![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative. This standard is developed in accordance with the rules given in GB/T 1.1-2009. This standard replaces GB/T 6398-2000 Standard Test Method for Fatigue Crack Growth Rates of Metallic Materials; the following technical changes have been made with respect to GB/T 6398-2000 (the previous edition): ——The application scope of the standard is modified (see Chapter 1); ——The "Normative References" is modified (see Chapter 2); ——The symbols and definitions are modified, which are divided into two chapters, i.e., terms anddefinitions as well as symbols and description (see Chapters 3 and 4; Chapter 3 of Edition 2000); ——The specimen type is modified (see Chapter 5; Chapter 4 of Edition 2000); ——The test equipment requirements are modified (see Chapter 6; Chapter 5 of Edition 2000); ——The test procedure requirements are modified; in this standard, the requirements of test process are stated in Chapter 7 "Test Procedure" and Chapter 8 "Crack Length Measurement"; ——The requirements for test result treatment and calculation are modified (see Chapter 9; Chapter 7 and Chapter 8 of Edition 2000); ——The criteria for effectiveness test data, the criteria requirements for effectiveness test data of high-stress stiffening material and the content in the part of stress intensity factor calculation are deleted; ——The Annex A of the former standard is deleted; the Annex D of the former standard is adopted as Annex A (Informative) of this standard; the Annex E of the former standard is adopted as Annex D (Informative) of this standard; the Annex F of the former standard is adopted as Annex E (Informative) of this standard; the requirements of test procedure of fatigue crack growth rate in water-bearing media in Annex C (Informative) of this standard are added. This standard has been redrafted and modified in relation to ISO 12108: 2012 Metallic Materials - Fatigue Testing - Fatigue Crack Growth Method. The main structures are consistent with that of the international standard. Modification and supplementation in the following aspects have been made in this standard with respect to ISO 12108: 2012, and the clauses modified or supplemented in main body have been marked with perpendicular single line at the margin: ——For normative references, this standard covers adjustment on technical differences so as to adapt to technical conditions in China, which is centralizedly reflected in Chapter 2 "Normative References"; specific adjustment is as follows: GB/T 25917 modified in relation to international standard is used to replace ISO 4965.1 (see 6.1.1); GB/T 10623 is cited (see Chapter 3); GB/T 16825.1 is cited (see 6.1.3); ISO 23788 is cited (see 6.1.2). ——The term and definition of