Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative.
This standard is developed in accordance with the rules given in GB/T 1.1-2009.
This standard was proposed by and is under the jurisdiction of the National Technical Committee on Machinery Safety of Standardization Administration of China (SAC/TC 208).
Introduction
The architecture of safety standards in mechanical field is as follows:
——Class A standards (basic safety standards), specifying the basic concepts, design principles and general characteristics applicable to all machines;
——Class B standards (general safety standards), involving a kind of safety feature of machinery or a kind of widely used safety device:
Class B1, standards for specific safety features (such as safety distance, surface temperature and noise);
Class B2, standards of safety device (such as two-hand control device, interlocking device, pressure sensitive device, protective device).
——Class C standards (safety standards for mechanical products), specifying detailed safety requirements for a specific machine or a group of machines.
According to GB/T 15706, this standard belongs to Class B.
This standard is particularly relevant to the following parties concerned with mechanical safety:
——machine manufacturer;
——health and safety agency.
Other parties concerned affected by the mechanical safety level are:
——machine user;
——machine owner;
——service provider;
——consumer (for machinery intended to be used by consumers).
All the above parties concerned may participate in the drafting of this standard.
In addition, this standard is intended to be used by standardization organizations drafting Class C standards.
The requirements specified in this standard may be supplemented or modified by Class C standards.
For machines that are within the scope of Class C standards and have been designed and manufactured according to such standards, the requirements in Class C standards shall be preferred.
Local exhaust ventilation (LEV) is an important engineering control technology to maintain acceptable air quality in industrial operating environment, and the main means thereof is to control or inhibit airborne contaminants at or as close as possible to the contaminant generation point. The local exhaust ventilation is usually used together with other control methods, such as isolation, dilution ventilation or personal protective equipment. If designed, installed and operated correctly, the local exhaust ventilation (LEV) can efficiently control airborne contaminants.
This standard aims to improve the working conditions of industrial enterprises, protect personnel health and safety in the environment where harmful substances are discharged, and avoid or reduce safety accidents.
Safety of machinery - Local exhaust ventilation system - Safety requirements
1 Scope
This standard specifies the basic safety requirements for local exhaust ventilation (LEV) system.
This standard is applicable to the fixed industrial local exhaust ventilation (LEV) system for preventing or avoiding personnel from contacting airborne harmful substances in the industrial environment.
This standard is not applicable to the local exhaust ventilation (LEV) systems for the following purposes:
——comfortable ventilation;
——conveying air as a part of industrial process;
——painted cabinets not mainly for protecting personnel;
——saving energy;
——special use, special cleaning and special protection requirements.
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
GB/T 15706-2012 Safety of machinery - General principles for design - Risk assessment and risk reduction
GB/T 33579 Safety of machinery - Control methods of hazardous energy - Lockout/tagout
GB 50016-2014 Code for fire protection design of buildings
GB 50019-2015 Design code for heating ventilation and air conditioning
3 Terms and definitions
For the purposes of this document, the terms and definitions given in GB/T 15706-2012 and the following apply.
3.1
local exhaust ventilation (LEV) system
exhaust system
mechanical system consisting of one or more of the following components or systems to remove airborne contaminants from a space:
——exhaust hood;
——pipeline system;
——air cleaning equipment;
——exhauster or fan;
——chimney.
Note: The local exhaust ventilation system operates as a whole, and the performance of all components thereof will be affected by the design and performance of other parts.
3.2
air cleaning equipment
device or combination of devices for separating contaminants from the treated air in a local exhaust ventilation system
3.3
balanced
state when all branches in a local exhaust ventilation system simultaneously reach the expected air flowrate
3.4
baffle
flange
local enclosure arranged at or around the emission source to improve or enhance the airflow direction in the emission source and exhaust hood area
3.5
branch
connecting pipe between exhaust hood and main or secondary main
3.6
coefficient of entry
dimensionless factor used to reflect the relationship between the static pressure loss of the exhaust hood and the velocity pressure in the exhaust hood pipeline
3.7
contaminant
airborne harmful substance that can cause personal injury, danger or odor
Example: Smoke, fume, dust, steam, mist, water vapor or gas, etc.
3.8
capture velocity
control velocity
airflow velocity at a certain point in the space which is sufficient to suck contaminants and contaminated air into the hood
3.9
entry
position where a section of branch or secondary main enters another section of secondary main or main in pipeline system
Example: entry of exhaust hood into the pipeline; entry of plenum system into the pipeline.
