![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative. This document is developed in accordance with the rules given in GB/T 1.1-2020 Directives for standardization—Part 1: Rules for the structure and drafting of standardizing documents. This document replaces NB/T 47012-2010 Pressure vessels for refrigerant equipment. The following main technical changes have been made with respect to NB/T 47012-2010: a) Clause 1 ——The pressure range and volume range applicable to the document have been modified; ——Provisions on the design by confirmatory test analysis method have been introduced. b) Clause 3 "Terms and definitions" has been introduced; c) Clause 4 ——Provisions on the roles and responsibilities of the user/design employer have been introduced. ——Requirements for quality plan have been added to the roles and responsibilities of the manufacturer; ——The refrigerant has been adjusted according to the current situation and development needs of the industry; ——Category E welded joints have been added and relevant provisions have been made accordingly; ——Provisions on the welded joint coefficient on the secondary refrigerant side of heat exchanger have been introduced; ——The safety factor has been modified according to TSG 21-2016 Supervision Regulation on Safety Technology for Stationary Pressure Vessel. d) Clause 5 ——The provisions on the use of Q235 series and other materials have been modified; ——The provisions on the use and allowable stress of heat exchange tube materials have been modified; ——The provisions on the use and allowable stress of titanium heat exchange tube have been introduced; ——The provisions on the use of cast steel and cast iron have been introduced. e) Clause 6 ——The design calculation methods of internal pressure cylinder and external pressure cylinder have been modified, and the calculation of both are required to be performed in accordance with GB/T 150.3; ——Requirements for the center-to-center distance at the orifice of heat exchange tube with an outside diameter of ϕ6 mm have been introduced; ——The requirements for allowable deviation in the outside diameter of heat exchange tube and the tube orifice diameter of tubesheet have been modified, and provisions on allowable deviation in the outside diameter of small-diameter heat exchange tube and the tube orifice diameter of tubesheet have been introduced; ——The requirements for allowable deviation in tube orifice diameter of the baffle plate and the bearing plate have been modified, and provisions on allowable deviation in tube orifice diameter of the baffle plate and the bearing plate for small-diameter heat exchange tubes have been introduced; ——Provisions on external pressure design for integrally finned tubes made of copper and copper alloys, and titanium alloys by means of confirmatory external pressure test have been introduced. f) Clause 7 ——The presentation way of the clause has been modified with the same provisions as GB/T 150.1, GB/T 150.4, GB/T 151, JB/T 4734, JB/T 4745 and JB/T 4755 directly referenced instead of repeat. ——The dimensions concerning the width of tubesheet orifice bridge have been modified; ——Provisions on tube blockage for heat exchangers have been introduced. g) Annexes ——Annex A “Design for external pressure of integrally finned heat exchange tubes made of copper and copper alloy and titanium alloy” has been added; ——The calculation method for safety valves has been modified so as to align with GB/T 9237-2017 Refrigerating systems and heat pumps—Safety and environmental requirements. This standard was proposed by and is under the jurisdiction of the Stationary Pressure Vessel Subcommittee of the National Technical Committee on Boilers and Pressure Vessels of Standardization Administration of China (SAC/TC 262). The previous editions of this standard are as follows: ——JB/T 6917-1993, JB 6917-1998, JB/T 4750-2003 and NB/T 47012-2010. Pressure vessels for refrigerant device 1 Scope 1.1 This document specifies design, manufacture, inspection and acceptance requirements of pressure vessels for refrigerant devices, including shell-and-tube heat exchangers (HEs) for refrigerant devices, , with liquefied gas as the refrigerant, the design pressure not higher than 5.0 MPa and design temperature not higher than 200 °C (hereinafter referred to as "vessels"). 