GB/T 307 consists of the following four parts:
——GB/T 307.1 Rolling bearings - Radial bearings - Geometrical product specifications (GPS) and tolerance values;
——GB/T 307.2 Rolling bearings - Measuring and gauging principles and methods;
——GB/T 307.3 Rolling bearings - General technical regulations;
——GB/T 307.4 Rolling bearings - Thrust bearings - Geometrical product specifications (GPS) and tolerance values
This is Part 1 of GB/T 307.
This part is developed in accordance with the rules given in GB/T 1.1-2009.
This part replaces GB/T 307.1-2005 Rolling bearings - Radial bearings - Tolerance and the following main technical changes are made with respect to GB/T 307.1-2005:
——The standard name is modified (see cover and front page; cover and front page of Edition 2005);
——The symbol meaning and expression methods are modified (see Clause 4; Clause 4 of Edition 2005);
——Drawing indications are added (see Figures 1~17);
——The tolerance values of SD and SD1 are modified (see Tables 7, 9, 11, 17, 20 and 23; Tables 6, 8, 10, 16, 19 and 22 of Edition 2005);
——Four annexes and the Bibliography are added (see Annexes A to D and Bibliography).
This part, by means of translation, is identical to ISO 492:2014 Rolling bearings - Radial bearings - Geometrical product specifications (GPS) and tolerance values.
The Chinese documents identical to the normative international documents given in this part are as follows:
——GB/T 273.3-2015 Rolling bearings - Boundary dimensions, general plan - Part 3: Radial bearings (ISO 15:2011, IDT)
——GB/T 274-2000 Rolling bearings - Chamfer dimension - Maximum values (idt ISO 582:1995)
——GB/T 1182-2008 Geometrical product specifications (GPS) - Geometrical tolerances of form orientation location and run-out (ISO 1101: 2004, IDT)
——GB/T 6930-2002 Rolling bearings - Vocabulary (ISO 5593: 1997, IDT)
This part was proposed by the China Machinery Industry Federation.
This part is under the jurisdiction of the National Technical Committee on Rolling Bearing of Standardization Administration of China (SAT/TC 98).
The previous editions of this part are as follows:
——GB 307-1964 (Part) and GB 307-1977 (Part);
——GB 307.1-1984 (Part) and GB 7812-1987;
——GB/T 307.1-1994 and GB/T 307.1-2005.
Introduction
This part is a machine element geometry standard as defined in the geometrical product specification (GPS) system as presented in master plan of ISO/TR 14638 [12].
The fundamental rules of ISO/GPS given in ISO 8015 [8] apply to this part and the default decision rules given in ISO 14253-1 [10] apply to the specifications made in accordance with this part, unless otherwise indicated.
The connection between functional requirements, measuring technique and measuring uncertainty is always intended to be considered. The traditionally used measuring technique is described in ISO 1132-2 [5]. For measurement uncertainty, it is intended that ISO 14253-2 [11] shall be considered.
Rolling bearings - Radial bearings - Geometrical product specifications (GPS) and tolerance values
1 Scope
This part of GB/T 307 specifies dimensional and geometrical characteristics, limit deviations from nominal sizes, and tolerance values to define the interface (except chamfers) of radial rolling bearings. Nominal boundary dimensions are defined in ISO 15, ISO 355 [2] and ISO 8443 [7].
This part does not apply to certain radial bearings of particular types (e.g. needle roller bearings) or for particular fields of application (e.g. airframe bearings and instrument precision bearings). Tolerances for such bearings are given in the relevant standards.
Chamfer dimension limits are given in ISO 582.
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 15 Rolling bearings - Radial bearings - Boundary dimensions, general plan
ISO 582 Rolling bearings - Chamfer dimensions - Maximum values
ISO 1101 Geometrical product specifications (GPS) - Geometrical tolerancing - Tolerances of form, orientation, location and run-out
ISO 5593 Rolling bearings - Vocabulary
ISO 14405-1 Geometrical product specifications (GPS) - Dimensional tolerancing – Part 1: Linear sizes
ISO/TS 17863 Geometrical product specification (GPS) - Geometrical tolerancing of moveable assemblies
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 1101, ISO 5593, ISO 14405-1, and ISO/TS 17863 apply.
4 Symbols
To express that the ISO/GPS system, ISO 8015 [8], is applied, the dimensional and geometrical characteristics shall be included in the technical product documentation (for example, on the drawing). The dimensional and geometrical specifications, associated to these characteristics are described in Table 1 and Figures 1 to 17.
Descriptions for symbols are in accordance with GPS terminology; relationships with traditional terms are described in Annex A.
A tolerance value associated to a characteristic is symbolised by t followed by the symbol for the characteristic, for example tVBs.
