![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative. This standard was developed in accordance with the rules given in GB/T 1.1-2009. This standard replaces GB/T 25384-2010 Turbine blade of wind turbine generator systems Full-scale structural testing of rotor blades. In addition to editorial changes, the following main technical changes have been made with respect to GB/T 25384-2010: ——The static load tests after fatigue tests are added (see Clause 1); ——The description of infrequently used strength-based test methods is deleted (see Clause 8 of Edition 2010); ——The influence of load introduction is adjusted (see Clause 9; Clause 10 of Edition 2010); ——The description of failure patterns is revised (see Clause 11; Clause 11 of Edition 2010); ——The content of component test in Chapter 14 of the Edition 2010 of the standard is deleted; ——The description of sample test equipment in Appendix D of the Edition 2010 of the Standard is deleted; ——The appendix A for introduction of test substitution, Appendix B for introduction of test area, Appendix D for confirmation of test load, and Appendix F for introduction of error coefficient for fatigue formula are added. This standard is identical to IEC 61400-23:2014 Wind turbines - Part 23: Full-scale structural testing of rotor blades by means of translation. For convenience of use, this standard includes the following editorial changes: This standard name is changed to Wind turbines - Full scale structural testing of rotor blade. This standard was proposed by the China Machinery Industry Federation. This standard is under the jurisdiction of National Technical Committee 50 on Wind Power Machinery of Standardization Administration of China. The previous editions of this standard are as follows: ——GB/T 25384-2010. Introduction The blades of a wind turbine rotor are generally regarded as one of the most critical components of the wind turbine system. In this standard, the demands for full-scale structural testing related to certification are defined as well as the interpretation and evaluation of test results. Specific testing methods or set-ups for testing are not demanded or included as full-scale blade testing methods historically have developed independently in different countries and laboratories. Furthermore, demands for tests determining blade properties are included in this standard in order to validate some vital design assumptions used as inputs for the design load calculations. Any of the requirements of this standard may be altered if it can be suitably demonstrated that the safety of the system is not compromised. The standard is based on IEC TS 61400-23 published in 2001. Compared to the TS, this standard only describes load based testing and is condensed to describe the general principles and demands. Wind turbines Full scale structural testing of rotor blade 1 Scope This standard defines the requirements for full-scale structural testing of wind turbine blades and for the interpretation and evaluation of achieved test results. The standard focuses on aspects of testing related to an evaluation