![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative. All technical contents of this part are compulsory. GB 15322 consists of the following parts under the general title Combustible gas detectors: ——Part 1: Point-type combustible gas detectors for industrial and commercial use; ——Part 2: Household combustible gas detectors; ——Part 3: Portable combustible gas detectors for industrial and commercial use; ——Part 4: Line-type optical beam combustible gas detectors for industrial and commercial use. This is Part 2 of GB 15322. This part is developed in accordance with the rules given in GB/T 1.1-2009. This part replaces GB 15322.2-2003 Combustible gas detector - Part 2: Self-contained detectors for 0~100% LEL combustible gas and GB 15322.5-2003 Combustible gas detectors - Part 5: Self-contained detectors for combustible man-made gas. The following main technical changes have been made with respect to GB 15322.2-2003 and GB 15322.5-2003: ——The contents of GB 15322.2-2003 and GB 15322.5-2003 are incorporated into one part; ——The requirements for the functions of detectors are added (see 3.3.1); ——The requirements for alarm operation values of detectors under various test conditions are revised (see Clause 3; Clause 5 of GB 15322.2-2003 and that GB 15322.5-2003); ——The alarm test and ignition-proof performance test during preheating are added (see 3.3.7 and 3.3.8); ——The surge immunity test and immunity test for conducted disturbance induced by radio-frequency field have been added to the electromagnetic compatibility test items (see 3.3.13): ——The poison resistance test and low concentration operation test are added (see 3.3.17 and 3.3.18); ——The low-concentration carbon monoxide concentration response performance test is added for the carbon monoxide detector (see 3.3.20). This part was proposed by and is under the jurisdiction of the Ministry of Emergency Management of the People's Republic of China. The previous editions of this part are as follows: ——GB 15322-1994; ——GB 15322.2-2003; ——GB 15322.5-2003. Combustible gas detectors - Part 2: Household combustible gas detectors 1 Scope This part of GB 15322 specifies the requirements, tests, type rules and markings for household combustible gas detectors. This part is applicable to detectors used in domestic environment for detecting combustible gases such as natural gas, liquefied petroleum gas and artificial coal gas and their incomplete combustion products. 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. GB/T 9969 General principles for preparation of instructions for use of industrial products GB 12978 Rules for test of fire electronic products GB 15322.1-2019 Combustible gas detectors - Part 1: Point-type combustible gas detectors for industrial and commercial use GB/T 16838 Environmental test methods and severities for fire electronic products GB/T 17626.2-2018 Electromagnetic compatibility - Testing and measurement techniques - Electrostatic discharge immunity test GB/T 17626.3-2016 Electromagnetic compatibility - Testing and measurement techniques – Radiated, radio-frequency, electromagnetic field immunity test GB/T 17626.4-2018 Electromagnetic compatibility - Testing and measurement techniques - Electrical fast transient/burst immunity test GB/T 17626.5-2008 Electromagnetic compatibility - Testing and measurement techniques - Surge immunity test GB/T 17626.6-2017 Electromagnetic compatibility - Testing and measurement techniques - Immunity to conducted disturbances, induced by radio-frequency fields GB 23757 Protection requirements for fire electronic products 3 Requirements 3.1 General The household combustible gas detectors (hereinafter referred to as the “Detectors”) shall meet the relevant requirements of Clause 3, and shall be tested in accordance with Clause 4 to confirm whether the detectors meet the requirements of Clause 3. 