precrack length are added (see 3.20); ——Error in ISO 12108: 2012 has been corrected, " is commonly defined as being the value of ΔK corresponding to a crack growth rate equal to mm/cycle" in ISO 12108: 2012 is changed as " is commonly defined as being the value of ΔK corresponding to a crack growth rate equal to mm/cycle" (see 9.3); ——In order to keep consistent with new international standard ISO 23788 Metallic Materials - Verification of the Alignment of Fatigue Testing Machines, the requirements of testing machine coaxiality are modified (see 6.1.2 and 5.1.2 of ISO 12108: 2012); ——According to calculation formula of loading coaxality in ISO 23788, the calculation formula of bending strain in international standard is deleted (see 6.1.2 and 5.4.5 of ISO 12108: 2012). The following editorial changes are also made in this standard: ——The sequence of Chapter 5 "Apparatus" and Chapter 6 "Specimens" in ISO 12108: 2012 is adjusted; ——Annex B (informative) "Non-visual Crack Length Measurement Methodology - Compliance Method" is added; ——Annex C (informative) "Special Requirements for Determination of Fatigue Crack Growth in Water-bearing Media" is added; ——Annex D (informative) "Method for Determination of Small Fatigue Crack Growth" is added; ——Annex E (informative) "Method for Determination of Fatigue Crack Tension" is added; ——All formulae in the standard are numbered. This standard was proposed by China Iron and Steel Association. This standard is under the jurisdiction of SAC/TC 183 National Technical Committee on Iron and Steel of Standardization Administration of China. The previous editions of this standard replaced by this standard are as follows: ——GB/T 6398-1986 and GB/T 6398-2000. Metallic Materials - Fatigue Testing - Fatigue Crack Growth Method 1 Scope This standard describes tests for determining the fatigue crack growth rate from the fatigue crack growth threshold stress-intensity factor range, , to the onset of rapid, unstable fracture. This standard is primarily intended for use in evaluating isotropic metallic materials under predominantly linear-elastic stress conditions and with force applied only perpendicular to the crack plane (mode I stress condition), and with a constant stress ratio, R. 2 Normative References The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. GB/T 10623 Metallic Material - Mechanical Testing – Vocabulary (GB/T 10623-2008; ISO 23718: 2007, MOD) GB/T 16825.1 Verification of Static Uniaxial Testing Machines - Part 1: Tension/Compression Testing Machines - Verification and Calibration of the Force-measuring System (GB/T 16825.1-2008; ISO 7500-1: 2004, IDT) GB/T 25917 Axial force-applied Fatigue Testing Machines Dynamic Force Calibration (GB/T 25917-2010; ISO 4965: 1979, MOD) ISO 23788 Metallic Materials - Verification of the Alignment of Fatigue Testing Machines 3 Terms and Definitions For the purposes of this document, the terms and definitions given in GB/T 10623 and the following apply. 