 15)演进通用陆地无线接入(E-UTRA);物理层;测量(Evolved Universal Terrestrial Radio Access(E-UTRA):Physical layer;Measurements)。
3GPP TS 36.300(Release 15)演进通用陆地无线接入(E-UTRA)和演进通用陆地无线接入网络(E-UTRAN);综述;第2阶段(Evolved Universal Terrestrial Radio Access(E-UTRA)and Evolved Universal Terrestrial Radio Access Network(E-UTRAN):Overall description;Stage 2)。
3GPP TS 36.302(Release 15)演进通用陆地无线接入(E-UTRA);物理层提供的服务(Evolved Universal Terrestrial Radio Access(E-UTRA):Services provided by the physical layer)。
3GPPTS 36.304(Release 15)演进通用陆地无线接入(E-UTRA);空闲模式中的用户设备(UE)程序(Evolved Universal Terrestrial Radio Access(E-UTRA);User Equipment(UE)procedures in idle mode)。
3GPP TS 36.314(Release 15)演进通用陆地无线接入(E-UTRA);层2-测量(Evolved Universal Terrestrial Radio Access(E-UTRA):Layer 2-Measurements)。
3GPP TS 36.321(Release 15)演进通用陆地无线接入(E-UTRA):媒体接入控制(MAC)协议规范(Evolved Universal Terrestrial Radio Access(E-UTRA):Medium Access Control(MAC)protocol specification)。
3GPP TS 36.322(Release 15)演进通用陆地无线接入(E-UTRA):无线链路控制(RLC)协议规范(Evolved Universal Terrestrial Radio Access(E-UTRA):Radio Link Control(RLC)protocol specification)。
3GPP TS 36.323(Release 15)演进通用陆地无线接入(E-UTRA);分组数据集中协议(PDCP)规范(Evolved Universal Terrestrial Radio Access(E-UTRA);Packet Data Convergence Protocol(PDCP)specification)。
3GPP TS 36.331(Release 15)演进通用陆地无线接入(E-UTRA);无线资源控制(RRC);协议规范(Evolved Universal Terrestrial Radio Access(E-UTRA);Radio Resource Control(RRC):Protocol specification)。
3GPP TS 37.324(Release 15)演进通用陆地无线接入(E-UTRA)和NR;服务数据应用协议(SDAP)规范(Evolved Universal Terrestrial Radio Access(E-UTRA)and NR;Service Data Adaptation Protocol(SDAP)specification)。
3GPP TS 37.340(Release 15)演进的通用陆地无线接入(E-UTRA);多连接;第二阶段(Evolved Universal Terrestrial Radio Access(E-UTRA)and NR;Multi-connectivity;Stage-2)。
3GPP TS 38.101-1(Release 15)新空口(NR);用户设备(UE)无线发射和接收;第一部分:频段范围1独立组网(NR;User Equipment(UE)radio transmission and reception;Part 1:Range 1 Standalone)。
3GPP TS 38.101-3(Release 15)新空口(NR);用户设备(UE)无线发射和接收;第三部分:频段范围1和频段范围2与其他无线技术协作(NR;User Equipment(UE)radio transmission and reception;Part 3:Range 1 and Range 2 Interworking operation with other radios)。
3GPPTS 38.201(Release 15)新空口(NR);物理层;概述(NR;Physical layer;General description)。
3GPP TS 38.202(Release 15)新空口(NR);物理层提供的服务(NR;Services provided by the physical layer)。
3GPPTS 38.211(Release 15)新空口(NR);物理信道和调制(NR;Physical channels and modulation)。
3GPPTS 38.212(Release 15)新空口(NR);复用和信道编码(NR;Multiplexing and channel coding)。
3GPP TS 38.213(Release 15)新空口(NR);用于控制的物理层过程(NR;Physical layer procedures for control)。
3GPP TS 38.214(Release 15)新空口(NR);用于数据的物理层过程(NR;Physical layer procedures for data)。