In this part, the ISO default specification operator for size is in accordance with ISO 14405-1, i.e. the two-point size is valid. Some specification modifiers are described in Annex D.
The detailed definitions for terms in ISO 1101 and ISO 14405-1 and traditional terms in ISO 1132-1 [4] are not fully equal. For differences, see Annex C.
Table 1 Symbols for nominal sizes, characteristics, and specification modifiers
Symbol for nominal dimension (size and distance)a Symbol for characteristica GPS symbol and specification modifierb,c Descriptiond See Figure
B Nominal inner ring width 1; 2; 12
VBS Symmetrical rings: range of two-point sizes of inner ring width 1; 12
Asymmetrical rings: range of minimum circumscribed sizes of inner ring width, between two opposite lines, obtained from any longitudinal section which includes the inner ring bore axis 2; 7
ΔBS Symmetrical rings: deviation of a two-point size of inner ring width from its nominal size 1; 12
Asymmetrical rings, upper limit: deviation of a minimum circumscribed size of inner ring width, between two opposite lines, in any longitudinal section which includes the inner ring bore axis, from its nominal size 2; 7
Asymmetrical rings, lower limit: deviation of a two-point size of inner ring width from its nominal size
C Nominal outer ring width 1; 7; 12
VCS Symmetrical rings: range of two-point sizes of outer ring width 1; 7
Asymmetrical rings: range of minimum circumscribed sizes of outer ring width between two opposite lines, obtained from any longitudinal section which includes the outer ring outside surface axis 2; 12
ΔCS Symmetrical rings: deviation of a two-point size of outer ring width from its nominal size 1; 7
Asymmetrical rings, upper limit: deviation of a minimum circumscribed size of outer ring width, between two opposite lines, in any longitudinal section which includes the outer ring outside surface axis, from its nominal size 2; 12
Asymmetrical rings, lower limit: deviation of a two-point size of outer ring width from its nominal size
C1 Nominal outer ring flange width 12
VC1S Range of two-point sizes of outer ring flange width 12
ΔC1S Deviation of a two-point size of outer ring flange width from its nominal size 12
d Nominal bore diameter of a cylindrical bore or at the theoretical small end of a tapered bore 1~7; 12~16
Vdmp Range of mid-range sizes (out of two-point sizes) of bore diameter obtained from any cross-section of a cylindrical bore 1; 2; 12
Δdmp Cylindrical bore: deviation of a mid-range size (out of two-point sizes) of bore diameter in any cross-section from its nominal size 1; 2; 12
Tapered bore: deviation of a mid-range size (out of two-point sizes) of bore diameter at the theoretical small end from its nominal size 7
Vdsp Range of two-point sizes of bore diameter in any cross-section of a cylindrical or tapered 1; 2; 7,12
Δds Deviation of a two-point size of bore diameter of a cylindrical bore from its nominal size 1; 2; 12
d1 Nominal diameter at the theoretical large end of a tapered bore 7
Δd1mp Deviation of a mid-range size (out of two-point sizes) of bore diameter at the theoretical large end of a tapered bore from its
nominal size 7
D Nominal outside diameter 1~16
VDmp Range of mid-range sizes (out of two-point sizes) of outside diameter obtained from any cross-section 1; 2; 7,12
ΔDmp Deviation of a mid-range size (out of two-point sizes) of outside diameter in any cross- section from its nominal size 1; 2; 7,12
VDsp Range of two-point sizes of outside diameter in any cross-section 1; 2; 7,12
ΔDs Deviation of a two-point size of outside diameter from its nominal size 1; 2; 7,12
D1 Nominal outside diameter of outer ring flange 12
ΔD1s Deviation of a two-point size of outside diameter of outer ring flange from its nominal size 12
Kea Circular radial run-out of outer ring outside surface of assembled bearing with respect to datum, i.e. axis, established from the inner ring bore surface 4; 5; 6; 9; 10; 11; 14;15; 16
Kia Circular radial run-out of inner ring bore surface of assembled bearing with respect to datum, i.e. axis, established from the outer ring outside surface 4; 5; 6; 9; 10; 11; 14; 15; 16
Sd Circular axial run-out of inner ring face with respect to datum, i.e. axis, established from the inner ring bore surface 3; 8; 13
SD Perpendicularity of outer ring outside surface axis with respect to datum established from the outer ring face 3; 8
SD1 Perpendicularity of outer ring outside surface axis with respect to datum established from the outer ring flange back face 13
Sea Circular axial run-out of outer ring face of assembled bearing with respect to datum, i.e. axis, established from the inner ring bore surface 5; 6; 10; 11
Seal Circular axial run-out of outer ring flange back face of assembled bearing with respect to datum, i.e. axis, established from the inner ring bore surface 15; 16