1.2 The working cycle of refrigerant device shall adopt vapor compression refrigeration cycle and heat pump and similar cycles. 1.3 This document is not applicable to the following pressure vessels: a) Vessels with the inside diameter (the maximum geometric size of inner section boundary for vessels with non-circular section) less than 150 mm or volume capacity less than 0.03 m3; b) Shell-free tube-in-tube HE, refrigerant tubular HE, plate HE; c) The generator of direct-fired absorption refrigerant device. 1.4 Vessels or pressure elements with the structural dimensions that cannot be determined in accordance with this standard are allowed to be designed by the following methods: a) Stress analysis, calculation and assessment including finite element method, with the specific requirements complying with Annex E of GB/T 150.1-2011; b) Comparative empirical design using comparable proven structures, with the specific requirements complying with Annex D of GB/T 150.1-2011; c) Design by confirmatory test analysis method, with the specific requirements complying with Annex C of GB/T 150.1-2011 for design by confirmatory blasting test method, and complying with Annex A for external pressure design of integrally finned tubes made of copper and copper alloy and titanium alloy by confirmatory external pressure test. 2 Normative references The following documents contain provisions which, through reference in this text, constitute provisions of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. GB/T 150.1-2011 Pressure vessels--Part 1: General requirements GB/T 150.2 Pressure vessels—Part 2: Materials GB/T 150.3-2011 Pressure vessels—Part 3: Design GB/T 150.4 Pressure vessels--Part 4: Fabrication, inspection and testing, and acceptance GB/T 151 Heat exchangers GB/T 536 Liquefied anhydrous ammonia GB/T 1226-2017 General pressure gauge GB/T 1348-2019 Spheroidal graphite iron castings GB/T 1527 Drawn tube of copper and copper alloys GB/T 3091 Welded steel pipes for low pressure liquid delivery GB/T 3625 Titanium and titanium alloy tube for condensers and heat exchangers GB/T 6893 Aluminum and aluminum alloys cold drawn(rolled) seamless tubes GB/T 7778 Number designation and safety classification of refrigerants GB/T 8163-2018 Seamless steel tubes for liquid service GB/T 8890 Seamless copper alloy tube for condenser and heat-exchanger GB/T 9439-2010 Grey iron castings GB/T 9948 Seamless steel tubes for petroleum cracking GB/T 17791 Seamless copper and copper alloys tube for air conditioner and refrigeration equipment GB/T 20928 Seamless inner grooved copper tube GB/T 25198 GB/T 25198Heads for pressure vessels HG/T 20592 Steel pipe flanges (PN designated) HG/T 20613 Bolting for use with steel pipe flanges (PN designated) HG/T 20615 Steel pipe flanges (Class designated) HG/T 20634 Bolting for use with steel pipe flanges (Class designated) JB/T 4734 Aluminum welded vessels JB/T 4745 Titanium welded vessels JB/T 4755 Copper pressure vessels JB/T 6918-2017 The sintered metal and glass visual lens and liquid meter for refrigeration JB/T 10503 Specification for high performance tubes for air conditioning and refrigeration field service NB/T 47013.8 Nondestructive testing of pressure equipments—Part 8: Leakage testing NB/T 47014 Welding procedure qualification for pressure equipment NB/T 47018 (All parts) Technical permission of welding materials for pressure equipment NB/T 47020 Type and specification for pressure vessel flanges NB/T 47021 A-type socket-weld flange NB/T 47022 B-type socket-weld flange NB/T 47023 Welding neck flange NB/T 47024 Nonmetallic gaskets NB/T 47025 Spiral wound gaskets NB/T 47026 Double-jacketed gaskets NB/T 47027 Stud blots & nuts for body flange NB/T 47065.1-2018 Vessel support—Part 1: Saddle support NB/T 47065.2-2018 Vessel support—Part 2: Leg support NB/T 47065.3-2018 Vessel support—Part 3: Lug support NB/T 47065.4-2018 Vessel support—Part 4: Bracket support 3 Terms and definitions For the purposes of this document, the terms and definitions given in GB/T 150.1 and GB/T 151 apply. 