of the integrity of the blade, for use by manufacturers and third party investigators. The following tests are considered in this standard: •static load tests; •fatigue tests; •static load tests after fatigue tests; •tests determining other blade properties. The purpose of the tests is to confirm to an acceptable level of probability that the whole population of a blade type fulfils the design assumptions. It is assumed that the data required to define the parameters of the tests are available and based on the standard for design requirements for wind turbines such as GB/T 18451.1 or equivalent. Design loads and blade material data are considered starting points for establishing and evaluating the test loads. The evaluation of the design loads with respect to the actual loads on the wind turbines is outside the scope of this standard. At the time this standard was written, full-scale tests were carried out on blades of horizontal axis wind turbines. The blades were mostly made of fibre reinforced plastics and wood/epoxy. However, most principles would be applicable to any wind turbine configuration, size and material. 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. GB/T 2900.53-2001 Electrotechnical terminology - Wind turbine generator systems (IEC 60050-415:1999, IDT) GB/T 18451.1-2012 Wind turbine generator systems - Design requirements (IEC 61400-1:2005, IDT) GB/T 27025-2008 General requirements for the competence of testing and calibration laboratories (ISO/IEC 17025:2005, IDT) ISO 2394:1998 General principles on reliability for structures 3 Terms and definitions For the purposes of this document, the terms and definitions related to wind turbines or wind energy given in GB/T 2900.53-2001 and the following apply. 3.1 actuator device that can be controlled to apply a constant or varying force and displacement 3.2 blade root that part of the rotor blade that is connected to the hub of the rotor 3.3 blade subsystem integrated set of items that accomplishes a defined objective or function within the blade (e.g., lightning protection subsystem, aerodynamic braking subsystem, monitoring subsystem, aerodynamic control subsystem, etc.) 3.4 buckling instability characterized by a non-linear increase in out of plane deflection with a change in local compressive load 3.5 chord length of a reference straight line that joins the leading and trailing edges of a blade aerofoil cross-section at a given spanwise location 3.6 constant amplitude loading during a fatigue test, the application of load cycles with a constant amplitude and mean value 3.7 creep time-dependant increase in strain under a sustained load 3.8 design loads loads the blade is designed to withstand, including appropriate partial safety factors 3.9 edgewise direction that is parallel to the local chord See 4.4. 3.10 elastic axis the line, lengthwise of the blade, along which transverse loads are applied in order to produce bending only, with no torsion at any section Note: Strictly speaking, no such line exists except for a few conditions of loading. Usually the elastic axis is assumed to be the line that passes through the elastic center of every section. This definition is not applicable for blades with bend-twist coupling. 