3.10
exhaust hood
specially shaped opening designed to capture or control chemical emissions and other air contaminants
3.11
exhaust rate
air flowrate
volume flowrate of air passing through the exhaust hood
3.12
face velocity
average velocity of airflow in the exhaust hood opening plane with its direction vector perpendicular to the plane
3.13
fan
exhauster
mechanical device for providing pressure and enabling airflow to pass through local exhaust ventilation system
3.14
loss factor
dimensionless factor reflecting the relationship between static pressure loss and velocity pressure in system accessories and equipment
3.15
main
pipeline that connects two or more branches or secondary mains to the fan, exhauster or air cleaning equipment
3.16
makeup air
replacement air
external air or air with acceptable cleanliness used to fill the space of gas exhausted through cleaning by local exhaust ventilation (LEV) system
3.17
re-entrainment
return of discharged contaminants to the local exhaust ventilation system through airflow
3.18
slot velocity
average air velocity oriented perpendicular to the inner plane of the slot
3.19
system operating point
SOP
intersection of pressure curve and flow curve on pressure-flow diagram of local exhaust ventilation system
Note: SOP is usually used for fan selection.
3.20
system effect loss
fan performance loss caused by imperfect entry and outlet conditions
3.21
user
person who is directly and ultimately responsible for the design, operation and/or maintenance of the local exhaust ventilation system or a component thereof
4 Basic requirements
4.1 Users engaged in design, operation, maintenance or testing of LEV system shall be trained or experienced in relevant work to prove that they are qualified for this work.
4.2 The design and operation of LEV system shall be based on the following basic data:
——characteristics of emission sources;
——characteristics of air in workplace space;
——interaction between relevant personnel and emission sources.
4.3 Before the start of manufacturing and installation, the technical documents of LEV system shall be reviewed by professional technicians.
4.4 The LEV system performance and its exhaust rate shall be able to reduce the contaminants in the air of the workplace to the specified acceptable concentration.
4.5 The static pressure loss of the whole LEV system shall be estimated before fan selection, construction or installation.
4.6 The structural design of the whole LEV system shall be reasonable, and its manufacturing materials shall be chemically compatible. The physical compatibility shall be considered.
Note: Measures such as using refractory glass fiber for acid gas flow and galvanized steel for solvent steam stream shall be taken to meet this requirement, and the material used should be thick enough to ensure the expected service life of the system.
The LEV system shall be constructed to ensure that the chemical substances carried in the airflow are compatible with each other and compatible with the materials of exhaust hood, pipeline and fan even if such substances reach the maximum concentration.
4.7 The LEV system shall be capable of monitoring the performance. The monitoring and control functions of LEV system shall meet the requirements of 11.1, 11.2, 11.4 and 11.5 in GB 50019-2015.
Where feasible, the performance monitoring system or equipment may include analog or digital flow meters, smoke detectors, gas detectors or other equipment or programs as required.
For the LEV system, a static pressure hole should be arranged in the pipeline connecting the exhaust hood (in front of the damper and close to the exhaust hood), because it is optimal to measure the LEV system performance by using the airflow at the exhaust hood in terms of cost and efficiency, and there is a functional relationship between the static pressure of the exhaust hood and the airflow at this position.
4.8 When necessary, redundancy design shall be adopted for the safety protection devices and protection measures in LEV system to ensure continuous personnel protection.
4.9 The LEV system shall be kept clean in its whole life cycle, and free of potential risks such as open flame, smoke and explosion, and shall be kept in good operating condition.
5 Structure and layout
5.1 General requirements
5.1.1 Structure of LEV system
If conditions permit, single LEV system shall be arranged in the way as compact as possible so that it:
a) has the minimum pipe length and the least number of elbows;
b) is convenient to correctly mix the airflow from different exhaust hoods.
Generally, separate exhaust systems shall be set for decentralized processes or infrequently operated equipment.
5.1.2 Layout of LEV system
The machinery equipped with local exhaust system and elements (such as exhaust hood) of exhaust system should be arranged in such a way that they can facilitate the arrangement of exhaust pipeline system, so as to:
a) facilitate or not hinder the operation of other equipment, such as cranes, elevators, trucks, etc. as possible;
b) allow unimpeded access to the pipeline system for inspection, cleaning and maintenance;
c) prevent external damage and protect the pipeline system to the greatest extent.