3.1 refrigerant fluid used to transfer heat in a refrigeration system which absorbs heat in low temperature and low pressure environment and releases heat in high temperature and high pressure environment, usually accompanied by a phase change process 3.2 secondary refrigerant fluid that transfers heat between the cooled medium and the evaporator of the refrigeration unit, which, for the purpose of this standard, refers to liquid, e.g. water and ethylene glycol, that does not change in phase during working process 4 General 4.1 Basic requirements 4.1.1 The design, manufacture, inspection and acceptance of the vessels shall not only comply with the provisions of this document, but also comply with the relevant national laws, regulations and technical codes for safety. 4.1.2 The designer and manufacturer of the vessels shall have and implement a sound and effective quality assurance system. 4.1.3 The design and manufacture of the vessels within the scope specified in TSG 21 shall be supervised by the special equipment safety supervision body. 4.2 Qualifications, roles and responsibilities 4.2.1 Qualifications For pressure vessels within the scope specified in TSG 21, the designer shall obtain an appropriate pressure vessel design license; the manufacturer shall obtain an appropriate special equipment manufacturing license. 4.2.2 Roles and responsibilities 4.2.2.1 User/design employer The user/design employer of the vessel shall submit the design conditions to the designer in due written form, at least incorporating a) the main standards and specifications on which the vessel design is based; b) operating parameters, including working pressure, working temperature range, liquid level and nozzle load; c) place of use and natural conditions, including ambient temperature and seismic fortification intensity; d) refrigerant reference number and safety grouping; e) design service life; f) geometric parameters and nozzle orientation; and g) other necessary conditions for design. 4.2.2.2 Designer a) The designer is held responsible for the accuracy and integrity of the design documents; b) The design documents of the vessel shall at least include strength calculation sheets, design drawings, manufacturing technical conditions, risk assessment report if required by relevant regulations or the design employer, and the installation, operation and maintenance instructions if necessary; c) The general design drawing of the pressure vessels within the scope specified in TSG 21 shall be stamped with the special seal for design of the special equipment designer; d) The issued risk assessment report shall meet the requirements of Annex F in GB/T 150.1-2011; e) The designer shall keep all the design documents for the design service life of the vessels. 4.2.2.3 Manufacturer a) The manufacturer shall manufacture in accordance with the design drawing. To make a change in the original design, a written approval shall be obtained from the original designer, and the part to be changed shall be recorded in detail; b) Before manufacturing the vessel, a sound quality plan shall be formulated, which at least includes manufacturing process control points, inspection items and acceptable criteria of the vessel or pressure element. c) The inspection department of the manufacturer shall carry out all inspections and tests according to the requirements of this standard, the design drawings, design documents and quality plan during and after the manufacturing process, and shall accordingly issue a report and be held responsible for its accuracy and integrity. d) For each vessel product manufactured, at least the following technical documents shall be kept for future reference for the designed service life of the vessel (for vessels manufactured according to TSG 21 and in batches, these documents may be kept by batch, with the serial numbers of all the vessels in the