3.11 fatigue formulation methodology by which the fatigue life is estimated 3.12 fatigue test test in which a cyclic load of constant or varying amplitude is applied to the test specimen 3.13 fixture component or device to introduce loads or to support the test specimen 3.14 flapwise direction that is perpendicular to the surface swept by the undeformed rotor blade axis See 4.4. 3.15 flatwise direction that is perpendicular to the local chord, and spanwise blade axis 3.16 full-scale test test carried out on the actual blade or part thereof 3.17 inboard towards the blade root 3.18 lead-lag direction that is parallel to the plane of the swept surface and perpendicular to the longitudinal axis of the undeformed rotor blade See 4.4. 3.19 load envelope collection of maximum design loads in all directions and spanwise positions 3.20 natural frequency, eigen frequency frequency at which a structure will vibrate when perturbed and allowed to vibrate freely 3.21 partial safety factors factors that are applied to loads and material strengths to account for uncertainties in the representative (characteristic) values 3.22 prebend blade curvature in the flapwise plane in the unloaded condition 3.23 R-value ratio between minimum and maximum value during a load cycle 3.24 S-N formulation method used to describe the stress and/or strain (S) vs. cycle (N) characteristics of a material, component or structure 3.25 spanwise direction parallel to the longitudinal axis of a rotor blade 3.26 static test test with an application of a single load cycle without introducing dynamic effects 3.27 stiffness ratio of change of force to the corresponding change in displacement of an elastic body 3.28 strain ratio of the elongation (or shear displacement) of a material subjected to stress to the original length of the material 3.29 sweep blade curvature in the lead-lag plane in the unloaded condition 3.30 tare loads gravitational or other loads that are inherent to the test set-up 3.31 target load load that is developed from the design load and is the ideal test load 3.32 test load forces applied during a test 3.33 tested area region of the test object that experiences the intended loading 3.34 twist spanwise variation in angle of the chord lines of blade cross-sections 3.35 variable amplitude loading application of load cycles of non-constant mean and/or cyclic range 3.36 whiffle tree device for distributing a single load source over multiple points on a test specimen 4 Notation 4.1 Symbols C: conversion factor for material strength. D: theoretical damage. F: load. Fa: flatwise shear force (chordwise co-ordinates). Fb: edgewise shear force (chordwise co-ordinates). Fc: spanwise (tensile) force (chordwise co-ordinates). Fx: flapwise shear force (rotor co-ordinate system). Fy: lead-lag shear force (rotor co-ordinate system). Fz: spanwise (tensile) force (rotor co-ordinate system). Ma: edgewise bending moment (chordwise co-ordinates). Mb: flatwise bending moment (chordwise co-ordinates). Mc: blade torsion moment (chordwise co-ordinates). Mx: edgewise bending moment (chordwise co-ordinates). My: flapwise bending moment (rotor co-ordinate system). Mz: blade torsion moment (rotor co-ordinate system). N: cycle. S: strain or stress 4.2 Greek symbols γ: partial factor or test load factor σ: applied stress or strain 4.3 Subscripts design: design loading conditions df: design load: fatigue du: design load: static ef: uncertainty in fatigue formulation of test load f: load. lf: environmental effects (fatigue) lu: environmental effects (static) m: material n: consequence of failure nf: consequence of failure (fatigue). nu: consequence of failure (static). sf: blade to blade variation: fatigue test load. su: blade to blade variation: static test load. target: target loading conditions test: test loading conditions 4.4 Coordinate systems Two different coordinate systems may be used for reference during structural testing. The first, shown in Figure 1, references the local blade chord directions. The second, shown in Figure 2, references the global rotor plane directions. Foreword I Introduction III 1 Scope 2 Normative references 3 Terms and definitions 4 Notation 4.1 Symbols 4.2 Greek symbols 4.3 Subscripts 4.4 Coordinate systems 5 General principles 5.1 Purpose of tests 5.2 Limit states 5.3 Practical constraints 5.4 Results of test 6 Documentation and procedures for test blade 7 Blade test program and test plans 7.1 Areas to be tested 7.2 Test program 7.3 Test plans 7.3.1 General 7.3.2 Blade description 7.3.3 Loads and conditions 7.3.4 Instrumentation 7.3.5 Expected test results 8 Load factors for testing 8.1 General 8.2 Partial safety factors used in the design 8.2.1 General 8.2.2 Partial factors on materials 8.2.3 Partial factors for consequences of failure 8.2.4 Partial factors on loads 8.3 Test load factors 8.3.1 Blade to blade variation 8.3.2 Possible errors in the fatigue formulation 8.3.3 Environmental conditions 8.4 Application of load factors to obtain the target load 9 Test loading and test load evaluation 9.1 General 9.2 Influence of load introduction 9.3 Static load testing 9.4 Fatigue load testing 10 Test requirements 10.1 General 10.1.1 Test records 10.1.2 Instrumentation calibration 10.1.3 Measurement uncertainties 10.1.4 Root fixture and test stand requirements 10.1.5 Environmental conditions monitoring 10.1.6 Deterministic corrections 10.2 Static test 10.2.1 General 10.2.2 Static load test 10.2.3 Strain measurement 10.2.4 Deflection measurement 10.3 Fatigue test 10.4 Other blade property tests 10.4.1 Blade mass and center of gravity 10.4.2 Natural frequencies 10.4.3 Optional blade property tests 11 Test results evaluation 11.1 General 11.2 Catastrophic failure 11.3 Permanent deformation, loss of stiffness or change in other blade properties 11.4 Superficial damage 11.5 Failure evaluation 12 Reporting 12.1 General 12.2 Test report content 12.3 Evaluation of test in relation to design requirements Annex A (Informative) Guidelines for the necessity of renewed static and fatigue