3.1 crack length a linear measure of a principal planar dimension of a crack from a reference plane to the crack tip Note: This is also called crack size. 3.2 cycle N smallest segment of a force-time or stress-time function which is repeated periodically Note: The terms “fatigue cycle”, “force cycle” and “stress cycle” are used interchangeably. The letter N is used to represent the number of elapsed force cycles. 3.3 fatigue crack growth rate da/dN extension in crack length 3.4 maximum force force having the highest algebraic value in the cycle; a tensile force being positive and a compressive force being negative 3.5 minimum force force having the lowest algebraic value in the cycle; a tensile force being positive and a compressive force being negative 3.6 force range the algebraic difference between the maximum and minimum forces in a cycle 3.7 force ratio R algebraic ratio of the minimum force to maximum force in a cycle R= Notes: 1 R is also called the stress ratio. 2 R may also be calculated using the values of stress-intensity factors: R= . 3.8 stress-intensity factor K magnitude of the ideal crack-tip stress field for the opening mode force application to a crack in a homogeneous, linear-elastically stressed body, where the opening mode of a crack corresponds to the force being applied to the body perpendicular to the crack faces only (mode I) Note: The stress-intensity factor is a function of applied force, crack length, specimen size and geometry. 3.9 maximum stress-intensity factor highest algebraic value of the stress-intensity factor in a cycle, corresponding to Fmax and current crack length 3.10 minimum stress-intensity factor lowest algebraic value of the stress-intensity factor in a cycle, corresponding to Fmin and current crack length Note: When R≥0, this definition remains the same, regardless of the minimum force being tensile or compressive. For R < 0, there is an alternate, commonly used definition for the minimum stress-intensity factor, = 0. 3.11 stress-intensity factor range algebraic difference between the maximum and minimum stress-intensity factors in a cycle Notes: 1 The force variables ΔK, R and are related as follows: . 2 For R ≤ 0 conditions, see 3.10 and 10.6. 3 When comparing data developed under R ≤ 0 conditions with data developed under R > 0 conditions, it may be beneficial to plot the da/dN data versus . 