3.2 Appearance requirements 3.2.1 The detectors shall be provided with the complete package when they are delivered, and the package shall contain the quality certificate and the instructions for use. 3.2.2 The detectors shall be free from corrosion, coating peeling, blistering, obvious mechanical damage such as scratches, cracks and burrs, etc., on their surfaces, and free from looseness in fastening parts. 3.3 Performance 3.3.1 General requirements 3.3.1.1 The detectors shall be powered by DC voltage of 36V and below or AC voltage of 220V. Those powered by external DC power supply shall be powered by combustible gas alarm controller, and shall be protected against polarity reverse connection. A battery-powered detector shall have a battery installation structure to prevent polarity reverse connection, and shall show obvious warning signs when the battery is removed. 3.3.1.2 The surface of the detector shall have operating state indicating lights to indicate its normal monitoring, fault and alarm operating state respectively. The green indicates normal monitoring state, the yellow indicates fault state and the red indicates alarm state. The indicating lights shall have their functions noted in Chinese. Under 5lx~500lx illumination and at 5m in front of the detector, the indicating light shall be clearly visible. Note 1: Normal monitoring state refers to that the detector operates normally in an energized state, without alarm signal or fault signal. 3.3.1.3 The detectors shall have the function of indicating the state of the gas sensor’s service life and meet the following requirements: a) The state of the gas sensor’s service life shall be indicated by a yellow light; b) When the accumulated working time of a detector reaches the service life limit of the gas sensor, the yellow light shall twinkle; c) The surface of the detector shall have obvious marks indicating that the gas sensor needs to be replaced when the yellow light twinkles; d) The service life of the gas sensor shall be indicated in the instructions for use of the detector. 3.3.1.4 A detector with concentration display function shall have the displayed information clearly visible, the display information shall be clearly visible under 5lx~500lx illumination and at 1m right in front of the detector. 3.3.1.5 Under the rated operating voltage, the highest sound pressure level (A-weighted) of alarming signal of detector at a distance of 1m right ahead of it shall be at least 70dB but less than 115dB. 3.3.1.6 The detectors shall have the function of control output. The type and capacity of control output interface shall match with those of the mating products or executive components specified by the manufacturer, and shall be indicated in the instructions for use. If the control output interface of the detector has a delay function, the maximum delay time shall not exceed 30s. 3.3.1.7 The detectors shall have a networking interface that can be connected with the control and indication equipment (except for those only powered by battery), and the networking interface shall be capable of outputting signals corresponding to its measured concentration and signals of normal monitoring, fault, alarm and sensor’s service life state of the detector. Information such as signal types and parameters shall be indicated in the instructions for use. 3.3.1.8 When the concentration of combustible gas in the monitored area reaches the alarm set point, the detector shall be able to send out an alarm signal. Then the detector is put in a normal