batch indicated): ——quality plan; ——manufacturing process drawing or manufacturing process card; ——product quality certificates; ——documents on welding process and heat treatment process of the vessel; ——records on the inspection and test items specified in the standard as voluntary for the manufacturer; ——records on the check, inspection and test performed during and after the manufacturing process; and ——original design drawings and as-built drawings of the vessel. e) After obtaining the confirmation from the supervision and inspection organizations that the vessel quality meets the requirements of this document and the design documents, the product quality certificate shall be completed and delivered to the user. 4.3 Scope of the vessel 4.3.1 The refrigeration vessel specified in this standard covers the shell and its integrated the pressure and non-pressure elements, with the specific scope defined is in accordance with the requirements of 4.3.2 to 4.3.5. 4.3.2 Connection between the vessel and the external tube: a) The groove end face of the first girth joint of welded connection; b) The end face of the first threaded joint of threaded connection; c) The first flange sealing surface of flanged connection; d) The first sealing surface of connection by special connecting piece or pipe fittings. 4.3.3 Pressure-bearing covers, e.g. of nozzles and inspection holes, and their fasteners and seals. 4.3.4 Non-pressure elements and their connection welds with pressure elements 4.3.5 Safety accessories and instruments directly installed on the vessel (see Annex B). 4.4 Design parameters 4.4.1 Pressure (gauge pressure unless otherwise indicated) 4.4.1.1 Working pressure It refers to the highest pressure that may occur at the top of the vessel when the refrigerant device is in normal operation or stops running. At the high pressure side, it shall be the highest pressure that may occur at the top of the vessel when the refrigerant device is in normal operation, while at the low pressure side, it shall be the highest pressure that may occur at the top of the vessel when the refrigerant device stops running. 4.4.1.2 Design pressure It refers to the set maximum pressure at top of the vessel, which, together with the corresponding design temperature, taken as the design load condition, and shall not be lower than the working pressure. It is determined with the following considerations taken into account: a) If the vessel consists of more than two pressure chambers and the pressures acting on each chamber are different, the design pressure shall be determined separately according to the pressure of each chamber. b) In order to make the working pressure not exceed the design pressure of the vessel, the loaded amount of refrigerant is limited as follows: 1) For accumulator-type vessels, the loaded amount of refrigerant liquid shall not exceed 80% of the vessel volume capacity; 2) For cascade-type refrigerant devices, the loaded amount of refrigerant at the low temperature side is determined by calculation. c) Regarding the design pressure at the high pressure side, in the refrigeration cycle system, the part that bears condensation pressure due to the action of compressor belongs to the high pressure side. The design pressure at the high pressure side shall be higher than the saturated vapor pressure corresponding to the highest possible condensation temperature of refrigerant under normal operation conditions, and the relationship between the condensation temperature and saturated pressure may be determined according to Table 1 (this table lists the properties of commonly used refrigerants, and for the properties of other refrigerants, refer to relevant refrigerant user manuals). d) Regarding the design pressure at the low pressure side, the part of refrigeration cycle system other than the high pressure side, the intermediate pressure part of the intercooler of two-stage compression refrigerant device and the condensing evaporator of cascade refrigerant device with the condensing temperature not higher than -15 °C belong to the low pressure side. The design pressure at the low pressure side shall be as follows: 1) The design pressure is generally determined according to the saturated vapor pressure of refrigerant at 38°C, as shown in Table 1; 2) When the ambient temperature exceeds 38°C, it is determined according to the highest pressure reached by the refrigerant. 