Sia Circular axial run-out of inner ring face of assembled bearing with respect to datum, i.e. axis, established from the outer ring outside surface 5; 6; 10; 11; 15; 16
SLh Taper slope is the difference between nominal diameters at the theoretical large end and small end of a tapered bore (d1-d) 7
ΔSL Deviation of taper slope of a tapered inner ring bore from its nominal size 7
T Nominal assembled bearing width 17
ΔTs Deviation of minimum circumscribed size of assembled bearing width from its nominal size 17
T1 Nominal effective width of inner subunit assembled with a master outer ring 17
ΔT1s Deviation of minimum circumscribed size of effective width (inner subunit assembled with a master outer ring) from its nominal size 17
T2 Nominal effective width of outer ring assembled with a master inner subunit 17
ΔT2s Deviation of minimum circumscribed size of effective width (outer ring assembled with a master inner subunit) from its nominal size 17
TF Nominal assembled flanged bearing width 17
ΔTFs Deviation of minimum circumscribed size of assembled flanged bearing width from its nominal size 17
TF2 Nominal effective width of flanged outer ring assembled with a master inner subunit 17
ΔTF2s Deviation of minimum circumscribed size of effective width (flanged outer ring assembled with a master inner subunit) from its nominal size 17
α Frustum angle of tapered inner ring bore 7; 8; 9; 10; 11
αk Distance from face to define the restricted area for SD or SD1 3; 8; 13
a Symbols as defined in ISO 15241[14] except for the format used.
b Symbols as defined in ISO 1101 and ISO 14405-1.
c Specification modifier shall not be indicated on a drawing, if the two-point size is applied for both specified limits.
d Description based on ISO 1101, ISO 5459 [7] and ISO 14405-1.
e Specification modifier is not appropriate in cases where no opposite material is existing, e.g. tapered roller bearing outer ring with large back face chamfer and small front face. Solutions need to be developed within the framework of the GPS system and considered in future revisions of this part.
f Specification modifier can be omitted on the drawing.
g Symbols for direction of gravity , fixed parts and movable parts according to ISO/TS 17863; see Figures 4, 5, 6, 9, 10, 11, 14, 15, 16, and 17.
h SL is a distance.
i Description based on ISO 1119.[3]
k For rsmin ≤ 0.6: a=rsmax,axial+0.5; for rsmin>0.6: a=1.2×rsmax,axial; rsmax,axial, see ISO 582. For definitions of rsmin and rsmax,axial, see ISO 582.
The indications in Figures 1 to 17 illustrate the correlation of interface dimensions and corresponding dimensional and geometrical tolerance symbols.
The specifications for single components are illustrated in Figures 1, 2, 3, 7, 8, 12 and 13. The specifications for assembled components are illustrated in Figures 4, 5, 6, 9, 10, 11, 14, 15, 16, and 17.
Note: Figures 1 to 17 are drawn schematically and do not necessarily show all design details.
Two examples of a real drawing indication are given in Annex B.
Figure 1 Size specification for single components for bearing with cylindrical bore and symmetrical rings
Note: tVBs and tVCs are not relevant for tapered roller bearings.
Figure 2 Size specification for single components for bearing with cylindrical bore and asymmetrical rings
Figure 3 Geometrical tolerances for single components for bearing with cylindrical bore
Figure 4 Geometrical tolerances for assembled bearing with cylindrical bore - Cylindrical roller bearing, spherical roller bearing, toroidal roller bearing and self‑aligning ball bearing
Figure 5 Geometrical tolerances for assembled bearing with cylindrical bore - Deep-groove ball bearing, double‑row deep‑groove ball bearing, double‑row angular contact ball bearing and four-point-contact ball bearing
Figure 6 Geometrical tolerances for assembled bearing with cylindrical bore - Single-row angular contact ball bearing and tapered roller bearing
Note: For indications on asymmetrical outer rings, see Figure 2.
Figure 7 Size specification for single components for bearing with tapered bore
Figure 8 Geometrical tolerances for single components for bearing with tapered bore
Figure 9 Geometrical tolerances for assembled bearing with tapered bore - Cylindrical roller bearing, spherical roller bearing, toroidal roller bearing and self‑aligning ball bearing
Figure 10 Geometrical tolerances for assembled bearing with tapered bore - Deep-groove ball bearing, double‑row deep‑groove ball bearing, double‑row angular contact ball bearing and four-point-contact ball bearing
Figure 11 Geometrical tolerances for assembled bearing with tapered bore - Single-row angular contact ball bearing and tapered roller bearing
Note: See Figure 2 for indications on asymmetrical inner ring.