environment, and it shall be able to automatically (or manually) return to the normal monitoring state within 30s. 3.3.1.9 The alarm set point of detector shall be in the range of 5%~25%LEL, with its upper range limit neither less than twice the alarm set point nor less than 15%LEL; the alarm set point of detector detecting carbon monoxide shall be in the range of 150×10-6 (volume fraction)~300×10-6 (volume fraction). Note: The lower explosion limit (LEL) is the lowest explosion concentration of combustible gas or vapor in air. 3.3.1.10 When a detector uses the gas sensor with a plug-in structure, it shall be protected against structural detachment. When the gas sensor is detached, the detector shall be able to send out a fault signal within 30s. 3.3.1.11 The detectors shall have the function of manual self-inspection of its acoustic-optic components, and their control output interfaces shall be delayed for 7s~30s before action during self-inspection. 3.3.1.12 The housing protection class (IP code) of detector shall meet the requirements for IP30 in GB 23757. 3.3.1.13 The model preparation of detector shall meet the requirements of GB 15322.1-2019, Annex A. 3.3.1.14 There shall be a timing device inside a detector, with its daily timing error not exceeding 30s. 3.3.1.15 A detector shall have alarm history record function, through which the history record shall be saved after the detector has power failure. The type and number of historical records shall meet the following requirements: a) The number of alarm records of detector: not less than 200; b) The number of alarm recovery records of detector: not less than 200; c) The number of fault records of detector: not less than 100; d) The number of fault recovery records of detector: not less than 100; e) The number of power failure records of detector: not less than 50; f) The number of power-on records of detector: not less than 50; g) The number of failure record of gas sensor: not less than one. 3.3.1.16 There shall be an reading interface inside a detector, and for a detector using a combustible gas alarm controller, its alarm history record shall be able to be completely read by its alarm history record reading device. See Annex A for the physical characteristics and communication protocol of the reading interface. 3.3.1.17 The detectors shall have the maximum numbers of alarm history records stored in the memory indicated in the instructions for use. 3.3.1.18 The instructions for use of detectors shall meet the relevant requirements specified in GB/T 9969. 3.3.2 Alarm operation value 3.3.2.1 In the test items specified in this part, the alarm operation value of detectors shall not be lower than 5%LEL, and the alarm operation value of detectors detecting carbon monoxide shall not be lower than 50×10-6 (volume fraction). Note: The lower explosion limit (LEL) is the lowest explosion concentration of combustible gas or vapor in air. 3.3.2.2 The absolute value of the difference between alarm operation value and alarm set point of detector shall not be greater than 3%LEL, and the aforesaid absolute value of detectors detecting carbon monoxide shall not be greater than 50×10-6 (volume fraction). 3.3.3 Range indication deviation (applicable to detectors with concentration display function) Several test points are selected as reference values in the range of the detector, so that the concentrations of combustible gas in the monitored areas reach the corresponding reference values respectively. The absolute value of the difference between the display value of combustible gas concentration at the test point and the reference value of the detector shall not be greater than 3%LEL. The absolute value of the difference between the concentration display value and the reference value of the detector detecting carbon monoxide shall not be greater than 80×10-6 (volume fraction). 