3GPP TS 38.215(Release 15)新空口(NR):物理层测量(NR;Physical layer measurements)。
3GPP TS 38.300(Release 15)新空口(NR);概述;第二阶段(NR;Overall description;Stage-2)。
3GPP TS 38.304(Release 15)新空口(NR);用户设备(UE)空闲模式过程(NR;User Equipment(UE)procedures in idle mode)。
3GPP TS 38.306(Release 15)新空口(NR);用户设备(UE)无线接入能力(NR;User Equipment(UE)radio access capabilities)。
3GPP TS 38.307(Release 15)新空口(NR);用户设备(UE)支持与版本无关的频段的要求(NR;Requirements on User Equipments(UEs)supporting a release-independent frequency band)。
3GPP TS 38.321(Release 15)新空口(NR);媒体访问控制协议(MAC)规范(NR;Medium Access Control(MAC)protocol specification)。
3GPP TS 38.322(Release 15)新空口(NR):无线链路控制协议(RLC)规范(NR;Radio Link Control(RLC)protocol specification)。
3GPP TS 38.323(Release 15)新空口(NR);分组数据汇聚协议(PDCP)规范(NR;Packet Data Convergence Protocol(PDCP)specification)。
3GPP TS 37.324(Release 15)新空口(NR);业务数据协议(SDAP)规范(NR;Service Data Protocol(SDAP)specification)。
3GPP TS 38.33l(Release 15)新空口(NR);无线资源控制协议(RRC)规范(NR;Radio Resource Control(RRC):Protocol specification)。
3GPP TS 38.401(Release 15)新一代无线网(NG-RAN);架构概述(NG-RAN;Architecture description)。
3缩略语
下列符号和缩略语适用于本文件。
ACK Acknowledgement 肯定确认
AM Acknowledgement Mode 确认模式
AMC Adaptive Modulation and Coding 自适应调制和编码
ARQ Automatic Repeat-reQuest 自动重传请求
BBU BaseBand Unit 基带单元
BCCH Broadcast Control CHannel 广播控制信道
BCH Broadcast CHannel 广播信道
BER Bit Error Ratio 误码率
BLER Block Error Ratio 误块率
BIT/SK Binary Phase Shift Keying 二相相移键控
CCCH Common Control CHannel 公共控制信道
CCE Control Channel Element 控制信道粒子
CMAS Commercial Mobile Alert Service 商用移动预警服务
CP Cyclic Prefix 循环前缀
CPE Customer Premise Equipment 客户终端设备
CQI Channel Quality Indicator 信道质量指示
CRC Cyclic Redundancy Check 循环冗余校验
CSI Channel State Information 信道状态信息
DCCH Dedicated Control Channel 专用控制信道
DCI Downlink Control Information 下行控制信息
DFT-S-OFDM DFT-Spread OFDM DFT扩展OFDM
DL Downlink 下行
DL-SCH Downlink Shared Channel 下行共享信道
DRX Discontinuous Reception 不连续接收
DTX Discontinuous Transmission 不连续发送
eNodeB(eNB) Evolved NodeB LTE基站
EPC Evolved Packet Core network 演进型分组核心网
EWTS Earthquake and Tsunami Warning System 地震/海啸警告系统
GBR Guaranteed Bit Rate 保证比特率
GP Guard Period 保护时隙
GPS Global Positioning System 全球定位系统
HARQ Hybrid Automatic Repeat-reQuest 混合自动重传请求
IR Incremental Redundancy 增量冗余
LTE Long Term Evolution 长期演进
MAC Media Access Control 媒体接入控制
MCS Modulation and Coding Scheme 调制编码方式
MIB Master Information Block 主信息块
MiFi Mobile Wi-Fi Hotspot 移动无线热点终端
MIMO Multiple Input Multiple Output 多入多出
NACK Negative Acknowledgement 否定确认
NSA Non-Standalone 非独立组网
OFDMA Orthogonal Frequency Division Multiple Access 正交频分多址