3.12 fatigue crack growth threshold asymptotic value of ΔK for which da/dN approaches zero Note: For most materials, the threshold is defined as the stress-intensity factor range corresponding to 10^(-7) mm/cycle. When reporting , the corresponding da/dN data used in its determination should also be included. 3.13 normalized K-gradient C=(1/K)dK/da fractional rate of change of K with increased crack length C=1/K(dK/da)=1/Kmax (d Kmax /da)=1/ Kmin (d Kmin /da)=1/ Δ(dΔK /da) 3.14 K-decreasing test test in which the value of the normalized K-gradient, C, is negative Note: A K-decreasing test is conducted by reducing the stress-intensity factor either by continuously shedding or by a series of steps, as the crack grows. 3.15 K-increasing test test in which the value of C is positive Note: For standard specimens, a constant force amplitude results in a K-increasing test where the value of C is positive and increasing. 3.16 geometry function g(a/W) mathematical expression, based on experimental, numerical or analytical results, that relates the stress-intensity factor to force and crack length for a specific specimen configuration 3.17 crack-front curvature correction length difference between the average through-thickness crack length and the corresponding crack length at the specimen faces during the test 3.18 fatigue crack length length of the fatigue crack, as measured from the root of the machined notch Note: See Figure 8. 3.19 notch length the length from load line to root of the machined notch for CT or CCT specimen or from notch side edge to root of the machined notch for SENB or SENT specimen 3.20 precrack length precrack length generated in fatigue loading and not participating in crack propagation rate calculation, which is used to eliminate the effects of machined notch on crack propagation rate 4 Symbols and Abbreviated Terms 4.1 Symbols The symbols and designations used in this standard are shown in Table 1. Table 1 Symbols and Their Designations Symbol Designation Unit Loading C Normalized K-gradient E Tensile modulus of elasticity MPa F Force kN Maximum force kN Minimum force kN Force range kN K Stress-intensity factor MPa· Maximum stress-intensity factor MPa· Minimum stress-intensity factor MPa· ΔK Stress-intensity factor range MPa· Initial stress-intensity factor range MPa· Fatigue crack growth threshold stress-intensity factor range MPa· N Number of cycles — R Force ratio or stress ratio — Ultimate tensile strength at the test temperature MPa 0.2 % proof strength at the test temperature MPa Geometry a Crack length or size measured from the reference plane to the crack tip mm Crack-front curvature correction length mm Fatigue crack length measured from the notch root mm Machined notch length Mm Precrack length Mm B Specimen thickness Mm D Hole diameter for CT, SENT or CCT specimen, loading tup diameter for bend specimens Mm g (a/W) Stress-intensity