Foreword i
Introduction ii
1 Scope
2 Normative references
3 Terms and definitions
4 Basic requirements
5 Structure and layout
5.1 General requirements
5.2 Cleaning and drainage
5.3 Special requirements
5.4 Plant reconstruction
6 Makeup air system
7 Exhaust hood
8 Pipeline system and exhaust funnel/chimney
9 Air cleaning equipment
10 Fan and air conveying equipment
Annex A (Informative) Design information of exhaust hood
Bibliography
机械安全 局部排气通风系统
安全要求
1 范围
本标准规定了局部排气通风(LEV)系统的基本安全要求。
本标准适用于防止或避免人员接触工业环境中空气传播的有害物质的固定式工业用局部排气通风(LEV)系统。
本标准不适用于以下目的的局部排气通风(LEV)系统:
——舒适通风;
——作为工业过程的一部分输送空气;
——不以保护人员为主要目的的油漆橱;
——节约能源;
——特殊用途、特殊净化和特殊防护要求。
2 规范性引用文件
下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T 15706—2012 机械安全设计通则风险评估与风险减小
GB/T 33579 机械安全危险能量控制方法上锁/挂牌
GB 50016—2014 建筑设计防火规范
GB 50019—2015 工业建筑供暖通风与空气调节设计规范
3 术语和定义
GB/T 15706—2012 界定的以及下列术语和定义适用于本文件。
3.1
局部排气通风(LEV)系统 local exhaust ventilation(LEV)system
排气系统 exhaust system
由以下一个或多个部件或系统组成,把空气传播的污染物从空间去除的机械系统:
——集气罩;
——管道系统;
——空气净化设备;
——排气机或风机;
——烟囱。
注:局部排气通风系统作为一个功能整体运行,所有组成部分的性能都会受其他部分的设计和性能影响。
3.2
空气净化设备 air cleaning equipment
局部排气通风系统中,将污染物从所处理的空气中分离出来的装置或装置组合。
3.3
均衡 balanced
局部排气通风系统中所有支管同时实现预期空气流量的状态。
3.4
导流板 baffle
凸缘 flange
为改善或加强排放源和集气罩区域空气流向而在排放源或其周围设置的局部围挡。
3.5
支管 branch
集气罩和干管或二级干管的连接管道。
3.6
入口系数 coefficient of entry
用于反映集气罩静压力损失与该集气罩管道内速压之间关系的无量纲因子。
3.7
污染物 contaminant
通过空气传播的能对人员造成伤害、危险或产生异味的有害物质。
示例:烟雾、烟尘、粉尘、蒸汽、雾汽、水汽或气体等。
3.8
捕获速度 capture velocity
控制速度 control velocity
空间内某一点足以将污染物和受污染的空气吸入集气罩的空气流动速度。
3.9
入口 entry
管道系统中支管或二级干管的某一段进入另一段二级干管或干管的位置。
示例:集气罩进入管道的入口;压力通风系统进入管道的入口。
3.10
集气罩 exhaust hood
为了捕获或控制化学排放物以及其他空气污染物而设计的特定形状的开口。
3.11
集气流量 exhaust rate
空气流量 air flowrate
通过集气罩的空气体积流量。
3.12
表面风速 face velocity
集气罩开口平面内方向向量垂直于该平面的平均空气流动速度。
3.13
风机 fan
通风机 exhauster