4.4.2 Temperature 4.4.2.1 Design temperature It refers to the set metal temperature of element, i.e. the average temperature along the element metal section, under normal operating conditions. The design temperature and design pressure are the conditions of design load. If the temperature of each working compartment of the vessel is different, the design temperature shall be determined separately. When the metal temperature of element is not lower than 0°C, the design temperature shall not be lower than the highest possible metal temperature of the element under normal operation; when the metal temperature of element is lower than 0°C, the design temperature shall not be higher than the lowest possible metal temperature of the element. 4.4.2.2 Design temperature at the high pressure side It is selected according to the highest possible metal temperature of element at the high pressure side under normal operating conditions. For vessels that do not exchange heat, the maximum working temperature of refrigerant is generally taken as the design temperature. When the pressure element is exposed to two media with different temperatures, the higher temperature of the two media shall be generally selected. When the ambient temperature is lower than 0°C, the design temperature at the high pressure side is determined as above, but an assessment shall be made to confirm that the primary general membrane stress and bending stress of the vessel when the temperature is lower than 0°C during shutdown is less than or equal to 1/6 of the material's normal temperature yield strength and do not exceed 50 MPa. If not, it shall be designed according to the requirements of Annex E of GB/T 150.3-2011. 4.4.2.3 Design temperature at the low pressure side When the service temperature is lower than 0°C, if the primary general membrane stress and bending stress at the service temperature is less than or equal to 1/6 of the normal temperature yield point of the material and do not exceed 50 MPa, the design temperature is the algebraic sum of the service temperature and 50°C (40°C for the vessel without post-weld heat treatment). When the design temperature obtained as above is not lower than -20°C, the design temperature shall be determined as the case not lower than 38°C. When the design temperature obtained as above method is lower than -20°C, the vessel shall be designed according to Annex E of GB/T 150.3-2011. 4.4.3 Thickness 4.4.3.1 The additional thickness of the vessel is the sum of the negative deviation of material thickness and corrosion allowance. The negative deviation of material thickness is determined according to the corresponding material standard; the corrosion allowance is determined as specified in 4.4.3.2. 4.4.3.2 Different corrosion allowance may be used when the corrosion degree varies with the elements of the vessel. The corrosion allowances for the elements of the vessel may be as follows: a) When the outer surface of the vessel made of carbon steel or low alloy steel (with the inner side as the refrigerant side) is directly exposed to weather or exposed to air, water vapor and water, the corrosion allowance is not less than 1 mm; b) With the same corrosion environment as mentioned in paragraph a), when the outer surface of the material has an effective corrosion-resistant protective film and is easy to maintain, the corrosion allowance is not less than 0.6 mm; c) In indoors environment or with weatherproof measures, when the outer surface of the material has an effective corrosion-resistant protective film, and it is intended to be used in a slightly corrosive environment, the corrosion allowance is not less than 0.4 mm; d) For the vessels and tube walls on the side exposed to the refrigerant, generally