factor geometry function — h Notch height mm W Specimen width, distance from reference plane to edge of specimen mm (W-a) Minimum uncracked ligament mm Crack growth da/dN Fatigue crack growth rate mm/cycle Change in crack length, crack extension mm 4.2 Abbreviated Terms for Specimen Identification CT Compact tension CCT Centre cracked tension SENT Single edge notch tension SENB3 Three-point single edge notch bend SENB4 Four-point single edge notch bend SENB8 Eight-point single edge notch bend 5 Specimens 5.1 General Proportional dimensions of six standard specimens: a compact tension (CT); a centre cracked tension (CCT) and three-, four- and eight-point single edge notch bends [(SEN B3), (SEN B4) and (SEN B8)]; and single edge notch tension (SENT) are presented in Figures 1~6, respectively. Machining tolerances and surface finishes are also given. A variety of specimen configurations is presented to accommodate the component geometry available and test environment and/or force application conditions during a test. The CT, SEN B3 and SEN B4 specimens are recommended for tension-tension test conditions only. The specimen shall have the same metallurgical structure as the material for which the crack growth rate is being determined. The test specimen shall be in the fully machined condition and in the final heat-treated state that the material will see in service. Foreword i 1 Scope 2 Normative References 3 Terms and Definitions 4 Symbols and Abbreviated Terms 5 Specimens 6 Apparatus 7 Test Procedure 8 Crack Length Measurement 9 Calculations 10 Test report Annex A (Informative) Non-visual Crack Length Measurement Methodology - Electric Potential Difference[4][6][14] Annex B (Informative) Non-visual Crack Length Measurement Methodology - Compliance Method Annex C (Informative) Special Requirements for Determination of Fatigue Crack Growth in Water-bearing Media Annex D (Informative) Method for Determination of Small Fatigue Crack Growth Annex E (Informative) Method for Determination of Fatigue Crack Tension Bibliography 金属材料疲劳试验疲劳裂纹扩展方法 1 范围 本标准规定了应力强度因子范围从疲劳裂纹扩展门槛值 至快速失稳开裂起始前的疲劳裂纹扩展速率的测定方法。 本标准适用于测量各向同性的金属材料在线弹性应力为主、并仅有垂直于裂纹面的作用力(I型应力条件)和固定应力比R条件下的裂纹扩展速率。 2规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 10623金属材料力学性能试验术语(GB/T 10623-2008,ISO 23718:2007,MOD) GB/T 16825.1静力单轴试验机的检验第1部分:拉力和(或)压力试验机测力系统的检验与校准(GB/T 16825.1-2008,ISO 7500-1:2004,1DT) GB/T 25917轴向加力疲劳试验机动态力校准(GB/T 25917-2010,ISO 4965:1979,MOD) ISO 23788金属材料疲劳试验机同轴度校准(Metallic materials—Verification of the alignment of fatigue testing machines) 3术语和定义 GB/T 10623界定的以及下列术语和定义适用于本文件。 3.1 裂纹长度 crack length a 从参考平面到裂纹尖端的主平面尺寸的线性量度。 注:也称裂纹尺寸。 3.2 循环 cycle N 循环性重复作用的力、应力等最小的时间段。 注:术语“疲劳循环”、“力循环”和“应力循环”可互相替代使用,字母N用于表示经历的力循环次数。 3.3 疲劳裂纹扩展速率fatigue crack growth rate da/dN 单位循环对应的疲劳裂纹长度的扩展量。 