用于提供压力并使空气流通过局部排气通风系统移动的机械装置。
3.14
损失系数 loss factor
反映系统附件和设备内静压力损失与速压之间关系的无量纲因子。
3.15
主管 main
将两个或两个以上支管或二级于管连接至风机、排气机或空气净化设备的管道。
3.16
补充空气 makeup air
置换空气 replacement air
用于填充经过局部排气通风(LEV)系统净化后排出气体空间的外部空气或清洁程度可接受的空气。
3.17
夹带回流 re-entrainment
外排的污染物通过气流返回局部排气通风系统。
3.18
槽口速度 slot velocity
方向垂直于槽口内平面的平均空气速度。
3.19
系统运行点 system operating point
SOP
局部排气通风系统内压力—流量图上压力曲线和流量曲线的交点。
注:SOP通常用于风机选型。
3.20
系统效率损失 system effect loss
风机进口和出口条件非理想状态时产生的风机性能损失。
3.21
用户 user
对局部排气通风系统或系统某一部件的设计、运行和/或维护承担直接和最终责任的人。
4 基本要求
4.1 从事LEV系统设计、运行、维护或测试的用户应通过培训或具有相关工作经验证明其取得从事此项工作的资质。
4.2 LEV系统的设计和运行应基于以下基本数据:
——排放源特性;
——工作场所空间内的空气特性;
——相关人员与排放源的相互作用。
4.3 在制造和安装开始之前,应由专业技术人员审查LEV系统的技术文件。
4.4 LEV系统性能及其具有的集气流量应能将工作场所空气中的污染物降至规定的可接受浓度。
4.5 在风机选型以及在建造或安装之前,应估算整个LEV系统的静压力损失。
4.6 整个LEV系统的结构设计应合理,其制造材料应化学兼容,并考虑物理兼容性。
注:满足此要求的措施如:酸性气流采用耐火玻璃纤维、溶剂蒸汽气流采用镀锌钢等,且厚度宜足以保证系统的预期寿命。
LEV系统的建造应保证气流中携带的化学物质即使达到最大浓度,也能够互相兼容,并与集气罩、管道和风机材料兼容。
4.7 LEV系统应具备性能监控能力。LEV系统的监测与控制功能应满足GB 50019—2015中11.1、11.2、11.4和11.5的要求。
根据需要,在可行的情况下,性能监控系统或设备可包括模拟或数字流量计、烟雾探测器、气体探测器或者其他设备或程序。
LEV系统宜在连接集气罩的管道上(在风门前,且靠近集气罩)设置静压力测压孔,因为利用集气罩处的气流测量LEV系统性能的成本和效率最佳,而且集气罩静压力与此位置的气流之间存在函数关系。
4.8 为确保对人员的持续保护,必要时,LEV系统中的安全防护装置和保护措施应采用冗余设计。
4.9 LEV系统在全生命周期内应保持清洁,不应存在产生明火、烟雾和爆炸等潜在的风险,并应保持良好的运行状态。
5 结构和布局
5.1 一般要求
5.1.1 LEV系统的结构
如果条件允许,单个LEV系统应按照尽可能紧凑的方式进行布置,使其:
a) 管道长度最短且使用的弯头数量最少;
b) 便于正确配比来自不同集气罩的气流。
分散布置的过程或不经常运行的设备通常应设置单独的排气系统。
5.1.2 LEV系统的布置
配备局部排气系统的机械以及排气系统的元件(如集气罩)的布置宜便于排气管道系统的布置,使其:
a) 尽可能便于或不妨碍其他设备的操作,例如便于起重机、升降机、卡车等的操作;
b) 允许无阻碍地接近管道系统进行检查、清洁和维修;
c) 可防止来自外部的损坏,最大程度地保护管道系统。
5.1.3 排气和补充空气窗的位置
排气和补气空气窗的位置应满足第6章的要求。
5.1.4 危险作业和非危险作业的隔离
应尽可能将危险作业和非危险作业隔离开。如果大多数加工过程都产生潜在有害浓度的空气污染物,则建议隔离非危险作业,如将其布置在单独的厂房或房间内。
5.1.5 空气净化设备的位置
空气净化设备的位置应使得:
a) 能够安全且不受阻碍地接近空气净化设备进行维护(如过滤或收集介质的清除、清洗,或对静电沉降器进行服务)和维修;
b) 便于清除粉尘和收集的其他物质,而不产生公害、健康危害或物料搬运问题;