testing Annex B (Informative) Areas to be tested Annex C (Informative) Effects of large deflections and load direction Annex D (Informative) Formulation of test load D.1 Static target load D.2 Fatigue target load D.3 Sequential single-axial, single location D.4 Multi axial single location Annex E (Informative) Differences between design and test load conditions E.1 General E.2 Load introduction E.3 Bending moments and shear E.4 Flapwise and lead-lag combinations E.5 Radial loads E.6 Torsion loads E.7 Environmental conditions E.8 Fatigue load spectrum and sequence Appendix F (Informative) Determination of number of load cycles for fatigue tests F.1 General F.2 Background F.3 The approach used 风力发电机组 风轮叶片全尺寸结构试验 1 范围 本标准规定了风轮叶片全尺寸结构试验的要求、对试验结果进行阐述和评估。 本标准适用于制造商和第三方审查机构进行叶片试验完整性评估。 本标准包含以下试验: · 静力试验; · 疲劳试验; · 疲劳试验后的静力试验; · 确定叶片其他特性的试验。 试验目的是确认某型号叶片的全部叶片满足设计假设的可接受概率水平。 本标准假设基于风力发电机组标准GB/T 18451.1或其等效标准在试验中定义的参数是有效的,在计算和评估试验载荷时,应考虑设计载荷和叶片材料数据。设计载荷和实际载荷的评估不在本标准范围之内。 本标准适用于水平轴风轮叶片全尺寸结构试验,叶片主要由纤维增强塑料、木材或环氧树脂等组成。本标准中的大部分原理可适用于不同结构的风电机组用叶片以及不同尺寸和材料的叶片试验。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2900.53—2001 电工术语风力发电机组(IEC 60050-415:1999,IDT) GB/T 18451.1—2012 风力发电机组设计要求(IEC 61400-1:2005,IDT) GB/T 27025-2008 检测和校准实验室能力的通用要求(ISO/IEC 17025:2005,IDT) ISO 2394:1998 结构可靠性总原则(General principles on reliability for structures) 3 术语和定义 GB/T 2900.53—2001界定的以及下列术语和定义适用于本文件。 3.1 加载器 actuator 一种能够被控制、可以施加恒定载荷或变化载荷与位移的装置。 3.2 叶根 blade root 叶片上与轮毂相连的部分。 3.3 叶片子系统 blade subsystem 能够完成定义于叶片上的目标和功能的项目集合(例如雷电保护子系统、气动刹车子系统、监控子系统、气动控制子系统等)。 3.4 屈曲 buckling 一种失效模式,其特征是随压缩载荷的变化其挠度呈非线性增加。 3.5 弦长 chord 连接叶片翼型剖面前、后缘点的参考直线长度。 3.6 等幅加载 constant amplitude loading 在疲劳试验过程中,以恒定幅值和平均值施加循环载荷的方法。 3.7 蠕变 creep 在持续载荷作用下,应变随时间增加而增加的现象。 3.8 设计载荷 design loads 在设计时确定的叶片应承受的载荷,包括适当的局部安全系数。 3.9 弦摆振方向 edgewise 与局部弦线平行的方向。 详见4.4。 3.10 弹性轴 elastic axis 沿叶片纵向的一条线,当施加横向载荷,在任何截面不产生扭转、仅产生弯曲。 注:严格来说,除了少数载荷工况以外,这样的线并不存在,通常假设弹性轴为通过每个截面弹性中心的一条线。该定义不适用于弯扭耦合的叶片。 3.11 疲劳公式 fatigue formulation 用以估算疲劳寿命的方法。 3.12 疲劳试验 fatigue test 给试验件施加等幅载荷或变幅循环载荷的试验。 3.13 固定装置 fixture 给试验件加载或支撑试验件的部分或装置。 3.14 挥舞方向 flapwise 与风轮未变形叶片轴线扫过的面垂直的方向。 详见4.4。 3.15 弦挥舞方向 flatwise 沿叶片轴线分布并垂直于局部弦线的方向。 3.16 全尺寸试验 full-scale test 在实际结构或部件上进行的试验。 3.17 内侧 inboard 朝向叶根的一侧。 3.18 摆振方向 lead-lag 与风轮扫掠面平行且与未变形叶片的纵轴垂直的方向。 详见4.4. 3.19 载荷包络 load envelope 在所有方向和所有展向位置的最大设计载荷的集合。 3.20 固有频率 natural frequency, eigen frequency 当结构受扰动并自由振动时表现出的频率。 3.21 局部安全系数 partial safety factors 考虑载荷和材料强度代表值(特征值)不确定度时用的系数。 3.22 预弯 prebend 在未承载条件下,在挥舞平面内叶片的弯曲。 3.23 载荷比 R-value 在一个载荷循环中,最小载荷和最大载荷之比。 3.24 S-N公式 S-N formulation 用来描述材料、部件或结构的应力和/或应变(S)与循环次数(N)关系的一种方法。 3.25 展向 spanwise 与叶片纵轴平行的方向。 3.26 静力试验 static test 没有引入动态效应的单次加载和卸载。 3.27 刚度 stiffness 载荷的变化与弹性物体对应的位移变化之比。 3.28 应变 strain 用以描述材料变形程度的力学量,线应变等于材料伸长量与原长之比,切应变等于材料直角单元变化角度(弧度)。 3.29 扫掠 sweep 在卸载条件下,叶片在摆振方向平面内的弯曲。 3.30 自重载荷 tare loads 试验装置自身的重力或其他载荷。 3.31 目标载荷 target load 由设计载荷生成,是理想的试验载荷。 3.32 试验载荷 test load 试验过程中施加的力或力矩。 3.33 测试区域 tested area 试验对象上承受预定载荷的区域。 3.34 扭转 twist 叶片剖面弦线的角度在展向的变化。 3.35 变幅加载 variable amplitude loading 通过施加非恒定平均值、非恒定周期变程的方式使试验对象经受相应载荷循环次数的方法。 3.36 分配梁 whiffle tree 把集中载荷分配到试验件上的多点加载的一种装置。 