3.4 最大力maximum force 力在循环中的最大代数值,拉向载荷为正,压向载荷为负。 3.5 最小力minimum force 力在循环中的最小代数值,拉向载荷为正,压向载荷为负。 3.6 力值范围force range 在某循环中最大力与最小力的代数差。 3.7 力值比 force ratio R 在某循环中最小力与最大力之比。 R= 注1:R也叫应力比。 注2:R也可以用应力强度因子的值进行计算:R= 。 3.8 应力强度因子stress-intensity factor K 均匀线弹性应力体只在垂直裂纹面上受力的张开型加载模式(I型)理想裂纹尖端应力场的量值。 注:应力强度因子是力、裂纹长度、试样的形状和尺寸的函数。 3.9 最大应力强度因子maximum stress-intensity factor 在某循环中对应于最大力和当前裂纹长度的应力强度因子最大代数值。 3.10 最小应力强度因子minimum stress-intensity factor 在某循环中对应于最小力和当前裂纹长度的应力强度因子最小代数值。 注:当力值比R≥0时,无论最小力为拉力还是压力,定义仍然相同;当力值比R<0时,通常定义最小应力强度因子 =0。 3.11 应力强度因子范围stress-intensity factor range 在某循环中最大和最小应力强度因子的代数差。 注1:力值变量的参数ΔK,R和 的关系如式表示: 。 注2:力值比R≤0时,见3.10和10.6。 注3:比较R≤0条件下和R>0条件下得到的数据,有利于绘制da/dN数据对 的图。 3.12 疲劳裂纹扩展门槛值fatigue crack growth threshold 裂纹扩展速率da/dN趋于0时,ΔK的渐进线的值。 注:对于大多数材料,门槛值定义为对应10^(-7)mm/cyc的应力强度因子范围。报告 时,注明门槛值对应的da/dN值。 3.13 规则化的K梯度normalized K-gradient C=(1/K)dK/da K随着裂纹长度增加而变化的比率。 C=1/K(dK/da)=1/Kmax (d Kmax /da)=1/ Kmin (d Kmin /da)=1/ Δ(dΔK /da) 3.14 降K试验K-decreasing test 规则化的K梯度值C为负值的试验。 注:降K试验在裂纹扩展期间连续降低或逐级减小应力强度因子。 3.15 增K试验K-increasing test 规则化K梯度C为正值的试验。 注:标准试样的恒幅载荷试验是增K试验,其规则化K梯度值C是正值并在试验中增加。 3.16 形状因子geometry function g(a/w) 基于试验数值分析的结果,将应力强度因子与力,指定试样类型的裂纹长度联系在一起的数学表达式。 3.17 裂纹曲率修正长度crack-front curvature correction length 试验过程中贯穿试样厚度的平均裂纹长度与试样表面的裂纹长度之差 3.18 疲劳裂纹长度fatigue crack length 试验过程中贯穿试样厚度的平均裂纹长度与试样表面的裂纹长度之差。 3.18 疲劳裂纹长度 fatigue crack length 从机加工缺口根部测量的疲劳裂纹长度。 注:见图8。 3.19 缺口长度notch length 对于紧凑拉伸试样(CT)、中心裂纹拉伸试样(CCT),从加载线到机加工缺口根部的长度;对于弯曲试样SENB、单边缺口拉伸试样SENT,从缺口侧边到机加工缺口根部的长度。 3.20 预裂纹长度 precrack length 为消除机加工缺口对裂纹扩展速率的影响,通过疲劳加载方式产生,不参与裂纹扩展速率计算的预制裂纹长度。 4符号和缩写 4.1符号 本标准采用符号和说明见表1。 表1符号和说明 符号 说明 单位 加载 C 规则化K梯度 E 拉伸弹性模量 MPa F 力 kN 最大力 kN 最小力 kN 力值范围 kN K 应力强度因子 MPa· 最大应力强度因子 MPa· 最小应力强度因子 MPa· ΔK 应力强度因子范围 MPa· 初始应力强度因子 MPa· 疲劳裂纹扩展应力强度因子范围门槛值 MPa· N 周次 — R 力值比或应力比 — 试验温度下的抗拉强度 MPa 试验温度下的0.2%规定塑性延伸强度 MPa 几何尺寸 a 从参考面到裂纹尖端测量的裂纹长度或尺寸 mm 裂纹前缘曲率修正长度 mm 从缺口根部测量的疲劳裂纹长度 mm 机加工缺口长度 Mm 预裂纹长度 Mm B 试验厚度 Mm D CT、SENT或者CCT试样的孔径,弯曲试样的加载锤头直径 Mm 应力强度因子形状参数 — H 缺口宽度 mm W 试样宽度,从基准面到试样边缘的距离 mm (W-a) 最小未预裂纹韧带 mm 裂纹扩展 da/dN 疲劳裂纹扩展速率 mm/cycle 裂纹长度变化量,裂纹扩展量 mm 4.2试样类别的缩写 CT紧凑拉伸试样 CCT中心裂纹拉伸试样 SENT单边缺口拉伸试样 SENB3三点弯曲试样 SENB4四点弯曲试样 SENB8八点弯曲试样 5试样 5.1概述 图1~图6分别给出了6种标准试样的比例尺寸:CT;CCT;SENB3、SENB4、SENB8;SENT;同时给出了各标准试样的机加工公差和表面粗糙度要求。可根据待测材料的不同几何形状、试验环境以及试验过程中的加载条件选择合适的试样类型。CT、SENB3和SENB4试样只适用于拉-拉试验条件。待测试样的材料应具有相同的金相组织。试样应按服役最终热处理制度处理,并进行完整的机加工。 表面粗糙度单位:微米 注1:机加工缺口位于中心线±0.002W以内。 注2:表面平行度和垂直度在0.002W以内。 注3:裂纹长度以加载孔中心线作为基准面进行测量。 注4:该试样类型仅适用于力值比R>0的试验。 a基准面; b详细缺口尺寸见图8; c推荐厚度:W/20≤B≤W/2; d推荐最小尺寸W=25mm和 =0.2W。 图1标准紧湊拉伸试样(CT) 表面粗糙度单位:微米 注1:机加工缺口位于中心线±0.002W以内。 注2:表面的平行度为±0.05mm/mm。 注3:表面的平直度不大于0.05mm。 注4:裂纹长度以试样纵向中心线作为基准面进行测量。 注5:U型夹具和销轴的配套夹具不适用于力值比R<0的试验。 注6:力值比R<0的可以采用如图10所示的特定夹持装置。 a 缺口尺寸见图8; b D=2W/3; c 基准面。 