PBCH Physical Broadcast Channel 物理广播信道
PCCH Paging Control Channel 寻呼控制信道
PCH Paging Channel 寻呼信道
PDCCH Physical Downlink Control Channel 物理下行控制信道
PDCP Packet Data Convergence Protocol 分组数据汇聚协议
PDSCH Physical Downlink Shared Channel 物理下行共享信道
PDU Packet Data Unit 分组数据单元
PHY Physical layer 物理层
PLMN Public Lands Mobile Network 公众陆地移动通信网
PMI Precoding matrix indicator 预编码矩阵指示符
PRACH Physical Random Access Channel 物理随机接入信道
PRB Physical Resource Block 物理资源块
PUCCH Physical Uplink Control Channel 物理上行控制信道
PUSCH Physical Uplink Shared Channel 物理上行共享信道
PSS Primary Synchronization Signal 主同步信号
QAM Quadrature Amplitude Modulation 正交调幅
QPSK Quatemary Phase Shift Keying 四相移相键控
RACH Random Access Channel 随机接入信道
RAT Radio Access Technology 无线接入技术
RB Radio Bearer 无线承载
REG RE Group RE组
RI Rank Indicator 秩指示
RLC Radio Link Control 无线链路控制
RNTI Random Access Radio Network Temporary Identifier 随机接入无线网络临时标识
ROHC Robust Header Compression 可靠头压缩
RRC Radio Resource Control 无线资源控制
RRU Radio Remote Unit 无线远端单元
RS Reference Signal 参考信号
RSRP RS Received Power RS接收功率
RSRQ RS Received Quality RS接收质量
RV Redundancy Version 冗余版本
SA Standalone 独立组网
SC-FDMA Single Carrier FDMA 单载波频分多址
SCH Synchronization Channel 同步信道
SDU Service Data Unit 业务数据单元
SIB System Information Block 系统信息块
SRS Sounding Reference Signal 信道探测参考信号
SSS Secondary Synchronization Signal 辅同步信号
SUL Supplementary uplink 补充上行
TA Timing Advance 时间提前量
TDD Time Division Duplex 时分双工
TM Transparent Mode 透明模式
TPC Transmit Power Control 发送功率控制
TTI Transmission Time Interval 发送时间间隔
UCI Uplink Control Information 上行控制信息
UE User Equipment 用户设备
UL Uplink 上行
UL-SCH Uplink Shared Channel 上行共享信道
UM Un-acknowledgement Mode 非确认模式
UTC Coordinated Universal Time 世界标准时间
URSP UE Route Selection Policy 终端路由选择策略
VoIMS Voice Over IMS IMS承载语音方案
VoLTE Voice Over LTE LTE承载语音方案
4概述
4.1 UE的分类
根据终端的尺寸和使用范围,大致可将终端进行以下分类:
—语音数据类终端:既能支持电路域或分组域语音,也能支持分组域承载业务的终端设备,如手机类手持终端;
—数据类终端:不支持CS域语音业务,支持分组域承载业务的终端设备;如Wi-Fi、数据卡、CPE等。
4.2 UE的功率等级
UE的功率等级是按所有蜂窝天线的最大输出功率来定义的,见表1。
表1 UE的功率等级
功率等级 最大输出功率 要求
2 +26dBm SA工作模式时,必选
3 +23dBm NSA工作模式时,必选
4.3独立组网(SA)工作模式
SA模式应支持Option2。在该模式下,终端通过NR空口接入连接5G核心网的5G基站(gNB)。Option2组网架构示意如图1所示。
图1 Option2组网架构示意
4.4非独立组网(NSA)工作模式
NSA模式应支持Option3a和Option 3x,如图2所示。在该模式下,终端通过LTE空口和NR空口双连接方式接入连接4G核心网的4G基站(eNB)和5G基站(gNB),其中4G基站为主站(MN)、5G基站为辅站。
图2 Option3a/3x组网架构示意
5 UE的能力要求
5.1 UE的传输能力
5.1.1 SA工作模式
根据终端的上行能力配置,SA工作模式下终端分为两种类型:
—类型1终端:支持上行单发、支持SRS轮发1T2R、支持HPUE(单天线26dBm)、支持上行256QAM调制;
—类型2终端:支持上行双发、支持SRS轮发2T4R、支持HPUE(双天线23+23dBm)、支持上行256QAM调制。
SA工作模式类型1终端的传输能力应满足表2的要求。
表2 SA工作模式类型1终端传输能力要求