Figure 12 Size specification for single components for bearing with flanged outer ring
Figure 13 Geometrical tolerances for single components for bearing with flanged outer ring
Figure 14 Geometrical tolerances for assembled bearing with flanged outer ring - Cylindrical roller bearing, spherical roller bearing, toroidal roller bearing and self‑aligning ball bearing
Figure 15 Geometrical tolerances for assembled bearing with flanged outer ring - Deep-groove ball bearing, double‑row deep‑groove ball bearing, double‑row angular contact ball bearing and four-point-contact ball bearing
Figure 16 Geometrical tolerances for assembled bearing with flanged outer ring - Single-row angular contact ball bearing and tapered roller bearing
Key
1——Master outer ring
2——Master inner subunit
Figure 17 Additional symbols for assembled tapered roller bearings
5 Limit deviations and tolerance values
5.1 General
The bore diameter limit deviations and tolerance values for cylindrical bores are given in 5.2 and 5.3 and for flanges in 5.4. The limit deviations and tolerance values for tapered bore are given in 5.5.
The diameter series referred to in Tables 2 to 11 are those defined in ISO 15. In the Tables 2 to 27 the symbols U and L are used as follows:
U——upper limit deviation;
L——lower limit deviation.
5.2 Radial bearings except tapered roller bearings
5.2.1 Tolerance class - Normal
See Tables 2 and 3.
Table 2 Radial bearings except tapered roller bearings - Inner ring- Tolerance class - Normal
Limit deviations and tolerance values in micrometres
d
mm tΔdmp tVdsp tVdmp tKin tΔBs tVBs
Diameter series All Normal Modified a
> ≤ U L 9 0, 1 2, 3, 4 U L
-
0.6
2.5
10
18
30
50
80
120
180
250
315
400
500
630
800
1 000
1 250
1 600 0.6
2.5
10
18
30
50
80
120
180
250
315
400
500
630
800
1 000
1 250
1 600
2 000 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 -8
-8
-8
-8
-10
-12
-15
-20
-25
-30
-35
-40
-45
-50
-75
-100
-125
-160
-200 10
10
10
10
13
15
19
25
31
38
44
50
56
63
-
-
-
-
- 8
8
8
8
10
12
19
25
31
38
44
50
56
63
-
-
-
-
- 6
6
6
6
8
9
11
15
19
23
26
30
34
38
-
-
-
-
- 6
6
6
6
8
9
11
15
19
23
26
30
34
38
-
-
-
-
- 10
10
10
10
13
15
20
25
30
40
50
60
65
70
80
90
100
120
140 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 -40
-40
-120
-120
-120
-120
-150
-200
-250
-300
-350
-400
-450
-500
-750
-1 000
-1 250
-1 600
-2 000 -
-
-250
-250
-250
-250
-380
-380
-500
-500
-500
-630
-
-
-
-
-
-
- 12
12
15
20
20
20
25
25
30
30
35
40
50
60
70
80
100
120
140
a Applies to inner rings and outer rings of single bearings made for paired and stack assemblies. Also applies to inner rings with tapered bore with d ≥ 50mm.
Table 3 Radial bearings except tapered roller bearings - Outer ring - Tolerance class - Normal
Limit deviations and tolerance values in micrometres
D
mm tΔDmp tVdspa tVDmpa tKea tΔCs
tΔClsb tVCs
tVClsb
Open bearings Capped bearings
Diameter series
> ≤ U L 9 0, 1 2, 3, 4 2, 3, 4 U L
-
2.5
6
18
30
50
80
120
150
180
2.5
6
18
30
50
80
120
150
180
250
0
0
0
0
0
0
0
0
0
0
-8
-8
-8
-9
-11
-13
-15
-18
-25
-30
10
10
10
12
14
16
19
23
31
38
8
8
8
9
11
13
19
23
31
38
6
6
6
7
8
10
11
14
19
23
10
10
10
12
16
20
26
30
38
-
6
6
6
7
8
10
11
14
19
23
15
15
15
15
20
25
35
40
45
50
Identical to tΔBs and tVBs of an inner ring of the same bearing as the outer ring
250
315
400
500
630
800
1 000
1 250
1 600
2 000 315
400
500
630
800
1 000
1 250
1 600
2 000
2 500 0
0
0
0
0
0
0
0
0
0 -35
-40
-45
-50
-75
-100
-125
-160
-200
-250 44
50
56
63
94
125
-
-
-
- 44
50
56
63
94
125
-
-
-
- 26
30
34
38
55
75
-
-
-
- -
-
-
-
-
-
-
-
-
- 26
30
34
38
55
75
-
-
-
- 60
70
80
100
120
140
160
190
220
250
Note: The limit deviations for the outside diameter, D1, of an outer ring flange are given in Table 25.
a Applies before mounting and after removal of internal or external snap ring.
b Applies to groove ball bearings only.