图2标准中心裂纹拉伸销孔试样(CCT,2W≤75mm) 表面粗糙度单位:微米 注1:机加工缺口在中性线±0.005W以内。 注2:表面平行度和垂直度在0.002W以内。 注3:裂纹长度以包含初始V型缺口的侧面为基准面进行测量。 注4:该试样类型仅适用于力值比R>0的试验。 a缺口详细尺寸见图8; b基准面; c推荐厚度:0.2W≤B≤W; d D≥W/8。 图3标准单边缺口三点弯曲试样(SENB3) 表面粗糙度单位:微米 注1:机加工缺口在中性线±0.005W以内。 注2:表面平行度和垂直度在0.002W以内。 注3:裂纹长度以包含初始V型缺口的侧面为基准面进行测量。 注4:该试样类型仅适用于力值比R>0的试验。 a缺口详细尺寸见图8; b基准面; c推荐厚度:0.2W≤B≤W; d D≥W/8。 图4标准单边缺口四点弯曲试样(SENB4) 表面粗糙度单位:微米 注1:机加工缺口在中心线±0.005W以内; 注2:表面平行度和垂直度在0.002W以内; 注3:裂纹长度以包含初始V型缺口的侧面为基准面进行测量; 注4:该试样类型适用于力值比R≤0的试验,避免由于夹持产生后坐力和附加弯矩。 a缺口详细尺寸见图8; b基准面; c推荐厚度:0.2W≤B≤W; d D≥W/8。 图5标准单边缺口八点弯曲试样(SENB8) 表面粗糙度单位:微米 注1:机加工缺口位于中心线±0.005W(总参考值c)以内; 注2:表面的垂直度和平行度在±0.002W以内; 注3:裂纹长度以包含初始V型缺口的侧面为基准面进行测量; 注4:该试样类型推荐用于力值比R>0的试验。 aD=W/3; b缺口详细尺寸见图8; c基准面; d推荐厚度:B≤0.5W; e总参考值。 图6标准单边缺口拉伸试样(SENT) 5.2裂纹面方向 图7所示的裂纹面取向与产品的特性方向有关。连字符前的字母表示垂直于裂纹面的加载方向;连字符后的字母表示预期的裂纹扩展方向。对于锻材,X方向通常表示主变形方向,Y表示最小变形方向,Z表示第三正交方向。如果试样方向与产品特性方向不一致,则用连字符前面的两个字母和后面的字母来分别表示裂纹面法向和预期裂纹扩展方向。 注:对于矩形横截面的锻材,通常使用不同的标识方法,用L表示主变形方向(最大晶粒流),T表示最小变形方向,S代表第三正交方向。 与晶粒流动方向一致 图7裂纹面方向表示 与晶粒流动方向不一致 径向晶粒流动方,轴向加工方向 轴向晶粒流动,径向加工方向 a晶粒流动方向。 图7(续) 5.3预制初始裂纹要求 图8给出了各种不同的机加工缺口和最小疲劳预裂纹的要求。 为保证裂纹长度的精确测量,采用柔度法测定裂纹长度时,CCT试样的最小缺口长度2an应大于或等于0.2W。 试样缺口可通过铣切、线切割或其他方式加工而成。图8给出了各种不同的缺口几何形状。为便于预制出合格的疲劳裂纹,建议在热处理后进行线切割加工,缺口根部曲率半径小于或等于0.08mm(在预制出合格的疲劳裂纹的前提下曲率半径可以稍大些);铣切的人字形缺口及其他加工的缺口形状其根部曲率半径小于或等于0.25mm。 试样类型 缺口长度an 最大缺口宽度h 最小预裂纹长度ap CT CCT SENB 0.1W≤an≤0.15W W≤25:h≤1 mm; W>25:h=W/16 ap≥ +h;ap≥an+1 mm; ap≥an+0.1B中最大值 CT试样:ap≥0.2W 注1:裂纹长度从基准面开始测量; 注2:缺口高度应该尽可能小; 注3:CCT试样中半径r<0.05W的小孔可以不加工。 a基准面; b根部半径。 图8缺口尺寸和最小疲劳预制裂纹要求 5.4应力强度因子 5.4.1概述 所有标准试样的应力强度因子采用式(1)计算: (1) 5.4.2~5.4.7给出了每种标准试样的形状因子g(a/W)的计算公式。 5.4.2CT试样 CT试样的形状因子的计算按式(2): (2) 式中: a=a/W,0.2≤a/W≤1.0时等式有效,见图1。 5.4.3CCT试样 CCT试样的形状因子的计算按式(3)[6] [7] [8]: (3) 式中弧度θ=πa/2W,0HRC40)制作[5]。 a基准面; b机加工缺口,an。 图12裂纹的有效区域 6.6裂纹长度的测量装置 6.6.1概述 试验过程中裂纹长度测量的准确度非常重要。有很多种基于目测法和非目测法的测量装置来测量裂纹长度。参考文献[8]里简述了多种裂纹长度的测量方法。9.1要求的实际裂纹长度应是贯穿厚度的平均裂纹长度。 6.6.2裂纹长度的非目测法测量 有很多种非目测法测量技术。大多数方法可以实现自动数据采集和计算平均裂纹长度,如果存在裂纹前缘曲率可以通过平均裂纹长度来反映。裂纹张开位移柔度技术[16] [17] [18]的、交流和直流电位技术(EPD) [19] [20] [21],背面应变技术[16] [22] ,侧面金属箔片技术[23] [24] [25],都能满足8.1规定的分辦率要求。附录A提供了采用电位法EPD确定裂纹长度的方法,附录B提供了采用柔度法确定裂纹长度的方法。 6.6.3裂纹长度的目测法测量 在过去,最常用的裂纹长度目测法测量技术是使用依靠螺纹传动的低倍显微镜(放大倍率为20倍~50倍)。该方法在试验过程中测量表面裂纹长度,并在试验结束后根据实际的贯穿厚度裂纹尺寸进行修正,参见9.1。 7试验步骤 7.1预制疲劳裂纹 7.1.1预制疲劳裂纹的目的是制造一个足够长并且尖锐的平直裂纹,从而使K标定计算式不受机加工初始缺口形状的影响,也使后续进行的裂纹扩展速率试验不受裂纹前端形状变化或预制裂纹力变化的影响。 7.1.2通常选用尽可能小的最大应力强度因子Kmax,进行疲劳裂纹预制。如果已知被测材料引起断裂的临界应力强度因子近似值,可以用临界应力强度因子的30%~60%作为初始Kmax。如果在30000~50000个循环周次内没有萌生裂纹,可以将Kmax提高10%继续进行裂纹预制。预制裂纹结束时的Kmax不能超过裂纹扩展试验初始Kmax。 7.1.3通常情况下,预制疲劳裂纹阶段用于裂纹萌生时选择的应力强度因子大于裂纹扩展速率试验时的Kmax。在这种情况下,应当逐级降低预制裂纹时的最大力。当手动控制预裂纹产生时,建议应力强度因子Kmax每级下降不超过10%。另外,推荐每级应力强度因子下的裂纹扩展长度至少要达到式(13)的计算值[4]。 (13) 式中: ——前一级预制裂纹结束时的最大应力强度因子。 7.1.4当进行高力值比试验时,采用比裂纹扩展试验初始阶段更低的Kmax和力值比更容易产生预制裂纹。 7.1.5预制裂纹的设备应具备在试样缺口上对称加载的能力,最大力准确度的误差控制在5%以内。