c) 能够在不污染整个工厂空气的情况下清洁和维修设备;
d) 能够防止湿法收集系统和相关管道结冰。
如果空气净化设备处理的是爆炸性或高度可燃性气体或污染物,则还应至少考虑以下要求:
——布置在室外或隔离;
——设置卸压盘和安全屏障;
——设置爆炸抑制装置;
——充分防雷保护;
——电气接地。
如果系统已充分送入稀释空气将污染物浓度保持在气体和蒸汽爆炸下限10%~25%以下、粉尘爆炸下限浓度(MEC)20%以下(织物过滤器逆向喷气清洗过程除外,此时的瞬时粉尘浓度可超过MEC),并假设已经安装了足够的安全控制装置来防止误操作,则可减少此类防范措施。
LEV系统的设计者和使用者还宜了解该场地的长期规划、相邻建筑物及其用途以及周边地理特征。
5.2 清洁和排水
LEV系统元件的设计和制造应便于清洁和排水。
注:尽可能减少管道系统内的冷凝影响。
5.3 特殊要求
如果机械在运行时会产生不同的蒸汽、粉尘、烟尘或雾汽等有害物质,且在相互混合后会对人员健康造成伤害或产生爆炸、破坏性腐蚀等危险而使管道、风机遭到破坏或使空气净化设备失效,则对于此类空气污染物应采用单独的局部排气通风系统。
注:本要求主要针对废气中的粉尘、烟气和蒸汽的浓度可能达到足以产生健康、爆炸或腐蚀危险的情况。破坏性腐蚀意味着管道、风机或空气净化设备的失效。
5.4 厂房改造
需要时,应按GB 50016—2014和GB 50019—2015的相关要求,根据危险作业的性质对安装LEV系统的厂房进行改造。例如:发电机、槽罐以及其他处理有毒或爆炸性气体和挥发性(无论是常温或运行温度)液体的设备不得放置在地下室或地坑内。
有爆炸危险的厂房或厂房内有爆炸危险的部位应按照GB 50016—2014的3.6的规定设置泄压设施。
泄压设施宜采用轻质屋面板、轻质墙体和易于泄压的门、窗等,应采用安全玻璃等在爆炸时不产生尖锐碎片的材料。泄压设施的位置应避开人员密集场所和主要交通道路,并宜靠近有爆炸危险的部位。屋顶上的泄压设施应采取防冰雪积聚措施。
应按GB 50016—2014规定的位置设置防火卷帘,并符合GB 50016—2014的6.5.3规定的相关要求。
应按GB 50016—2014的8.5.2的要求,在规定的位置设置发生火灾时能够自动排除烟雾和燃烧产物的屋顶通风。
6 补充空气系统
6.1 应对LEV系统排出的空气进行置换,并明确规定如何向厂房内输送清洁的、经过调节的补充空气来置换LEV系统排出的空气。
对于以下情况,宜提供补充空气:
a) 为了确保集气罩按照设计运转。如:房间是在负压下,排气风机运行的静压力会增加,体积流量相应减少;某些类型的轴流风机对压力变化特别敏感;
b) 为了确保自然通风的烟囱、烟道和燃料燃烧器具的正确运行;
c) 为了消除通过门、窗或裂缝进入集气罩影响区域的高速气流;
d) 为了消除吹到人员身上的冷气流;
e) 为了消除由高速气流在工作室引起的额外污染物(如椽子上积聚的灰尘)逸散;
f) 为了防止相邻区域的含尘空气被抽入必需保持清洁加工的区域;
g) 为了避免房间或建筑物的门打开或关闭困难;
h) 通过引导其流经尽可能多的作业空间,稀释没有必要使用局部排气通风系统的低浓度污染物;
i) 为人员提供有效的通风,尤其是在炎热天气。
补充空气系统通常采用专门的机械通风系统补充空气,但也可利用自然通风补气(例如温度气候适宜,新鲜的室外空气很容易获得;室外作业;设备向大气开放等),但设计者宜说明并记录采用自然通风的原因,以及如果自然通风受阻,会发生的危险状况。
6.2 如果需要,设计者或用户应确定被排气空间和相邻空间之间合适的静压力关系,并提供相应补充空气量。
补充空气系统的补气体积流量通常与排气体积流量相等。但在某些情况下,某一区域可能要求轻微负压来控制逃逸排放和/或防止污染物向工厂或建筑物内其他区域迁移,或者要求轻微正压防止粉尘侵入清洁区域。
示例:如果房屋内需要加压,通常的做法是补给的空气比排出建筑物的多10%,以减少或消除来自相邻空间或外墙的空气渗入。同样,实验室常见的做法是补给空气比排出体积流量少10%,以维持实验室中的微小负压。
补充空气系统也可采用建筑物空气均衡法提供适宜的压差,确定补气系统规模时还宜考虑未来的需求。