3.3.4 Response time Introduce the test gas with a flow rate of 500mL/min and a concentration of 60% of the full range into the detector with concentration display function, keep for 60s, and record the display value of the detector as the reference value, and the time required for it to reach 90% of the reference value is the response time of the detector. Introduce test gas with a flow rate of 500mL/min and a concentration of 1.6 times the alarm set point into the detector with no concentration display function, start timing, and the time required for the detector to send out an alarm signal is the response time of the detector. The response time of a detector detecting carbon monoxide shall not be greater than 60s, and that of any other gas detector shall not be greater than 30s. 3.3.5 Orientation The detectors rotate clockwise in the installation plane, by 45° every time, and the alarm operation values of the detectors are measured respectively. The absolute value of the difference between the alarm operation value and the alarm set point of a detector shall not be greater than 3%LEL; the absolute value of such difference of a detector detecting carbon monoxide shall not be greater than 50×10-6 (volume fraction). 3.3.6 Alarm repeatability Repeatedly measure the alarm operation value of a detector 6 times, and the absolute value of the difference between the alarm operation value and the alarm set point shall not be greater than 3%LEL. The absolute value of the difference between the alarm operation value and the alarm set point of a detector detecting carbon monoxide shall not be greater than 50×10-6 (volume fraction). 3.3.7 Alarm during preheating After being kept in the non-energized state for 24h, the detector shall have power supply restored under the environmental condition that the test gas concentration is 30%LEL, and the detector detecting carbon monoxide shall have power supply restored under the environmental condition that the carbon monoxide concentration is 380×10-6 (volume fraction). The detectors shall be able to send out an alarm signal within 5min after the power supply is restored. 3.3.8 Ignition-proof performance Keep a detector detecting methane or carbon monoxide in a test chamber with methane concentration of 8.5% (volume fraction), and a detector detecting propane in a test chamber with propane concentration of 4.6% (volume fraction), in the non-energized state, both for 5min. Restore the power supply to the detectors and keep it for 5min, during which no combustible gas ignition or explosion shall occur. 3.3.9 Voltage fluctuation (not applicable to detectors powered only by battery) The power supply voltage of a detector is adjusted to 85% and 115% of its rated voltage, respectively, and the alarm operation value of the detector shall be measured. The absolute value of the difference between its alarm operation value and alarm set point shall not be greater than 3%LEL. The absolute value of the difference between the alarm operation value and the alarm set point of a detector detecting carbon monoxide shall not be greater than 50×10-6 (volume fraction). 3.3.10 Battery capacity 3.3.10.1 For a detector which is only powered by battery, the battery shall be discharged for 30 days at 25 times the maximum working current. After the discharge, the battery capacity of the detector shall be able to ensure its normal operation for not less than 2h. When the battery power is low, the detector shall be able to send out sound and light indicating signals which are obviously different from the alarm signals, and the control output interface shall be able to normally drive its mating products or executive components. 