Foreword i
Introduction iii
1 Scope
2 Normative references
3 Terms and definitions
4 Symbols
5 Limit deviations and tolerance values
5.1 General
5.2 Radial bearings except tapered roller bearings
5.3 Radial tapered roller bearings
5.4 Radial bearings, outer ring flanges
5.5 Basically tapered bores, tapers 1:12 and 1:
Annex A (Informative) Symbols and terms as given in the standard of Version 2005 in relation to descriptions given in this standard
Annex B (Informative) Example of drawing indications of characteristics with specification for radial bearings
Annex C (Informative) Illustration of ISO 1132-1 and ISO 14405-1 terms and definitions
Annex D (Informative) Description with illustrations for specification modifiers of linear sizes
Bibliography
滚动轴承 向心轴承
产品几何技术规范(GPS)和公差值
1范围
GB/T 307的本部分规定了向心轴承的尺寸和几何特性、与公称尺寸的极限偏差以及公差值,以限定向心轴承的界面(倒角除外)。公称外形尺寸在ISO 15、ISO 355[2]和ISO 8443[7]中给出。
本部分不适用于某些特殊类型的向心轴承(如冲压外圈滚针轴承)或特殊场合使用的向心轴承(如飞机机架轴承和仪器精密轴承)。这些轴承的公差在相应的标准中给出。
倒角尺寸极限在ISO 582中给出。
2规范性引用文件
下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
ISO 15滚动轴承 向心轴承 外形尺寸总方案(Rolling bearings—Radial bearings—Boundary dimensions,general plan)
ISO 582滚动轴承 倒角尺寸 最大值(Rolling bearings—Chamfer dimensions—Maximum values)
ISO 1101产品几何技术规范(GPS) 几何公差 形状、方向、位置和跳动公差(Geometrical product specifications(GPS)—Geometrical tolerancing—Tolerances of form,orientation,location and run-out)
ISO 5593滚动轴承 词汇(Rolling bearings—Vocabulary)
ISO 14405-1产品几何技术规范(GPS) 尺寸公差 第1部分:线性尺寸(Geometricalproductspecifications(GPS)—Dimensionaltolerancing—Part1:Linear sizes)
ISO /TS17863产品几何技术规范(GPS) 活动组件的几何公差(Geometrical product specifica-tion(GPS)—Geometrical tolerancing of moveable assemblies)
3术语和定义
ISO 1101、ISO 5593、ISO 14405-1和ISO /TS17863界定的术语和定义适用于本文件。
4符号
为表示应用了ISO /GPS体系,即ISO 8015[8],技术产品文件中(如图样上)应包含尺寸和几何特性,与这些特性相关的尺寸和几何技术规范在表1和图1~图17中予以说明。
符号的说明与GPS术语一致;与传统术语的关系参见附录A。
与特性相关的公差值用t加特性符号表示,如tVBs。
本部分中缺省的ISO 尺寸规范操作集与ISO 14405-1一致,即两点尺寸有效。一些规范修饰符在附录D中予以说明。