中心裂纹板材试样也应在长度(2W)方向对称加载。只要能满足6.1中对力控制准确度的要求加载频率不限。7.2提出了对预制裂纹的对称性和裂纹有效区域的要求。 7.2测量裂纹长度 第8章、第9章提出了对不同标准试样及试验方法的测量准确度、测量间隔和有效性的要求。采用表面测量方法测定裂纹长度时,推荐试样的前后两个表面均进行裂纹长度测量。前后表面的裂纹长度相差应不超过0.25B,对于CCT试样,同侧表面上两边裂纹长度差应不超过0.025W,否则预制裂纹是不适用的且得到的试验数据无效。如果裂纹超出试样缺口根部两侧各0.05W的区域,试验数据无效,见图12。 7.3da/dN>10-5mm/cycle的恒载增K试验程序 7.3.1此方法适用于裂纹扩展速率大于10-5 mm/cycle的试验。预制裂纹时,最大力逐级降低到小于或等于开始裂纹扩展速率试验的Kmax对应的力,之后力值范围、力值比和加载频率条件保持不变。最大应力强度因子将会随着裂纹扩展而增大,直至其达到或超过有效裂纹扩展速率试验中最大的Kmax。以下几点建议旨在降低采用增K法的瞬时效应。如要修改试验变量,为了避免之前的力引起迟滞效应,Kmax只能增大而不能减小。瞬时效应也可能在改变Kmin或应力比时发生。通常,当Kmax和/或Kmin的增加量不超过10%时,可以减少裂纹扩展速率试验中的瞬时效应。当受力条件改变后,在得到有效的裂纹扩展速率数据前,应该有足够的裂纹扩展量以保证重新建立稳定的裂纹扩展速率状态。该裂纹扩展量与很多变量有关,例如,力的变化量,试验材料种类、热处理条件和环境因素等。 7.3.2应尽量减少中断试验的次数。如果试验发生中断,重新开始试验后裂纹扩展速率可能会改变。如果中断后立即开始的裂纹扩展速率与中断前最后阶段的稳定裂纹扩展速率有明显区别,中断后开始阶段的试验数据是无效的。在动态力循环中断时,试样上施加的静态力会导致瞬时效应的影响范围扩大。 7.4da/dN<10-5mm/cycle的降K试验程序 7.4.1选择不同的K梯度C,降K法可能会得到不同的裂纹扩展速率,因此用户需要判断材料的裂纹扩展速率是否对K梯度C的变化敏感。 7.4.2试验阶段初始的Kmax或应力强度因子范围ΔK,应大于或等于预制疲劳裂纹时最终的Kmax或ΔK值。随着裂纹的扩展应逐级或以恒定的速率连续降低应力强度因子范围,直到记录到了所要的最低应力强度因子范围或者疲劳裂纹扩展速率试验数据。随着裂纹长度的增加,力降低的速率应足够小以防止应力强度因子降低产生的不规则数据。 7.4.3降K试验是在选定的裂纹扩展量间隔下采用恒定的力值范围来控制,试验过程中应力强度因子是逐级降低的,见图13,该方法称为逐级降K法。由计算机自动控制程序实现每裂纹扩展增量对应的应力强度因子梯度保持为一个常数,即(dK/K)/da为常数,该方法称为连续降K法[26]。其中的常数C称为规则化的K梯度,通常C≥-0.1mm-1。有研究表明C值与试验材料和试样的几何形状有关[27] [28]。 7.4.4该梯度的选取应使逐级降低的力的变化不引起裂纹扩展速率的瞬时变化。为了方便起见,在恒C试验中K和裂纹长度的关系以式(14)给出: (14) 式中: ——第j级初始应力强度因子范围; ——第j-1级初始应力强度因子范围; ——前一个恒定力范围 对应的裂纹扩展量。 7.4.5在整个降K试验中,力值比R和规则化K梯度C应保持恒定。推荐在降K法试验后再进行增K法试验。 7.4.6当使用逐级降K法时,建议Kmax每次下降不应超过前一级最大应力强度因子的10%,且每一级应力强度因子下裂纹扩展量 ≥0.50mm。对于连续降K法,应在非常小的裂纹扩展量 内保持力范围恒定。此处,应力强度因子连续下降的幅度由每级(j)初始应力强度因子范围 的下降量确定,且不能超过前一级起始应力强度因子范围的2%,见式(15)。 [ ]≤0.02 (15) 力范围ΔF或应力强度因子范围ΔK 裂纹长度a a名义ΔK; b实际ΔK; c在A点dΔK /da; d实际ΔF; e名义ΔF。 图13典型逐级降载减K试验方法 7.4.7若选用C=-0.1mm-1,随着每级起始应力强度因子范围最大下降2%,则每个恒力范围对应的裂纹扩展量为 =0.2mm,见式(16)。 (16) =ln(0.98)/(-0.1)=0.2mm 7.5含水介质中疲劳裂纹扩展测定的特殊要求 参见附录C。 7.6裂纹长度的电位法测定 参见附录D。 7.7疲劳小裂纹扩展的测定方法 参见附录E。 8裂纹长度测量 8.1测量分辨率 8.1.1可采用6.6中的技术测量裂纹长度,裂纹长度测量结果的分辨率应大于或等于0.002W。 8.1.2当采用目测法测量裂纹长度时,建议将裂纹面区域表面进行抛光,并用非直射光源照射以增加裂纹尖端的可见度。为满足8.5中对裂纹对称性的要求,应在试样的前后两面测量裂纹长度,取两面裂纹长度的算术平均值用于计算裂纹扩展速率和应力强度因子范国,对于CT、SENT和SENB试样是取前后两面裂纹长度值的算术平均值,而对于CCT试样是取前后两面左右两侧共4个裂纹长度值的算术平均值。如果不是每次都同时测量前后两面的裂纹长度,报告中应分别注明前、后面的测量间隔。应定期对比目测法和非目测法测量的裂纹长度结果。 8.2试验中断 尽管允许在测量裂纹长度时中断试验,但应尽可能避免中断试验,也应尽量减小中断试验的次数和中断时间。采用脉冲光源照明系统可以避免在目测法测量裂纹长度时中断试验。 8.3静态力 可以采用施加静态力的方法增加裂纹的测量分辨率。通常情况下施加的静态力应不大于疲劳载荷的中值。在腐蚀或高温环境下,施加静态力可能会引起瞬时蠕变或钝化效应。在任何情况下加载的静态力都不应超过疲劳的最大力。 |
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 |
服务热线:400-001-5431 | 电话:010-8572 5110 | 传真:010-8581 9515 | Email: bz@bzfyw.com | |
版权所有: 北京悦尔信息技术有限公司 2008-2020 京ICP备17065875号-1 51La |
本页关键词: |
GB/T 6398-2017, GB 6398-2017, GBT 6398-2017, GB/T6398-2017, GB/T 6398, GB/T6398, GB6398-2017, GB 6398, GB6398, GBT6398-2017, GBT 6398, GBT6398 |