3.3.10.2 A detector with standby battery shall have different status indications when working under two different power supply conditions: main power and standby power. The standby battery capacity shall be able to guarantee its normal operation for not less than 8h. When the standby battery power is low, the detector shall be able to send out sound and light indicating signals which are obviously different from the alarm signals, and the control output interface shall be able to normally drive its mating products or executive components. 3.3.10.3 When the battery power is indicated to be low, the alarm operation value of the detector shall be measured. The absolute value of the difference between its alarm operation value and alarm set point shall not be greater than 5%LEL. The absolute value of the difference between the alarm operation value and the alarm set point of a detector detecting carbon monoxide shall not be greater than 80×10-6 (volume fraction). 3.3.11 Insulation resistance When the operating voltage of the external live terminal and the power plug of a detector is greater than 50V, the insulation resistance between the external live terminal and the power plug and the housing shall not be less than 100MΩ under normal atmospheric conditions. 3.3.12 Electrical strength When the operating voltage of the external live terminal and power plug of the detector is greater than 50V, the external live terminal and power plug shall be able to withstand the electrical strength test carried out under the AC voltage with the frequency of 50Hz and the RMS voltage of 1,250V, for 60s. No breakdown and discharge shall occur during the test. The detector shall have normal function after the test. 3.3.13 Electromagnetic compatibility The detector shall be able to withstand various tests under the electromagnetic interference conditions specified in Table 1. During the test, the detector shall not send out alarm signals or fault signals. The absolute value of the difference between the alarm operation value and the alarm set point of the detector shall not be greater than 5%LEL after the test. The absolute value of the difference between the alarm operation value and the alarm set point of a detector detecting carbon monoxide shall not be greater than 80×10-6 (volume fraction). Table 1 Electromagnetic compatibility test parameters Test name Test parameter Test condition Operating state Electrostatic discharge immunity test Discharge voltage kV Air discharge (insulator housing): 8 Contact discharge (conductor housing and coupling plate): 6 Normal monitoring state Discharge polarity Anode and cathode Discharge interval s ≥1 Number of discharges per point 10 Radiated, radio-frequency, electromagnetic field immunity test Field strength V/m 10 Normal monitoring state Frequency range MHz 80~1,000 Radiated, radio-frequency, electromagnetic field immunity test Sweep rate 10oct/s ≤1.5×10-3 Normal monitoring state Modulation amplitude 80% (1 kHz, sine) Electrical fast transient/burst immunity test (not applicable to detectors powered by batteries only) Transient/burst voltage kV AC power line: 2×(1±0.1) Other connecting line: 1×(1±0.1) Normal monitoring state Repetition frequency kHz 5×(1±0.2) Polarity Anode and cathode Time min 1 Surge immunity test (Not applicable to detectors powered by batteries only) Surge voltage kV AC power line: line-line 1×(1±0.1) AC power line: line-ground 2×(1±0.1) Other connecting line: line-ground 1×(1±0.1) Normal monitoring state Polarity Anode and cathode Number of tests 5 