ISO 1101、ISO 14405-1中的术语与ISO 1132-1[4]中的传统术语的定义不完全等同,其差异参见附录C。
表1公称尺寸符号、特性符号和规范修饰符
公称尺寸(尺寸和距离)符号a 特殊符号a GPS符号和规范修饰符b,c 说明d 图号
B 内圈公称宽度 1,2,12
VBS 对称套圈:内圈宽度的两点尺寸的范围 1,12
非对称套圈:由通过内圈内孔轴线的任意纵向截面得到的两相对直线之间的内圈宽度的最小外接尺寸的范围 2,7
ΔBS 对称套圈:内圈宽度的两点尺寸与其公称尺寸的偏差 1,12
非对称套圈,上极限;由通过内圈内孔轴线的任意纵向截面得到的两相对直线之间的内圈宽度的最小外接尺寸与其公称尺寸的偏差 2,7
非对称套圈,下极限;内圈宽度的两点尺寸与其公称尺寸的偏差
C 外圈公称宽度 1,7,12
VCS 对称套圈:外圈宽度的两点尺寸的范围 1,7
非对称套圈:由通过外圈外表面轴线的任意纵向截面得到的两相对直线之间的外圈宽度的最小外接尺寸的范围 2,12
ΔCS 对称套圈:外圈宽度的两点尺寸与其公称尺寸的偏差 1,7
非对称套圈,上极限;由通过外圈外表面轴线的任意纵向截面得到的两相对直线之间的外圈宽度的最小外接尺寸与其公称尺寸的偏差 2,12
非对称套圈,下极限:外圈宽度的两点尺寸与其公称尺寸的偏差
C1 外圈凸缘公称宽度 12
VC1S 外圈凸缘宽度的两点尺寸的范围 12
ΔC1S 外圈凸缘宽度的两点尺寸与其公称尺寸的偏差 12
d 圆柱孔或圆锥孔理论小端的公称内径 1~7,12~16
Vdmp 由圆柱孔任意截面得到的内径的平均尺寸(出自两点尺寸)的范围 1,2,12
Δdmp 圆柱孔:任意截面内,内径的平均尺寸(出自两点尺寸)与其公称尺寸的偏差 1,2,12
圆锥孔:理论小端内径的平均尺寸(出自两点尺寸)与其公称尺寸的偏差 71
Vdsp 圆柱孔或圆锥孔任意截面内,内径的两点尺寸的范围 1,2,7,12
Δds 圆柱孔内径的两点尺寸与其公称尺寸的偏差 1,2,12
d1 圆锥孔理论大端的公称内径 7
Δd1mp 圆锥孔理论大端内径的平均尺寸(出自两点尺寸)与其公称尺寸的偏差 7
D 公称外径 1~16
VDmp 由任意截面得到的外径的平均尺寸(出自两点尺寸)的范围 1,2,7,12
ΔDmp 任意截面内,外径的平均尺寸(出自两点尺寸)与其公称尺寸的偏差 1,2,7,12
VDsp 任意截面内,外径的两点尺寸的范围 1,2,7,12
ΔDs 外径的两点尺寸与其公称尺寸的偏差 1,2,7,12
D1 外圈凸缘公称外径 12
ΔD1s 外圈凸缘外径的两点尺寸与其公称尺寸的偏差 12
Kea 成套轴承外圈外表面对基准(即由内圈内孔表面确定的轴线)的径向圆跳动 4,5,6,9,10,11,14,15,16
Kia 成套轴承内圈内孔表面对基准(即由外圈外表面确定的轴线)的径向圆跳动 4,5,6,9,10,11,14,15,16
Sd 内圈端面对基准(即由内圈内孔表面确定的轴线)的轴向圆跳动 3,8,13
SD 外圈外表面轴线对基准(由外圈端面确定)的垂直度 3,8
SD1 外圈外表面轴线对基准(由外圈凸缘背面确定)的垂直度 13
Sea 成套轴承外圈端面对基准(即由内圈内孔表面确定的轴线)的轴向圆跳动 5,6,10,11
Seal 成套轴承外圈凸缘背面对基准(即由内圈内孔表面确定的轴线)的轴向圆跳动 15,16
Sia 成套轴承内圈端面对基准(即由外圈外表面确定的轴线)的轴向圆跳动 5,6,10,11,15,16
SLh 圆锥坡高,即圆锥孔理论大端和小端公称直径之差(d1—d) 7
ΔSL 锥形内圈的圆锥坡高与其公称尺寸的偏差 7
T 成套轴承公称宽度 17
ΔTs 成套轴承宽度的最小外接尺寸与其公称尺寸的偏差 17
T1 内组件与标准外圈装配后的公称有效宽度 17
ΔT1s 有效宽度(内组件与标准外圈装配后)的最小外接尺寸与其公称尺寸的偏差 17
T2 外圈与标准内组件装配后的公称有效宽度 17
ΔT2s 有效宽度(外圈与标准内组件装配后)的最小外接尺寸与其公称尺寸的偏差 17
TF 成套凸缘轴承公称宽度 17
ΔTFs 成套凸缘轴承宽度的最小外接尺寸与其公称尺寸的偏差 17
TF2 外圈与标准内组件装配后的公称有效宽度 17
ΔTF2s 有效宽度(凸缘外圈与标准内组件装配后)的最小外接尺寸与其公称尺寸的偏差 17
α 截头圆锥内孔的角度 7,8,9,10,11
αk 端面到SD或SD1约束区边界的距离 3,8,13