corrosion allowance is not considered; e) The corrosion allowance is not less than 1 mm in the case of carbon steel vessels or low alloy steel vessels with water vapor or water as the medium; f) Generally, corrosion allowance is not considered for heat exchange tubes as their thickness shall be able to meet the design service life requirements. Foreword i 1 Scope 2 Normative references 3 Terms and definitions 4 General 5 Materials 6 Design 7 Manufacturing, inspection and acceptance Annex A (Normative) Design for external pressure of integrally finned heat exchange tubes made of copper and copper alloy and titanium alloy Annex B (Normative) Safety accessories and instruments Annex C (Normative) Requirements of pressure vessels for steel ammonia refrigerant devices for liquid ammonia and filling procedures 制冷装置用压力容器 1 范围 1.1 本文件规定了以液化气体为制冷剂、设计压力不高于5.0MPa、设计温度不高于200℃的制冷装置用压力容器(包括制冷装置用管壳式热交换器,以下简称“容器”)的设计、制造、检验与验收要求。 1.2 制冷装置工作循环应采用蒸气压缩式制冷循环及热泵等类似循环。 1.3本文件不适用于下列压力容器: a)内直径(对非圆形截面容器指截面内边界最大几何尺寸)小于150mm或容积小于0.03m3的容器; b)无壳体的套管式热交换器、冷却排管、板式热交换器等; c)直燃型吸收式制冷装置的发生器。 1.4不能采用本文件确定结构尺寸的容器或受压元件,允许用以下方法进行设计: a)采用包括有限元法在内的应力分析计算和评定,具体要求应符合GB/T 150.1—2011附录E的规定; b)采用可比的已投入使用的结构进行对比经验设计,具体要求应符合GB/T 150.1—2011附录D的规定; c)采用验证性试验分析方法进行设计。其中,当采用验证性爆破试验方法进行设计时,具体要求应符合GB/T 150.1—2011附录C的规定;当采用验证性外压试验方法进行铜及铜合金、钛合金制整体翅片换热管的外压设计时,应符合附录A的规定。 2规范性引用文件 下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 150.1—2011 压力容器 第1部分:通用要求 GB/T 150.2压力容器 第2部分:材料 GB/T 150.3—2011压力容器 第3部分:设计 GB/T 150.4压力容器 第4部分:制造、检验和验收 GB/T 151热交换器 GB/T 536液体无水氨 GB/T 1226—2017一般压力表 GB/T 1348—2019球墨铸铁件 GB/T 1527铜及铜合金拉制管 GB/T 3091低压流体输送用焊接钢管 GB/T 3625换热器及冷凝器用钛及钛合金管 GB/T 6893铝及铝合金拉(轧)制无缝管 GB/T 7778制冷剂编号方法与安全性分类 GB/T 8163—2018输送流体用无缝钢管 GB/T 8890热交换器用铜合金无缝管 GB/T 9439—2010灰铸铁件 GB/T 9948石油裂化用无缝钢管 GB/T 17791 空调与制冷设备用铜及铜合金无缝管 GB/T 20928无缝内螺纹铜管 GB/T 25198压力容器封头 HG/T 20592钢制管法兰(PN系列) HG/T 20613钢制管法兰用紧固件(PN系列) HG/T 20615钢制管法兰(Class系列) HG/T 20634钢制管法兰用紧固件(Class系列) JB/T 4734铝制焊接容器 JB/T 4745钛制焊接容器 JB/T 4755铜制压力容器 JB/T 6918—201 7制冷用金属与玻璃烧结液面计和视镜 JB/T 10503 空调与制冷用高效换热管 NB/T 47013.8承压设备无损检测 第8部分:泄漏检测 NB/T 47014承压设备焊接工艺评定 NB/T 47018(所有部分)承压设备用焊接材料订货技术条件 NB/T 47020压力容器法兰分类与技术条件 NB/T 47021 甲型平焊法兰 NBIT 47022 乙型平焊法兰 NB/T 47023 长颈对焊法兰 NB/T 47024非金属软垫片 NB/T 47025缠绕垫片 NB/T 47026金属包垫片 NB/T 47027压力容器法兰用紧固件 NB/T 47065.1—2018容器支座 第1部分:鞍式支座 NB/T 47065.2—2018容器支座 第2部分:腿式支座 NB/T 47065.3—2018容器支座 第3部分:耳式支座 NB/T 47065.4—2018容器支座 第4部分:支承式支座 3术语和定义 GB/T 150.1和GB/T 151界定的术语和定义适用于本文件。 3.1 制冷剂refrigerant 在制冷系统中用于传递热量的流体,在低温低压环境吸收热量,在高温高压环境放出热量,通常伴有相变过程。 3.2 载冷剂secondary refrigerant 在被冷却介质和制冷机组蒸发器之间起传递热量作用的流体。本文件涉及的载冷剂均为在工作过程中不发生相变的液体(如水、乙二醇等)。 4总则 4.1 基本规定 4.1.1 容器的设计、制造、检验和验收除应符合本文件的规定外,还应遵守同家颁布的有关法律、法规和安全技术规范的有关规定。 4.1.2容器的设计、制造单位应具有健全的质量保证体系并有效运行。 4.1.3 TSG 21规定范围内的容器,其设计、制造应接受特种设备安全监察机构的监察。 4.2资格和职责 4.2.1 资格 TSG 21规定范围内的压力容器,其设计单位应取得对应的压力容器设计许可;制造单位应取得相应的特种设备制造许可。 4.2.2职责 4.2.2.1 用户或设计委托方职责 容器的用户或设计委托方应以正式书面形式向设计单位提出设计条件,并应至少包括下列内容: a)容器设计所依据的主要标准和规范; b)操作参数(包括工作压力、工作温度范围、液位高度、接管载荷等); c)使用地及自然条件(包括环境温度、抗震设防烈度等); d)制冷剂编号及安全分组; e)设计使用年限; f)几何参数和管口方位; g)设计所需的其他必要条件。 4.2.2.2设计单位职责 a)对设计文件的准确性和完整性负责; b)容器的设计文件至少应包括强度计算书、设计图样、制造技术条件、风险评估报告(相关法规或设计委托方要求时),必要时还应当包括安装与使用维修说明; c)TSG 21规定范围内压力容器的设计总图应盖有特种设备设计单位设计专用印章; d)出具的风险评估报告应符合GB/T 150.1—2011中附录F的要求; e)应在容器设计使用年限内保存全部容器设计文件。 4.2.2.3制造单位职责 a)应按照设计文件的要求进行制造,如需对原设计进行更改,应取得原设计单位同意更改的书面文件.并对改动部位作出详细记载。 b)容器制造前应制定完善的质量计划,其内容至少包括容器或受压元件的制造工艺控制点、检验项目和合格指标。 c)制造单位的检验部门在容器制造过程中和完工后,应按本文件、设计文件及质量计划的规定对容器进行各项检验和试验,出具相应报告,并对报告的准确性和完整性负责。 d)对其制造的每台容器产品应在容器设计使用年限内至少保存下列技术文件备查(对于符合TSG 21规定、按批量制造的容器,可按批保存文件,并标明该批所有容器的编号): ——质量计划; ——制造工艺图或制造工艺卡; ——产品质量证明文件; ——容器的焊接工艺和热处理工艺文件; ——标准中允许制造厂选择的检验、试验项目记录; ——制造过程及完工后的检查、检验、试验记录; ——容器原设计图和竣工图。 e)在取得监检机构确认容器质量符合本文件和设计文件要求后,应填写产品质量证明书,并交付用户。 4.3容器范围 4.3.1 本文件规定的制冷容器,是指壳体及与其连为整体的受压元件和非受压元件,具体划定范围按4.3.2~4.3.5的要求。 4.3.2容器与外管道连接: a)焊接连接的第一道环向焊接接头坡口端面; b)螺纹连接的第一个螺纹接头端面; c)法兰连接的第一个法兰密封面; d)专用连接件或管件连接的第一个密封面。 4.3.3接管、检查孔等承压盖及其紧固件、密封件。 4.3.4非受压元件及与受压元件的连接焊缝。 4.3.5 直接安装在容器上的安全附件与仪表(见附录B)。 4.4设计参数 4.4.1 压力(除注明外均指表压) 4.4.1.1 工作压力 制冷装置在正常运转或停止运转时,容器顶部可能出现的最高压力。高压侧应为制冷装置在正常运转时,容器顶部可能出现的最高压力;低压侧应为制冷装置在停止运转时,容器顶部可能出现的最高压力。 