Test interval s 60 Immunity test for conducted disturbance induced by radio-frequency field (not applicable to detectors powered by batteries only) Frequency range MHz 0.15~80 Normal monitoring state Voltage dBμV 140 Modulation amplitude 80% (1 kHz, sine) 3.3.14 Climatic environmental tolerance The detector shall be able to withstand various tests under the climatic environmental conditions specified in Table 2. During the test, the detector shall not send out alarm signals or fault signals. The absolute value of the difference between the alarm operation value and the alarm set point of the detector shall not be greater than 10%LEL after the test. The absolute value of the difference between the alarm operation value and the alarm set point of a detector detecting carbon monoxide shall not be greater than 160×10-6 (volume fraction). Foreword III 1 Scope 2 Normative references 3 Requirements 3.1 General 3.2 Appearance requirements 3.3 Performance 4 Tests 4.1 Test outline 4.2 Basic performance test 4.3 Alarm operation value test 4.4 Range indication deviation test (applicable to specimens with concentration display function) 4.5 Response time test 4.6 Orientation test 4.7 Alarm repeatability test 4.8 Alarm test during preheating 4.9 Explosion-proof performance test 4.10 Voltage fluctuation test (not applicable to specimens powered by batteries only) 4.11 Battery capacity test 4.12 Insulation resistance test 4.13 Electrical strength test 4.14 Electrostatic discharge immunity test 4.15 Radiated, radio-frequency electromagnetic field immunity test 4.16 Electrical fast transient/burst immunity test (not applicable to specimens powered by batteries only) 4.17 Surge (impact) immunity test (not applicable to specimens powered by batteries only) 4.18 Immunity test for conducted disturbance induced by radio-frequency field (not applicable to specimens powered by batteries only) 4.19 High temperature (operation) test 4.20 Low temperature (operation) test 4.21 Steady-state damp-heat (operation) test 4.22 Vibration (sinusoidal) (operation) test 4.23 Vibration (sinusoidal) (durability) test 4.24 Drop test 4.25 Gas interference resistance test 4.26 Poison resistance test 4.27 Low concentration operation test 4.28 Long-term stability test 4.29 Low-concentration carbon monoxide response performance test (only applicable to specimens for detecting carbon monoxide) 5 Inspection rules 5.1 End-of-manufacturing inspection 5.2 Type inspection 6 Marking 6.1 General 6.2 Product marking 6.3 Quality inspection marking Annex A (Informative) Reading device for alarm history records of combustible gas detectors 可燃气体探测器 第2部分:家用可燃气体探测器 1 范围 GB 15322的本部分规定了家用可燃气体探测器的要求、试验、检验规则和标志。 本部分适用于家庭环境使用的用于探测天然气、液化石油气、人工煤气等可燃气体及其不完全燃烧产物的探测器。 2规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 9969工业产品使用说明书 总则 GB 12978消防电子产品检验规则 GB 15322.1—2019 可燃气体探测器 第1部分:工业及商业用途点型可燃气体探测器 GB/T 16838 消防电子产品 环境试验方法及严酷等级 GB/T 17626.2—2018 电磁兼容 试验和测量技术 静电放电抗扰度试验 GB/T 17626.3—2016 电磁兼容 试验和测量技术 射频电磁场辐射抗扰度试验 GB/T 17626.4—2018 电磁兼容 试验和测量技术 电快速瞬变脉冲群抗扰度试验 GB/T 17626.5—2008 电磁兼容 试验和测量技术 浪涌(冲击)抗扰度试验 GB/T 17626.6—2017 电磁兼容 试验和测量技术 射频场感应的传导骚扰抗扰度 GB 23757消防电子产品防护要求 3 要求 3.1 总则 家用可燃气体探测器(以下简称“探测器”)应满足第3章的相关要求,并按第4章的规定进行试验,以确认探测器对第3章要求的符合性。 3.2 外观要求 3.2.1 探测器应具备产品出厂时的完整包装,包装中应包含质量检验合格标志和使用说明书。 3.2.2探测器表面应无腐蚀、涂覆层脱落和起泡现象,无明显划伤、裂痕、毛刺等机械损伤,紧固部位无松动。 3.3 性能 3.3.1 一般要求 3.3.1.1 探测器应采用36 V及以下的直流电压或220 V交流电压供电。采用外部直流电源供电的探测器应由可燃气体报警控制器供电,且应具有极性反接的保护措施。采用电池供电的探测器应具有防止极性反接的电池安装结构,当电池被取走时应有明显的警示标识。 3.3.1.2探测器表面应具有工作状态指示灯,指示其正常监视、故障、报警工作状态。正常监视状态指示应为绿色,故障状态指示应为黄色,报警状态指示应为红色。指示灯应有中文功能注释。在5 lx~500 lx光照条件下、正前方5 m处,指示灯的状态应清晰可见。 注:正常监视状态指探测器接通电源正常工作,且未发出报警信号或故障信号时的状态。 