a除了格式,按ISO 15241[14]中定义的符号。
b按ISO 1101和ISO 14405-1中定义的符号。
c如果两点尺寸适用于规定的上,下极限,则规范修饰符“ ”在图样上不用标注。
d说明按ISO 1101、ISO 5459[7]和ISO 14405-1。
e对面的材料不存在时,如背面倒角较大且前面较小的圆锥滚子轴承外圈,规范修饰符“ ”不适用。需要在GPS体系框架内制定一解决方案,在将来本文件修订时再予以考虑。
f规范修饰符“SCS”在图样上可省略。
g重力方向符号“ ”、固定零件符号“FP”,活动零件符号“MP”按ISO /TS17863,见图4、图5、图6、图9、图10、图11、图14、图15、图16和图17。
H SL系距离。
i说明按ISO 11191[3]。
K rsmin≤0.6时,a=rsman,轴向+0.5;rsmin>0.6时,a=1.2×rsman,轴向;rsman,轴向轴向见ISO 582。rsmin和rsman,轴向的定义见ISO 582。
图1~图17中的标注表明了界面尺寸和相应尺寸公差和几何公差符号之间的关系。
单个部件的规范在图1、图2、图3、图7、图8、图12和图13中举例说明。成套部件的规范在图4、图5、图6、图9、图10、图11、图14、图15、图16和图17中说明。
注:图1~图17只是概略地画出,不一定示出了所有结构细节。
两个实际图样标注示例参见附录B。
图1圆柱孔、对称套圈轴承单个部件的尺寸规范
注:tVBs和tVCs与圆锥滚子轴承不相关。
图2圆柱孔、非对称套圈轴承单个部件的尺寸规范
图3圆柱孔轴承单个部件的几何公差
=滚动体和内、外圈滚道均接触
图4圆柱孔成套轴承的几何公差——圆柱滚子轴承、调心滚子轴承、长弧面滚子轴承和调心球轴承
=滚动体和内、外圈滚道均接触
图5圆柱孔成套轴承的几何公差——深沟球轴承、双列深沟球轴承、双列角接触球轴承和四点接触球轴承
=滚动体和内、外圈滚道均接触;对于圆锥滚子轴承,滚动体和内圈背面挡边也接触
图6圆柱孔成套轴承的几何公差——单列角接触球轴承和圆锥滚子轴承
=SL是根据d和d1计算出来的公称尺寸,即SL=(d1-d)=2Btan(α/2):ΔSL是计算出来的特性,即ΔSL=(Δdlmp-Δdmp)
注:非对称外圈的标注见图2。
图7圆锥孔轴承单个部件的尺寸规范
图8圆锥孔轴承单个部件的几何公差
=滚动体和内、外圈滚道均接触
图9圆锥孔成套轴承的几何公差——圆柱滚子轴承、调心滚子轴承、长弧面滚子轴承和调心球轴承
=滚动体和内、外圈滚道均接触
图10圆锥孔成套轴承的几何公差——深沟球轴承、双列深沟球轴承、双列角接触球轴承和四点接触球轴承
=滚动体和内、外圈滚道均接触;对于圆锥滚子轴承,滚动体与内圈背面挡边也接触
图11圆锥孔成套轴承的几何公差——单列角接触球轴承和圆锥滚子轴承
注:非对称外圈的标注见图2。
图12凸缘外圈轴承单个部件的尺寸规范
图13凸缘外圈轴承单个部件的几何公差
=滚动体和内、外圈滚道均接触
图14凸缘外圈成套轴承的几何公差——圆柱滚子轴承、调心滚子轴承、长弧面滚子轴承和调心球轴承
=滚动体和内、外圈滚道均接触
图15凸缘外圈成套轴承的几何公差——深沟球轴承、双列深沟球轴承、双列角接触球轴承和四点接触球轴承
=滚动体和内、外圈滚道均接触;对于圆锥滚子轴承,滚动体和内圈背面挡边也接触
图16凸缘外圈成套轴承的几何公差——单列角接触球轴承和圆锥滚子轴承
=G1或G2
=滚动体和内,外圈滚道均接触:对于圆锥滚子轴承,滚动体与内圈背面挡边也接触
说明:
1——标准外圈;
2——标准内组件。
图17成套圆锥滚子轴承的附加符号
5极限偏差和公差值
5.1总则
圆柱孔轴承的内径极限偏差和公差值见5.2和5.3,凸缘见5.4。圆锥孔轴承的内径极限偏差和公差值见5.5。
表2~表11中引用的直径系列规定在ISO 15中。表2~表27中,使用如下符号U和L:
U——上极限偏差;
L——下极限偏差。
5.2向心轴承(圆锥滚子轴承除外)
5.2.1普通级公差
见表2和表3。
表2向心轴承(圆锥滚子轴承除外)——内圈—普通级公差
极限偏差和公差值单位为微米
d
mm tΔdmp tVdsp tVdmp tKin tΔBs tVBs
直径系列 全部 正常 修正a
> ≤ U L 9 0、1 2、3、4 U L
a适用于成对或成组安装时单个轴承的内、外圈,也适用于d≥50mm锥孔轴承的内圈。
表3向心轴承(圆锥滚子轴承除外)——外圈—普通级公差