4.4.1.2设计压力 指设定的容器顶部的最高压力,与相应的设计温度一起作为设计载荷的条件,其值应不低于工作压力,确定时应考虑: a)容器由两个以上压力室构成且作用于各室的压力不同时,应按各室压力分别确定设计压力。 b)为使其工作压力不超过容器的设计压力,制冷剂的充装量限制如下: 1)储液器类容器:制冷剂液体充装量应不超过容器容积的80%; 2)复叠式制冷装置:通过计算确定低温侧的制冷剂充装量。 c)高压侧设计压力:制冷循环系统中,由于压缩机的作用而承受冷凝压力的部分属于高压侧。高压侧设计压力应高于在正常运转条件下,制冷剂可能达到的最高冷凝温度相对应的饱和蒸气压力,冷凝温度与饱和压力的关系可按表1确定(该表为常用制冷剂性质,其他制冷剂的性质可参考有关制冷剂使用手册)。 d)低压侧设计压力:制冷循环系统中高压侧以外的部分,双级压缩制冷装置的中间冷却器的中压部分和复叠式制冷装置中冷凝温度不高于-15℃的冷凝蒸发器亦属于低压侧。低压侧的设计压力应按下述规定: 1)设计压力一般按38℃时制冷剂饱和蒸气压力确定,见表1; 2)当环境温度超过38℃时,则按制冷剂达到的最高压力确定。 4.4.2温度 4.4.2.1 设计温度 指在正常操作条件下,设定的元件金属温度(沿元件金属截面的温度平均值)。设计温度与设计压力一起作为设计载荷的条件。容器各工作室的温度不同时,应分别确定设计温度。当元件金属温度不低于0℃时,设计温度不得低于元件在正常操作状态下可能达到的最高金属温度;当元件金属温度低于0℃时,设计温度不得高于元件可能达到的最低金属温度。 4.4.2.2高压侧设计温度 按高压侧在正常操作条件下各元件金属可能达到的最高温度选取。对不进行换热的容器,一般取制冷剂的最高工作温度为设计温度。当受压元件与两种不同温度的介质接触时,一般应按两者中较高温度选取。当环境温度低于0℃时,高压侧设计温度仍遵循上述原则,但应评估确定停机时温度低于0℃时容器一次总体薄膜应力和弯曲应力小于或等于材料常温屈服强度的1/6,且不大于50MPa。若不满足,则应按GB/T 150.3—2011附录E的要求进行设计。 4.4.2.3低压侧设计温度 当使用温度低于0℃时,若使用温度下一次总体薄膜应力和弯曲应力小于或等于材料常温屈服点的1/6,且不大于50MPa,则设计温度取使用温度与50℃(对于不进行焊后热处理的容器为40℃)的代数和。当按上述办法得到的设计温度不低于-20℃时,其设计温度均按不低于38℃选取;当按上述办法得到的设计温度低于-20℃时,容器按GB/T 150.3—2011附录E的规定设计。 4.4.3厚度 4.4.3.1 容器的厚度附加量为材料厚度负偏差与腐蚀裕量之和。其中,材料厚度负偏差按相应的材料标准确定;腐蚀裕量按4.4.3.2的规定。 4.4.3.2 容器各元件受到腐蚀程度不同时,可采用不同的腐蚀裕量。容器各元件可采用下列腐蚀裕量: a)碳素钢或低合金钢制容器外表面(内侧为制冷剂侧)直接经受风吹雨淋或接触空气、水蒸气和水等时,腐蚀裕量不小于1 mm; b)腐蚀环境与条件a)相同,但材料的外表面具有有效的耐腐蚀保护膜,并且容易进行维护时,腐蚀裕量不小于0.6mm; c)在室内或有防风雨措施,材料外表面具有有效的耐腐蚀保护膜,并且使用于轻微腐蚀环境时,腐蚀裕量不小于0.4mm; d)接触制冷剂一侧的容器和管壁,一般不计腐蚀裕量; e)介质为水蒸气或水的碳素钢或低合金钢制容器,腐蚀裕量不小于1 mm; f)换热管一般不计腐蚀裕量。其厚度应能保证设计使用年限的要求。 表1 常用制冷剂在相应温度下的饱和蒸汽压力和安全分组 制冷剂名称 (质量组分,百分比) 制冷剂编号 制冷剂组成前缀名a 饱和压力/MPa(绝对) 安全 分组 蒸发/冷凝温度/℃b -50 -40 -30 -20 -10 0 38 43 45 50 55 60 65 一氟二氯甲烷 R21 HCFC 5.2E-3 9.8E-3 1.8E-2 2.9E-2 4.7E-2 7.1E-2 2.8E-1 3.3E-1 3.5E-1 4.1E-1 4.7E-1 5.3E-1 6.1E-1 B1 二氟一氯甲烷 R22 HCFC 6.5E-2 1.1E-1 1.7E-1 2.5E-1 3.6E-1 5.0E-1 1.5 1.7 1.8 2 2.2 2.5 2.7 A1 三氟甲烷 R23 HFC 4.8E-1 7.1E-1 1.1 1.4 1.9 2.5 — — — — — — — A1 二氟甲烷 R32 HFC 1.1E-1 1.8E-1 2.8E-1 4.1E-1 5.9E-1 8.2E-1 2.4 2.7 2.8 3.2 3.6 4.0 4.4 A2L 三氟二氯乙烷 R123 HCFC 1.8E-3 3.6E-3 6.8E-3 1.2E-2 2.1E-2 3.3E-2 1.5E-1 1.7E-1 1.8E-1 2.2E-1 2.5E-1 2.9E-1 3.3E-1 B1 2-氯-1,1,1,2-四氟乙烷 R124 HCFC 1.5E-2 2.7E-2 4.5E-2 7.2E-2 1.1E-1 1.7E-1 5.7E-1 6.4E-1 6.8E-1 7.8E-1 8.8E-1 1.0 1.1 A1 五氟乙烷 R125 HFC 9.3E-2 1.5E-1 2.3E-1 3.4E-1 4.9E-1 6.7E-1 2.0 2.2 2.3 2.6 2.9 3.2 3.6 A1 1,1,1,2-四氟乙烷 R134a HFC 9.3E-2 1.5E-1 2-3E-1 3.4E-1 4.9E-1 6.7E-1 9.3E-2 1.1 1.2 1.4 1.5 1.7 1.9 A1 1,1,1-三氟乙烷 R143a HFC 8.9E-2 1.5E-1 2.2E-1 3.2E-1 0.45E-1 6.2E-1 1.8 2.0 2.1 2.4 2.7 2.9 3.3 A2L 1.1-二氟乙烷 R152a HFC 2.8E-2 4.8E-2 7.8E-2 1.2E-1 1.9E-1 2.7E-1 8.7E-1 9.8E-1 1.1 1.2 1.4 1.5 1.7 A2 乙烷 R170 HC 5.6E-1 7.8E-1 1.1 1.5 1.9 2.4 — — — — — — — A3 1,1,1,3,3-五氟丙烷 R245fa HFC 2.9E-3 5.9E-3 1.1E-2 2.0E-2 3.4E-2 5.4E-2 2.4E-1 2.7E-1 3.0E-1 3.5E-1 4.1E-1 4.7E-1 5.4E-1 B1 丙烷 R290 HC 7.1E-2 1.1E-1 1.7E-1 2.5E-1 3.5E-1 4.BE-1 1.3 1.5 1.6 1.8 1.9 2.2 2.4 A3 R22/R152a/R124 (61/11/28) R401B HCFC 4.8E-2 8.0E-2 1.2E-1 1.9E-1 2.7E-1 3.9E-1 1.2 1.3 1.3 1.4 1.6 1.8 2.0 A1/A1 (53/13/34) R401A HFC 4.4E-2 7.3E-2 1.2E-1 1.8E-1 2.6E-1 3.6E-1 1.1 1.2 1.2 1.3 1.5 1.7 1.9 R125/R143a/R134a(44/52/4) R404A HFC 8.6E-2 1.4E-1 2.1E-1 3.1E-1 4.5E-1 6.2E-1 1.8 2.0 2.1 2.3 2.6 2.9 3.2 A1/A1 R32/R125/R134a(23/25/52) R407C HFC 7.5E-2 1.3E-1 1.9E-1 2.9E-1 4.1E-1 5.7E-1 1.7 1.9 1.9 2.0 2.2 2.5 2.8 A1/A1 R32/R125(50/50) R410A HFC 1.2E-1 1.8E-1 2.7E-1 4.0E-1 5.8E-1 8.0E-1 2.3 2.6 2.7 3.1 3.5 3.9 4.3 A1/A1 R125/R143(50/50) R507A HFC 6.3E-1 6.3E-1 6.3E-1 6.3E-1 6.3E-1 6.3E-1 1.8 2.1 2.2 2.4 2.7 3.0 3.3 A1/A1 丁烷 R600 HC 9.5E-3 1.7E-2 2.9E-2 4.6E-2 7.0E-2 1.1E-1 3.6E-1 4.2E-1 4.4E-1 5.0E-1 5.7E-1 6.4E-1 7.3E-1 A3 2-甲基丙烷 (异丁烷) R600a HC 1.7E-2 2.9E-2 4.7E-2 7.2E-2 1.1E-1 1.6E-1 5.1E-1 5.8E-1 6.1E-1 6.9E-1 7.8E-1 8.7E-1 9.8E-1 A3 氨 R717 — 4.1E-2 7.2E-2 1.2E-1 1.9E-1 2.9E-1 4.3E-1 1.5 1.7 1.8 2.1 2.4 2.7 3.0 B2L 二氧化碳 R744 6.9E-1 1.0 1.5 2.0 2.7 3.5 — — — — — — — A1 丙烯 R1270 HC 9.1E-2 1.5E-1 2.2E-1 3.1E-1 4.3E-1 5.9E-1 1.6 1.8 1.9 2.1 2-3 2.6 2.8 A3 八氟环丁烷 RC318 FC 1.1E-2 2.0E-2 3.4E-2 5.6E-2 8.7E-2 1.3E-1 4.7E-1 5.4E-1 5.7E-1 6.7E-1 7.6E-1 8.7E-1 9.8E-1 A1 2,3,3,3-四氟-1-丙烯 R1234yf HFO 3.7E-2 6.2E-2 9.9E-2 1.5E-1 2.2E-1 3.2E-1 9.7E-1 1.1 1.2 1.3 1.5 1.6 1.8 A2L 1,3,3,3-四氟-1-丙烯 R1234ze (E) HFO 2.1E-2 3.7E-2 6.1E-2 9.7E-2 1.5E-1 2.2E-1 7.3E-1 8.3E-1 8.8E-1 1.0 1.1 1.3 1.4 A2L 反式-1-氟-3,3,3-三氟丙烯 R1233zd (E) HF0 2.8E-3 5.6E-3 1.0E-2 1.8E-2 3.0E-2 4.8E-2 2.0E-1 2.4E-1 2.5E-1 2.9E-1 3.4E-1 3.9E-1 4.5E-1 A1 HFO-1234yf/R134a (56.0/44.0) R513A HFO 3.4E-2 5.7E-2 9.3E-2 1.4E-1 2.1E-1 3.1E-1 9.7E-1 1.1 1.2 1.3 1.5 1.7 1.9 A1 HFO-R1336mzz(Z)/ R1130(E)(75.0/25.0) R514A HFO 1.7E-3 3.4E-3 6.4E-3 1.1E-2 1.9E-2 3.1E-2 1.4E-1 1.6E-1 1.8E-1 2.1E-1 2.4E-1 2.8E-1 3.28-1 B1 顺式1,1,1,4,4,4- 六氟.2.