3.3.1.3 探测器应具有气体传感器寿命状态指示功能,并满足以下要求: a)气体传感器寿命状态指示应为黄色; b)探测器累计工作时间达到气体传感器使用期限时,状态指示应闪亮; c)探测器表面应有提示气体传感器失效或寿命到期需更换的明显标识; d)探测器使用说明书中应注明气体传感器的使用期限。 3.3.1.4 具有浓度显示功能的探测器,在5 lx~500 lx光照条件下、正前方1 m处,显示信息应清晰可见。 3.3.1.5在额定工作电压条件下,探测器报警声信号在距其正前方1 m处的最大声压级(A计权)应不小于70 dB,不大于115 dB。 3.3.1.6探测器应具有控制输出功能。控制输出接口的类型和容量应与制造商规定的配接产品或执行部件相匹配,且应在使用说明书中注明。如探测器的控制输出接口具有延时功能,其最大延时时间不应超过30 s。 3.3.1.7探测器应具有能够与控制和指示设备连接的联网接口(仅以电池供电的探测器除外),联网接口应能输出与其测量浓度相对应的信号及探测器正常监视、故障、报警、传感器寿命状态信号。信号的类型、参数等信息应在使用说明书中注明。 3.3.1.8探测器在被监测区域内的可燃气体浓度达到报警设定值时,应能发出报警信号。再将探测器置于正常环境中,30 s内应能自动(或手动)恢复到正常监视状态。 3.3.1.9探测器的报警设定值应在5%LEL~25%LEL范围,其量程上限应不低于报警设定值的2倍且不小于15%LEL;探测一氧化碳的探测器,其报警设定值应在150×10-6(体积分数)~300×10-6(体积分数)范围。 注:爆炸下限(LEL)为可燃气体或蒸气在空气中的最低爆炸浓度。 3.3.1.10探测器采用插拔结构气体传感器时,应具有结构性的防脱落措施。气体传感器发生脱落时,探测器应能在30 s内发出故障信号。 3.3.1.11 探测器应具有对其声光部件手动自检功能,其控制输出接口在自检期间应延时7 s~30 s动作。 3.3.1.12探测器的外壳防护等级(IP代码)应满足GB 23757中规定的IP30等级的要求。 3.3.1.13探测器的型号编制应符合GB 15322.1—2019中附录A的规定。 3.3.1.14探测器内部应具有计时装置,日计时误差不应超过30 s。 3.3.1.15探测器内部应具有报警历史记录功能,历史记录在探测器掉电后应能保存。历史记录的类型和条数应满足以下要求: a)探测器报警记录:不少于200条; b)探测器报警恢复记录:不少于200条; c)探测器故障记录:不少于100条; d)探测器故障恢复记录:不少于100条; e)探测器掉电记录:不少于50条; f)探测器上电记录:不少于50条; g)气体传感器失效记录:不少于1条。 3.3.1.16探测器内部应具有读取接口,使用可燃气体报警控制器或探测器报警历史信息记录读取装置应能对探测器的报警历史记录完整读取。读取接口的物理特性和通信协议参见附录A。 3.3.1.17探测器应在使用说明书中注明存储器中各类报警历史记录的最大存储条数。 3.3.1.18探测器的使用说明书应满足GB/T 9969的相关要求。 3.3.2报警动作值 3.3.2.1 在本部分规定的试验项目中,探测器的报警动作值不应低于5%LEL,探测一氧化碳的探测器,其报警动作值不应低于50×10-6(体积分数)。 注:爆炸下限(LEL)为可燃气体或蒸气在空气中的最低爆炸浓度。 3.3.2.2探测器的报警动作值与报警设定值之差的绝对值不应大于3%LEL,探测一氧化碳的探测器,其报警动作值与报警设定值之差的绝对值不应大于50×10-6(体积分数)。 3.3.3量程指示偏差(适用于具有浓度显示功能的探测器) 在探测器量程内选取若干试验点作为基准值,使被监测区域内的可燃气体浓度分别达到对应的基准值。探测器在试验点上的可燃气体浓度显示值与基准值之差的绝对值不应大于3%LEL。探测一氧化碳的探测器,其浓度显示值与基准值之差的绝对值不应大于80×10-6(体积分数)。 3.3.4响应时间 具有浓度显示功能的探测器,向其通入流量为500 mL/min,浓度为满量程的60%的试验气体,保持60 s,记录探测器的显示值作为基准值,显示值达到基准值的90%所需的时间为探测器的响应时间。不具有浓度显示功能的探测器,向其通入流量为500 mL/min,浓度为报警设定值1.6倍的试验气体并开始计时,探测器发出报警信号所需的时间为探测器的响应时间。探测一氧化碳的探测器,其响应时间不应大于60 s,其他气体探测器的响应时间不应大于30 s。 3.3.5 方位 探测器在安装平面内顺时针旋转,每次旋转45°,分别测量探测器的报警动作值。探测器的报警动作值与报警设定值之差的绝对值不应大于3%LEL;探测一氧化碳的探测器,其报警动作值与报警设定值之差的绝对值不应大于50×10-6(体积分数)。 3.3.6报警重复性 对同一只探测器重复测量报警动作值6次,报警动作值与报警设定值之差的绝对值不应大于3%LEL。探测一氧化碳的探测器,其报警动作值与报警设定值之差的绝对值不应大于50×10-6(体积分数)。 3.3.7预热期间报警 将探测器在不通电状态下放置24 h后,使其在试验气体浓度为30%LEL的环境条件下恢复供电,探测一氧化碳的探测器在一氧化碳浓度为380×10-6(体积分数)的环境条件下恢复供电,探测器应能在恢复供电后的5 min之内发出报警信号。 3.3.8 防爆性能 将不通电状态的探测甲烷或一氧化碳的探测器置于甲烷浓度为8.5%(体积分数)的试验箱中,探测丙烷的探测器置于丙烷浓度为4.6%(体积分数)的试验箱中,保持5 min。将探测器恢复供电,保持5 min,期间不应发生可燃气体引燃或爆炸现象。 3.3.9 电压波动(不适用于仅以电池供电的探测器) 将探测器的供电电压分别调至其额定电压的85%和115%,测量探测器的报警动作值,报警动作值与报警设定值之差的绝对值不应大于3%LEL。探测一氧化碳的探测器,其报警动作值与报警设定值之差的绝对值不应大于50×10-6(体积分数)。 3.3.10 电池容量 3.3.10.1 对仅以电池供电的探测器,以25倍最大工作电流对电池放电30 d,放电结束后,探测器的电池容量应能保证其正常工作不少于2 h。在电池电量低时,探测器应能发出与报警信号有明显区别的声、光指示信号,控制输出接口应能正常驱动其配接产品或执行部件。 3.3.10.2具有备用电池的探测器,在以主电和备电两种不同供电条件下工作时,状态指示应有区别。备用电池容量应能保证其正常工作不少于8 h。在备用电池电量低时,探测器应能发出与报警信号有明显区别的声、光指示信号,控制输出接口应能正常驱动其配接产品或执行部件。 3.3.10.3在指示电池电量低时,测量探测器的报警动作值,探测器的报警动作值与报警设定值之差的绝对值不应大于5%LEL。探测一氧化碳的探测器,其报警动作值与报警设定值之差的绝对值不应大于80×10-6(体积分数)。 3.3.11绝缘电阻 探测器的外部带电端子和电源插头的工作电压大于50 V时,外部带电端子和电源插头与外壳间的绝缘电阻在正常大气条件下应不小于100 MΩ。 3.3.12 电气强度 探测器的外部带电端子和电源插头的工作电压大于50 V时,外部带电端子和电源插头应能耐受频率为50 Hz、有效值电压为1 250 V的交流电压,历时60 s的电气强度试验。试验期间,探测器不应发生击穿放电现象。试验后,探测器功能应正常。 3.3.13 电磁兼容性能 探测器应能耐受表1所规定的电磁干扰条件下的各项试验,试验期间,探测器不应发出报警信号或故障信号。试验后,探测器的报警动作值与报警设定值之差的绝对值不应大于5%LEL。探测一氧化碳的探测器,其报警动作值与报警设定值之差的绝对值不应大于80×10-6(体积分数)。 表1 电磁兼容试验参数 试验名称 试验参数 试验条件 工作状态 静电放电抗扰度试验 放电电压 kV 空气放电(绝缘体外壳):8 接触放电(导体外壳和耦合板):6 正常监视状态 放电极性 正、负 放电间隔 s ≥1 每点放电次数 10 射频电磁场辐射抗扰度试验 场强 V/m 10 正常监视状态 频率范围 MHz 80~1 000 射频电磁场辐射抗扰度试验 扫描速率 10 oct/s ≤1.5×10-3 正常监视状态 调制幅度 80%(1 kHz,正弦) 电快速瞬变脉冲群抗扰度试验(不适用于仅以电池供电的探测器) 瞬变脉冲电压 kV AC电源线:2×(1±0.1) 其他连接线:1×(1±0.1) 正常监视状态 重复频率 kHz 5×(1±0.2) 极性 正、负 时间 min 1 浪涌(冲击)抗扰度试验 (不适用于仅以电池供电的探测器) 浪涌(冲击)电压 kV AC电源线:线-线1×(1±0.1) AC电源线:线-地2×(1±0.1) 其他连接线:线-地1×(1±0.1) 正常监视状态 极性 正、负 试验次数 5 试验间隔 s 60 射频场感应的传导骚扰抗扰度试验(不适用于仅以电池供电的探测器) 频率范围 MHz 0.15~80 正常监视状态 电压 dBμV 140 调制幅度 80%(1 kHz,正弦) 3.3.14气候环境耐受性 探测器应能耐受表2所规定的气候环境条件下的各项试验,试验期间,探测器不应发出报警信号或故障信号。