4 标识 4.1 符号 C:材料强度的折算系数。 D:理论性损伤。 F:载荷。 Fa:弦挥舞方向剪力(弦向坐标系)。 Fb:弦摆振方向剪力(弦向坐标系)。 Fc:弦展向(拉)力(弦向坐标系)。 Fx:挥舞方向剪力(叶片坐标系)。 Fy:摆振方向剪力(叶片坐标系)。 Fz:展向(拉)力(叶片坐标系)。 Ma:弦摆振方向弯矩(弦向坐标系)。 Mb:弦挥舞方向弯矩(弦向坐标系)。 Mc:叶片扭矩(弦向坐标系)。 Mx:摆振方向弯矩(叶片坐标系)。 My:挥舞方向弯矩(叶片坐标系)。 Mz:叶片扭矩(叶片坐标系)。 N:循环次数。 S:应变或应力。 4.2 希腊符号 γ:局部安全系数或试验载荷系数。 σ:应力或应变。 4.3 脚标 design:设计载荷条件。 df:设计载荷(疲劳)。 du:设计载荷(静力)。 ef:疲劳公式中试验载荷的不确定度。 f:载荷。 lf:环境效应(疲劳)。 lu:环境效应(静力)。 m:材料。 n:失效后果。 nf:失效后果(疲劳)。 nu:失效后果(静力)。 sf:叶片与叶片的差异:疲劳试验载荷。 su:叶片与叶片的差异:静力试验载荷。 target:目标载荷条件。 test:试验载荷条件。 4.4 坐标系 在结构试验过程中,可能使用两个不同的坐标系。第1坐标系(见图1),以叶片当地弦向为参考。第2坐标系(见图2),以全局风轮平面方向为参考。 变形后的叶片轴线 未变形时的叶片轴线 说明: 沿着和垂直于叶片局部弦向的载荷 Ma——弦摆振方向弯矩; Mb——弦挥舞方向弯矩; Mc——叶片扭矩; Fa——弦挥舞方向剪力; Fb——弦摆振方向剪力; Fc——弦展向(拉)力; 1——扭转角度; 2——挥舞方向变形; 3——摆振方向变形。 图1 弦向(弦挥舞方向、弦摆振方向)坐标系 变形后的叶片轴线 未变形时的叶片轴线 说明: 沿着风轮平面参考方向的载荷 Mx——摆振方向弯矩; My——挥舞方向弯矩; Mz——叶片扭矩; Fx——挥舞方向剪力; Fy——摆振方向剪力; Fz——展向(拉)力; 1——挥舞方向变形; 2——摆振方向变形。 图2 叶片(挥舞方向、摆振方向)坐标系 5 概述 5.1 试验目的 叶片试验的基本目的是在一个合理的置信度下证明:按相应标准制造出的一种型号的叶片,在特定极限状态下具有所规定的可靠性。或者更确切的说是为了验证叶片不会达到指定的极限状态。由此证明叶片具有其设计规定的强度和使用寿命。 另外,为了验证在设计计算中作为输入的极重要的设计假定,判定叶片特性的试验应实施。应指出的是,所要求的叶片性能测试并不覆盖所有设计假定。 通常,在本标准中实行的全尺寸试验是限制样品数量的试验,一种指定的设计仅有一到两支叶片进行试验,以至于不能获得该产品承载能力统计的分散性。虽然,试验的确能够对相应叶片型号提供有效信息,它既不能替代精确的设计过程也不能替代叶片批量生产中的质量保证体系。此外,在本标准中描述的试验不能被用作结构功能试验和建立基本材料强度或叶片/组件的疲劳设计数据。 5.2 极限状态 为了确定和评估试验载荷,应了解一些设计信息。叶片的设计通常遵照某些标准或规范,如GB/T 18451.1,依据ISO 2394的原则确定极限状态和局部安全系数,以获得相应的设计值。简单的说,极限状态就是结构承受载荷情况下的状态,超出这种状态时叶片将不满足设计要求。局部安全系数体现了各种不确定因素,选用局部安全系数是为了使结构达到极限状态的概率低于规定的值。因此,如果叶片承受试验载荷(根据设计载荷确定)时未达到极限状态,则认为叶片通过了试验。 试验载荷确定的基准是叶片设计包络载荷(根据GB/T 18451.1获得)。考虑到其他的影响因素(如环境影响、试验不确定性、产品分散性),典型试验载荷可以高于设计载荷(见第8章)。 相对于极限状态,实际裕度的确定是有意义的,因为这种裕度可为试验叶片的承载能力提供一种实际安全性的评估。但这些值不能直接通过分析获得,应使用统计方法确定。在该标准中,只需要分析最大极限状态和疲劳。 5.3 试验限制因素 在试验执行过程中会受到许多技术和经济方面的制约。主要制约因素是: · 叶片上的分布载荷只能近似地模拟; · 通常只有一年或更短时间来进行试验; · 只能对一支或少数几支叶片进行试验; · 某些失效难以发现。 基于,上述制约因素,叶片试验需要采取一些折中方式,使最终试验结果能够用于叶片极限状态的评估。 对于试验结果进行整理分析时,应注意用于试验的叶片通常是批量生产中首批叶片中的一支。后续批产叶片会进行改进,但有时很小的修改也可能影响试验的有效性(参见附录A)。 5.4 试验结果 设计载荷是确定试验载荷的基础。根据设计计算,叶片应具有承受设计载荷的能力。在设计计算时应进行以下假设: · 应力或应变是由精确计算或保守估算确定的; · 所有相关材料、零件的强度和抗疲劳等级是经过准确地或保守地估算确定的; · 用于强度计算中的强度和疲劳公式是准确或保守的; · 叶片生产是按照设计进行的。 在作为最终设计验证的全尺寸试验过程中,可同时验证上述假设的正确性。当叶片在试验过程中失效时,尽管没有做进一步的分析,不确定造成失效的原因,但可以确定上述假设中至少一条不成立。 如果叶片在试验中没有发生破坏,并且叶片结构和试验载荷已被正确地评估,此时叶片设计是满足要求的。叶片特性试验能够验证某些主要计算中的设计假设。 6 试验叶片的文档和生产过程文件 叶片制造商应记录可追溯的试验叶片设计和制造的文档资料,记录应包括: · 唯一的标识; · 相关图纸和规范; · 铺层表和操作规程; · 所有重要材料的制造商、类型和识别号的清单; · 所有重要材料供应商的合格证书、叶片制造商的入厂验收记录; · 关键区域的热固性树脂和胶粘剂固化过程中的温度记录; · 差示扫描量热法或其他固化控制方法反映的数值; · 责任人填写的制造质量记录卡; · 重量、重心和配重平衡记录;记录应明确是否包括任何可拆卸部件重量,如:叶根连接零部件和阻尼液; · 制造过程中的偏差记录。 修复也应被记录入文件,记录文件应包括上述所列。可能的修复有: · 试验叶片具有代表性的制造缺陷和在役损伤的修复; · 因试验载荷高于目标载荷所造成的损伤的修复(见9.3和9.4)。 为了达到试验目的,可以对叶片进行特殊的修改。在疲劳试验过程中,为在一个可接受的时间内完成试验,可能需要放大载荷。在某些情况下,疲劳载荷的放大可能导致非测试区域失效。在这些情况下,可对叶片进行特殊的修改。修改也可能是加载点位置处的加强。应记录所有特殊的叶片修改。
|
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 |
服务热线:400-001-5431 | 电话:010-8572 5110 | 传真:010-8581 9515 | Email: bz@bzfyw.com | |
版权所有: 北京悦尔信息技术有限公司 2008-2020 京ICP备17065875号-1 51La |
本页关键词: |
GB/T 25384-2018, GB 25384-2018, GBT 25384-2018, GB/T25384-2018, GB/T 25384, GB/T25384, GB25384-2018, GB 25384, GB25384, GBT25384-2018, GBT 25384, GBT25384 |