6.3 设计者或用户应优化厂房空间内供气至排气系统的空气流向。
如有可能,补充空气系统的定位宜保持以下条件:
a) 空间补气的定位使得经过适当调节的清洁空气先经过人员,然后再流向受污染区域由LEV系统排出;
b) 气流在该区域内形成横向通风,这样就可以将这部分空气用于有效的一般通风和补气;
c) 空气宜从清洁区域流向受污染区域;
d) 避免人员所在的位置风速过高,以免在人员身体周围形成涡流,从而更容易暴露于危险。
6.4 来自LEV系统的循环空气应达到厂房内规定的可接触浓度。
注:通常情况下,不能认为来自LEV系统的循环空气是补充空气。
6.5 补充空气量不应降低LEV系统的性能。
补充空气的供气位置和速度的选择应避免在有集气罩的过程或者在人员周围产生高速气流。
补充空气宜均匀分布并沿集气罩方向流动。通过穿孔板向外排气的压力通风系统是一种引入均匀、低速补气的很好方法。
排气口与吸气口的流动特性完全不同。高速的供给空气能被“抛出”相当远的距离。高速出风口的设置位置不应在有人员存在的区域产生令人不舒适的气流。在某些情况下,可以用布风器来减少气流。
6.6 补充空气系统进气口的位置应防止吸入来自排气系统的污染物或其他污染源排放的污染物。烟囱设计和位置选择的良好做法参见第8章。
6.7 应在补充空气的进气口进行过滤,以保护通风系统设备。
6.8 补充空气单元的设计和运行应能始终供给适当的空气体积流量。
如果LEV系统随着时间的变化而改变排气流量,则补气体积流量应跟踪排气流量,以保持空间内适当的压力关系。
6.9 当补充空气系统可产生影响LEV系统性能的故障时,应设置一个监控系统,以发出该故障的信号。此类监控系统通常包括压力或流量监控装置。
6.10 补充气体应为清洁空气。
6.11 如果补充空气是为了使人员舒适,则LEV系统应按照相应的标准进行设计和运行。舒适意味着空气被加热或冷却,以满足厂房空间内人员的需求。
6.12 如果补充空气由直燃式加热器加热,则应满足下列要求:
a) 满足相关的法规要求;
b) 燃烧物不应使补充空气中空气传播的有害物质浓度超过用户选择的可接受浓度,更不能超过公布的职业接触限值;
c) 用户应制定确保系统安全运行的相关规程;
d) 采纳制造商的建议;
e) 腐蚀性或易燃性材料不能接触火焰;
f) 建筑回风不应通过火焰。
采用天然气或液化气在气流中直接燃烧的直燃式补气设备来调节补气温度时,用户应确定可能的燃烧产物(如一氧化碳、二氧化碳、氮氧化物)并选择送风区和人员呼吸区的可接受最大浓度,如“容许接触限值(PEL)”的某一百分比。
注:“容许接触限值(PEL)”的某一百分比通常选择职业接触限值的10%。
如果没有公布的职业接触限值(OEL)时,使用者应咨询燃烧物供应商和查询材料安全数据表(MS-DS)等。
通常采用气体探测器保证安全燃烧操作。
直燃式加热器选型和运行宜考虑下列事项:
a) 加热器不能存在被冻住的风险;
b) 送出的空气温度应可通过调节火焰控制,调节比通常为25:1~45:1;
c) 工业装置通常需要设置手动及自动截止阀、气压调节阀、空气流量开关、安全先导阀和极限温度控制;
d) 外部空气100%宜经过燃烧器处理,气流速度按燃烧器制造商建议,通常为13 m/s~15 m/s;
e) 燃烧器可以是外混式或预混式;
f) 当室外空气含粉尘或不干净时,在到达预混式燃烧器之前宜过滤;
g) 燃烧器及其控制器的选型、安装和维护,宜避免直燃单元产生的一氧化碳、水和其他燃烧产物产生新的危险。用户宜提供合适的进入设施,以便于进行测试、清洁和维护;
h) 在设计过程中和安装前,应查阅适用的规范或标准。
用户宜了解含有污垢、灰尘、气体和蒸汽的空气通过燃烧器时可能会造成的问题。如果此类问题发生,应采取措施控制危害。
本标准的要求仅适用使用天然气和液化石油气的直燃加热器,正常情况下应避免使用其他燃料。
6.13 补充空气不应作为推拉式LEV系统中的推动空气。
推拉式集气罩通常为罩内的推动喷嘴装备专用供气系统。由于喷嘴吸入的空气通常比“推入”喷嘴的空气多很多,因此补气系统应能置换被喷嘴吸入的空气以及经由集气罩“拉出”或排出的空气。