试验后,探测器的报警动作值与报警设定值之差的绝对值不应大于10%LEL。探测一氧化碳的探测器,其报警动作值与报警设定值之差的绝对值不应大于160×10-6(体积分数)。 表2气候环境试验参数 试验名称 试验参数 试验条件 工作状态 高温(运行)试验 温度 55±2 正常监视状态 持续时间 2 低温(运行)试验 温度 10±2 正常监视状态 持续时间 2 恒定湿热(运行)试验 温度 40±2 正常监视状态 相对湿度 93%±3% 持续时间 2 3.3.15机械环境耐受性 探测器应能耐受表3所规定的机械环境条件下的各项试验,运行试验期间,探测器不应发出报警信号或故障信号。试验后,探测器不应有机械损伤和紧固部位松动,报警动作值与报警设定值之差的绝对值不应大于5%LEL。探测一氧化碳的探测器,其报警动作值与报警设定值之差的绝对值不应大于80×10-6(体积分数)。 表3机械环境试验参数 试验名称 试验参数 试验条件 工作状态 振动(正弦)(运行)试验 频率范围 Hz 10~150 正常监视状态 加速度 m/s2 10 扫频速率 oct/min 1 轴线数 3 每个轴线扫频次数 1 振动(正弦)(耐久)试验 频率范围 Hz 10~150 不通电状态 加速度 m/s2 10 扫频速率 oct/min 1 轴线数 3 每个轴线扫频次数 20 跌落试验 跌落高度 质量不大于2kg:1 000 质量大于2kg且 不大于5 kg:500 质量大于5kg:不进行试验 不通电状态 跌落次数 2 3.3.16抗气体干扰性能 使探测器分别在下述气体干扰环境中工作30 min,期间探测器不应发出报警信号或故障信号: a)乙酸:(6 000±200)×10-6(体积分数); b)乙醇:(2 000±200)×10-6(体积分数)。 每种气体干扰后使探测器处于正常监视状态1 h,然后测量其报警动作值。探测器的报警动作值与报警设定值之差的绝对值不应大于5%LEL。探测一氧化碳的探测器,其报警动作值与报警设定值之差的绝对值不应大于80×10-6(体积分数)。 3.3.17抗中毒性能 使探测器在可燃气体浓度为1%LEL[探测一氧化碳的探测器,一氧化碳浓度为10×10-6(体积分数)],和六甲基二硅醚蒸气浓度为(10±3)×10-6(体积分数)的混合气体环境中工作40 min,期间探测器不应发出报警信号或故障信号。环境干扰后使探测器处于正常监视状态20 min,然后测量其报警动作值。探测器的报警动作值与报警设定值之差的绝对值不应大于10%LEL。探测一氧化碳的探测器,其报警动作值与报警设定值之差的绝对值不应大于160×10-6(体积分数)。 3.3.18低浓度运行 使探测器在可燃气体浓度为20%低限报警设定值的环境中工作4 h。运行期间,探测器不应发出报警信号或故障信号。使探测器处于正常监视状态20 min,然后测量其报警动作值,探测器的报警动作值与报警设定值之差的绝对值不应大于5%LEL。探测一氧化碳的探测器,其报警动作值与报警设定值之差的绝对值不应大于80×10-6(体积分数)。 3.3.19长期稳定性 使探测器在正常大气条件下连续工作28 d后,测量探测器的报警动作值。探测器在连续工作期间不应发出报警信号或故障信号。探测器的报警动作值与报警设定值之差的绝对值不应大于5%LEL。探测一氧化碳的探测器,其报警动作值与报警设定值之差的绝对值不应大于80×10 6(体积分数)。 3.3.20 一氧化碳低浓度响应性能(仅适用于探测一氧化碳的探测器) 使探测器在一氧化碳浓度为(70±5)×10-6(体积分数)的环境中连续工作,探测器在开始的60 min内不应发出报警信号,在之后的180 min内应发出报警信号。 4试验 4.1试验纲要 4.1.1大气条件 如在有关条文中没有说明,各项试验均在下述正常大气条件下进行: ——温度:15℃~35℃; ——相对湿度:25%~75%; ——大气压力:86 kPa~106 kPa。 4.1.2试验样品 试验样品(以下简称“试样”)数量为12只,试验前应对试样予以编号。 4.1.3外观检查 试样在试验前应检查外观是否满足3.2的要求。 4.1.4试验前准备 将试样在不通电条件下依次置于以下环境中: a)-25℃±3℃,保持24 h; b)正常大气条件,保持24 h; c)55℃±2℃,保持24 h; d)正常大气条件,保持24 h。 4.1.5试样的安装 试验前,试样应按照制造商规定的正常使用方式安装,采用外部直流电源供电的试样应与制造商规定的可燃气体报警控制器连接,使其在正常大气条件下通电预热20 min。 4.1.6容差 各项试验数据的容差均为±5%。 4.1.7试验气体 配制试验气体的可燃气体纯度应不低于99.5%。除相关试验外,试验气体应由可燃气体与洁净空气混合而成,试验气体湿度应符合正常湿度条件,配气误差应不超过报警设定值的±2%。 4.1.8试验程序 试验程序见表4。 表4试验程序 序号 章条 试验项目 试样编号 1 2 3 4 5 6 7 8 9 10 11 12 1 4.1.3 外观检查 √ √ √ √ √ √ √ √ √ √ √ √ 2 4.2 基本性能试验 √ √ √ √ √ √ √ √ √ √ √ √ 3 4.3 报警动作值试验 √ √ √ √ √ √ √ √ √ √ √ √ 4 4.4 量程指示偏差试验(适用于具有浓度显示功能的试样) √ √ 5 4.5 响应时间试验 √ √ 6 4.6 方位试验 √ 7 4.7 报警重复性试验 √ 8 4.8 预热期间报警试验 √ 9 4.9 防爆性能试验 √ 10 4.10 电压波动试验(不适用于仅以电池供电的试样) √ 11 4.11 电池容量试验 √ 12 4.12 绝缘电阻试验 √ 13 4.13 电气强度试验 √ 14 4.14 静电放电抗扰度试验 √ 15 4.15 射频电磁场辐射抗扰度试验 √ 16 4.16 电快速瞬变脉冲群抗扰度试验(不适用于仅以电池供电的试样) √ 17 4.17 浪涌(冲击)抗扰度试验(不适用于仅以电池供电的试样) √ 18 4.18 射频场感应的传导骚扰抗扰度试验(不适用于仅以电池供电的试样) √ 19 4.19 高温(运行)试验 √ 20 4.20 低温(运行)试验 √ 21 4.21 恒定湿热(运行)试验 √ 22 4.22 振动(正弦)(运行)试验 √ 23 4.23 振动(正弦)(耐久)试验 √ 24 4.24 跌落试验 √ 25 4.25 抗气体干扰性能试验 √ 26 4.26 抗中毒性能试验 √ 27 4.27 低浓度运行试验 √ 28 4.28 长期稳定性试验 √ √ 29 4.29 一氧化碳低浓度响应性能试验(仅适用于探测一氧化碳的试样) √ 4.2基本性能试验 4.2.1 检查试样的供电方式是否符合3.3.1.1的规定。采用外部直流电源供电的试样,将其电源极性反接,检查试样是否具有极性反接的保护措施。采用电池供电的试样,检查其是否具有防止极性反接的电池安装结构,取出试样的电池,检查其是否有明显的警示标识。 4.2.2 检查并记录试样工作状态指示灯的指示和功能注释情况是否符合3.3.1.2的规定。 4.2.3 检查并记录试样的气体传感器寿命状态指示功能是否符合3.3.1.3的规定。 4.2.4具有浓度显示功能的试样,向其通入试验气体,检查并记录试样的浓度显示情况。 4.2.5 向试样通入试验气体使其发出报警信号,检查并记录试样的报警设定值和量程设置是否符合 3.3.1.9的规定,测量试样正前方1 m处报警声信号的声压级(A计权)。将试样置于正常环境中并开始计时,检查并记录其报警状态的恢复情况。 |
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 |
服务热线:400-001-5431 | 电话:010-8572 5110 | 传真:010-8581 9515 | Email: bz@bzfyw.com | |
版权所有: 北京悦尔信息技术有限公司 2008-2020 京ICP备17065875号-1 51La |
本页关键词: |
GB 15322.2-2019, GB/T 15322.2-2019, GBT 15322.2-2019, GB15322.2-2019, GB 15322.2, GB15322.2, GB/T15322.2-2019, GB/T 15322.2, GB/T15322.2, GBT15322.2-2019, GBT 15322.2, GBT15322.2 |