丁烯 R1336mzz (Z) HFO 1.2E-3 2.5E-3 4.8E-3 8.8E-3 1.5E-2 2.0E-2 1.2E-1 1.4E-1 1.5E-1 1.8E-1 2.1E-1 2.4E-1 2.8E-1 A1 其他制冷剂 — 参考有关制冷使用手册 注:表中R507A、R410A、R407C、R404A、R401A、R401B为混合物制冷剂 a 列出制冷剂组成前缀名,定性表示其列臭氧层的消耗 b 对混合物制冷剂,冷凝温度(表中45℃以上)为露点温度,蒸发温度(表中43℃以下)为泡点温度 4.4.3.3 壳体加工成形后不包括腐蚀裕量的最小厚度,对碳素钢、低合金钢制容器,为不小于3mm;对高合金钢制容器,一般应不小于2mm。 4.4.3.4容器主要受压元件的名义厚度和最小成形厚度应标注在设计图样上。 4.4.4制冷剂安全分组 4.4.4.1 制冷剂按照GB/T 7778的规定进行安全分组,具体规定见表2。 4.4.4.2常用制冷剂的安全分组见表1。 4.4.4.3混合物制冷剂的安全分组按照GB/T 7778的规定:在浓度滑移时其组分的浓度发生变化,燃烧性和毒性也可能变化,此时可能有两个安全分组。第一个是混合物在规定组分浓度下的分组,第二个是混合物在最大浓度滑移的组分浓度下的分组。 4.4.4.4钢制氨制冷装置用压力容器对液氨的要求及其充装程序应符合附录C的规定。 表2制冷剂安全分组 可燃性分组 毒性分组 制冷剂的TVV-TWAa ≥4×10-4(V)时 没有毒性 制冷剂的TLV-TWA <4×10-4(V)时 有毒性 无毒A组 有毒B组 制冷剂在60℃和101.3kPa条件下试验时 显示火焰快速蔓延,且LFLb≤3.5%(V)、燃烧热量 ≥19 000kJ/kg 可燃易爆3组 A3 B3 有火焰产生,且LFL>3.5%(V)、燃烧热量 <19 000kJ/kg — 可燃2组 A2 B2 最大燃烧速度≤10cm/sc 弱可燃2L组 A2L B2L 空气中无火焰产生 无火焰传播1组 A1 B1 a TLV-TWA:表示一个标准工作日8h,一周40h的时间加权平均浓度,在此制冷剂浓度下,所有工作人员日复一日地工作,无不良影响。 b LFL:表示燃烧低限的容积最小浓度,即在规定试验条件下。能够在制冷剂和空气组成的均匀混合物中,火焰快速蔓延的制冷剂单位容积最小浓度。 c 在23℃和101.3kPa的试验条件下。 4.4.5焊接接头分类与焊接接头系数 4.4.5.1 容器受压元件之间焊接接头分为A、B、C、D四类,非受压元件与受压元件之间的焊接接头为E类焊接接头。容器上的各类焊接接头按GB/T 150.1、GB/T 151的规定进行分类。 4.4.5.2焊接接头系数φ应根据对接接头的焊缝形式及无损检测的长度比例确定,见表3。 4.4.5.3对于无法进行射线或超声检测的固定管板式热交换器壳程圆筒的最后一道环向焊接接头,应采用氩弧焊打底或沿焊缝根部全长有紧贴基本金属的垫板,其焊接接头系数φ=0.6。 表3焊接接头系数φ 焊接接头形式 全部无损检测 局部无损检测 双面焊和相当于双面焊的全焊透对接接头 1.0 0.85 单面焊对接接头(沿焊缝根部全长有紧贴基本金属的垫板) 0.90 0.80 4.4.5.4对于TSG 21规定范围外的容器(或腔室),若工作压力小于或等于2.1MPa,介质为水、盐水及乙二醇等载冷剂,当壳体不进行射线或超声检测时,焊接接头系数取值如下: a)双面焊对接接头和相当于双面焊的全焊透对接接头:φ=0.70; b)单面焊对接接头(沿焊缝根部全长有紧贴基本金属的垫板):φ=0.65。 4.5安全系数 4.5.1 表4、表5为确定容器材料许用应力的最小安全系数。 4.5.2钢材、螺柱和螺栓、铜材、铝管和钛管等材料在不同温度下的许用应力按第5章的规定选取。 表4安全系数 材料 (板、锻件、管) 室温下的抗拉强度Rm 设计温度下的屈服强度R1eL(Rtp0.2) nb ns 碳素钢、低合金钢 2.7 1.5 高合金钢 2.7 1.5 铜及铜合金 3.0 1.5 铝及钒合金 3.0 1.5 钛及钛合金 2.7 1.5 表5螺柱(螺栓)的安全系数 材料 热处理状态 螺柱(螺栓)直径/mm 设计温度下屈服强度R1eL(Rtp0.2)的ns 碳素钢 热轧、正火 ≤M22 2.7 M24~M48 2.5 低合金钢 调质 ≤M22 3.5 M24~M48 3.0 奥氏体 高合金钢 固溶 ≤M22 1.6 M24~M48 1.5 4.6耐压试验 4.6.1 容器制成后应经耐压试验。耐压试验的种类、要求和试验压力应在设计图样上注明。耐压试验一般采用液压试验。对于不适合液压试验的容器(不允许有微量残留液体或由于结构原因不能充满液体的容器)可采用气压试验。 4.6.2试验压力pT的最低值按式(1)、式(2)计算,试验压力的上限值应满足GB/T 150.1的规定。 液压试验: (1) 气压试验: (2) 式中: pT——试验压力,MPa; p——设计压力(真空容器为0.1MPa),MPa; [σ]——容器元件材料在耐压试验温度下的许用应力,MPa; [σ]t——容器元件材料在设计温度下的许用应力,MPa。 注1:容器铭牌上规定有最高允许工作压力时,公式中应以最高允许工作压力代替设计压力p。 注2:容器主要受压元件,如圆筒、封头、接管、管板、设备法兰(或人、手孔法兰)及其紧固件等所用材料不同时,应取各元件材料的[σ]/[σ]t比值中最小者。 注3:外压容器和真空容器压力试验时.取[σ]/[σ]t=1。 4.7泄漏试验 泄漏试验应在耐压试验合格后进行,并应符合设计文件要求。 4.8真空试验 当容器需做真空试验时,真空试验应在泄漏试验合格后进行,并在设计图样上注明试验压力(一般为绝对压力8kPa)。 5材料 5.1一般规定 5.1.1 容器受压元件用材料应符合本章的规定。与受压元件焊接的非受压元件材料,应是焊接性能良好的材料。 5.1.2 容器用材料的技术要求应符合相关规范、标准的规定。 5.1.3 容器用材料应有材料生产单位的材质证明书(原件)或加盖材料经营单位公章和经办负责人签字(章)的复印件:容器制造单位应按材质证明书对材料进行验收,必要时应进行复验。 5.1.4采用本章规定以外的其他牌号材料应符合相关法规和标准的规定。 5.2钢板 5.2.1 本文件中容器受压元件使用的碳素钢和低合金钢钢板、高合金钢钢板及复合钢板(不锈钢-钢复合板、铜-钢复合板、钛-钢复合板)的级别、使用状态、限定范围、许用应力及力学性能试验等应符合GB/T 150.2和GB/T 151的相关规定。 5.2.2 Q235系列钢板的使用应符合GB/T 150.2的规定。其中,Q235B钢板不得用于B3组制冷剂容器。 5.3钢管 5.3.1 碳素钢、低合金钢及高合金钢钢管的使用状态、限定范围、许用应力及力学性能等应符合GB/T 150.2、GB/T 151的相关规定。 5.3.2选用GB/T 8163—2018中10、20钢管作换热管,除应满足GB/T 150.2的规定外,还应符合下列要求: a)应选用冷拔或冷轧钢管; b)尺寸精度不低于GB/T 9948高级精度钢管的要求。 5.3.3 对于TSG 21规定范围外的,工作压力小于或等于2.1MPa,介质为水、盐水及乙二醇等载冷剂的容器(或腔室)的壳体可用GB/T 3091焊接钢管.使用温度下限应不低于-20℃。 5.4钢锻件 5.4.1 容器的法兰、管板、平盖等采用碳素钢、低合金钢及高合金钢锻件的使用状态、限定范围、许用应力及力学性能等应符合GB/T 150.2和GB/T 151的规定。 5.4.2锻件的级别按使用要求由设计单位确定。并在设计图样上注明。 |
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 |
服务热线:400-001-5431 | 电话:010-8572 5110 | 传真:010-8581 9515 | Email: bz@bzfyw.com | |
版权所有: 北京悦尔信息技术有限公司 2008-2020 京ICP备17065875号-1 51La |
本页关键词: |
NB/T 47012-2020, NB 47012-2020, NBT 47012-2020, NB/T47012-2020, NB/T 47012, NB/T47012, NB47012-2020, NB 47012, NB47012, NBT47012-2020, NBT 47012, NBT47012 |