极限偏差和公差值单位为微米
D
mm tΔDmp tVdspa tVDmpa tKea tΔCs
tΔClsb tVCs
tVClsb
开型轴承 闭型轴承
直径系列
> ≤ U L 9 0、1 2、3、4 2、3、4 U L
与同一轴承内圈的tΔBs及tVBs相同
注:外圈凸缘外径D1的极限偏差在表25中给出。
a适用于内、外止动环安装前或拆卸后。
b仅适用于沟型球轴承。
5.2.26级公差
见表4和表5。
表4向心轴承(圆锥滚子轴承除外)——内圈——6级公差
极限偏差和公差值单位为微米
d
mm tΔdmp tVdsp tVdmp tKin tΔBs tVBs
直径系列 全部 正常 修正a
> ≤ U L 9 0、1 2、3、4 U L
a适用于成对或成组安装时单个轴承的内、外圈,也适用于d≥50mm锥孔轴承的内圈。
表5向心轴承(圆锥滚子轴承除外)——外圈——6级公差
极限偏差和公差值单位为微米
D
mm tΔDmp tVdspa tVDmpa tKea tΔCs
tΔClsb tVCs
tVClsb
开型轴承 闭型轴承
直径系列
> ≤ U L 9 0、1 2、3、4 0、1、2、3、4 U L
与同一轴承内圈的tΔBs及tVBs相同
注:外圈凸缘外径D1的极限偏差在表25中给出。
a适用于内、外止动环安装前或拆卸后。
b适用于沟型球轴承。
5.2.35级公差
见表6和表7。
表6向心轴承(圆锥滚子轴承除外)——内圈——5级公差
极限偏差和公差值单位为微米
d
mm tΔdmp tVdsp tVdmp tKia tSd tsiaa tΔBs tVBs
直径系列 全部 正常 修正b
> ≤ U L 9 0、1、2、3、4 U L
a仅适用于沟型球轴承。
b适用于成对或成组安装时单个轴承的内、外圈,也适用于d≥50mm锥孔轴承的内圈。
表7向心轴承(圆锥滚子轴承除外)——外圈——5级公差
极限偏差和公差值单位为微米
D
mm tΔDmp tVDspa,b tVDmpb tKea tSDc,e
tSD1d,e tSeac,d tSeald tΔCs
tΔC1sd tVCs
tVC1sd
直径系列
> ≤ U L 9 0、1、2、3、4 U L
与同一轴承内圈的tΔBs相同
注:外圈凸缘外径D1的极限偏差在表25中给出。
a对闭型轴承未规定数值。
b适用于内、外止动环安装前或拆卸后。
c不适用于凸缘外圈轴承。
d仅适用于沟型球轴承。
e与上一版标准相比,公差值已变为原数值的一半,因为本版已将SD和SD1定义为外圈外表面轴线对基准(由外圈端面或外圈凸缘背面确定)的垂直度。
5.2.44级公差
见表8和表9。
表8向心轴承(圆锥滚子轴承除外)——内圈——4级公差
极限偏差和公差值单位为微米
d
mm tΔdmpa
tΔdsb tVdsp tVdmp tKia tSd tsiac tΔBs tVBs
直径系列 全部 正常 修正b
> ≤ U L 9 0、1、2、3、4 U L
a这些偏差仅适用于直径系列9。
b这些偏差仅适用于直径系列0、1、2、3和4。
c仅适用于沟型球轴承。
d适用于成对或成组安装时单个轴承的内、外圈。
表9向心轴承(圆锥滚子轴承除外)——外圈——4级公差
极限偏差和公差值单位为微米
d
mm tΔDmpa
tΔDsb tVDspc,d tVDmpd tKea tSDc,f
tSD1f,g tSeae,g tSealg tΔCs
tΔC1sg tVCs
tVC1sg
直径系列
> ≤ U L 9 0、1、2、3、4 U L
与同一轴承内圈的tΔBs相同
注:外圈凸缘外径D1的极限偏差在表25中给出。
a这些偏差仅适用于直径系列9。
b这些偏差仅适用于直径系列0、1、2、3和4。
c对闭型轴承未规定数值。
d适用于内、外止动环安装前或拆卸后。
e不适用于凸缘外圈轴承。
f与上一版标准相比,公差值已变为原数值的一半,因为本版已将SD和SD1定义为外圈外表面轴线对基准(由外圈端面或外圈凸缘背面确定)的垂直度。
g仅适用于沟型球轴承。
5.2.52级公差
见表10和表11。
表10向心轴承(圆锥滚子轴承除外)——内圈——2级公差
极限偏差和公差值单位为微米
d
mm tΔdmpa
tΔdsb tVdsp tVdmp tKia tSd tsiac tΔBs tVBs
全部 正常 修正b
> ≤ U L U L
a这些偏差仅适用于直径系列9。
b这些偏差仅适用于直径系列0、1、2、3和4。
c仅适用于沟型球轴承。
d适用于成对或成组安装时单个轴承的内、外圈。