Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative.
GB/T 38775 consists of the following 4 parts under the general title of Electric vehicle wireless power transfer:
——Part 1: General;
——Part 2: Communication protocols between on-board charger and wireless power transfer device
——Part 3: Specific requirements
——Part 4: Limits and test methods of electromagnetic environment
This is Part 1 of GB/T 38775.
This part is developed in accordance with the rules given in GB/T 1.1-2009.
This part was proposed by the Ministry of Industry and Information Technology of the People's Republic of China.
This part is under the jurisdiction of the National Technical Committee on Automobiles of Standardization Administration of China (SAC/TC 114).
Electric vehicle wireless power transfer –
Part 1: General requirements
1 Scope
This part of GB/T 38775 specifies the general requirements, classification, interoperability requirements, communication requirements, environmental testing, safety requirements, structural requirements, material and component strength requirements, identification and description requirements for electric vehicle wireless power transfer system.
This part is applicable to the static magnetically coupled wireless power transfer system for electric vehicles, whose power supply has a maximum rated voltage of 1,000 V(AC) or 1,500 V(DC) and a maximum rated output voltage of 1,000 V(AC) or 1,500 V(DC).
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
GB/T 156 Standard voltages
GB/T 2423.1 Environmental testing for electric and electronic products-Part 2: Test methods-Tests A: Cold
GB/T 2423.2 Environmental testing - Part 2: Test methods - Tests B: Dry heat
GB/T 2423.3 Environmental testing-Part2: Testing method-Test Cab: Damp heat, steady state
GB/T 2423.4 Environmental testing for electric and electronic products - Part 2: Test method - Test Db: Damp heat, cyclic (12h+12h cycle)
GB/T 2423.17 Environmental testing for electric and electronic products - Part 2: Test method - Test Ka: Salt mist
GB/T 2423.24 Environmental testing - Part 2: Test methods - Test Sa: Simulated solar radiation at ground level and guidance for solar radiation testing
GB/T 4208 Degrees of protection provided by enclosure (IP code)
GB 4943.1-2011 Information technology equipment - Safety - Part 1: General requirements
GB/T 7251.1-2013 Low-voltage switchgear and controlgear assemblies - Part 1: General rules
GB/T 10963.1-2005 Electrical accessories-Circuit-breakers for overcurrent protection for household and similar installation Part 1: Circuit-breakers for a.c. operation
GB/T 11021-2014 Electrical insulation―Thermal evaluation and designation
GB/T 11026.1-2016 Electrical insulating materials -Thermal endurance properties- Part 1: Ageing procedures and evaluation of test results
GB/T 12113-2003 Methods of measurement of touch current and protective conductor current
GB/T 14048.2-2008 Low-voltage switchgear and controlgear - Part 2: Circuit-breakers
GB/T 14048.3-2017 Low-voltage switchgear and controlgear-Part 3: Switches, disconnectors, switch-disconnectors and fuse-combination units
GB/T 14048.4-2010 Low-voltage switchgear and controlgear—Part 4-1:Contactors and motor-starters—Electromechanical contactors and motor-starters(Including motor protector)
GB/T 16895.2 Low-voltage electrical installations-Part 4-42:Protection for safety-Protection against thermal effects
GB/T 16895.3 Low-voltage electrical installations - Part 5-54: Selection and erection of electrical equipment-Earthing arrangements and protective conductors
GB/T 16895.5-2012 Low-voltage electrical installations - Part 4-43: Protection for safety - Protection against overcurrent
GB/T 16895.10-2010 Low-voltage electrical installations - Part 4-44: Protection for safety - Protection against voltage disturbances and electromagnetic disturbances
GB/T 16895.21-2011 Low-voltage electrical installations - Part 4-41: Protection for safety-Protection against electric shock
GB/T 16916.1-2014 Residual current operated circuit-breakers without integral overcurrent protection for household and similar uses (RCCB) - Part 1: General rules
GB/T 16917.1-2014 Residual current operated circuit-breakers with integral overcurrent protection for household and similar uses (RCBOs)—Part 1: General rules
GB/T 17627.1-1998 High-voltage test techniques for low voltage equipment--Part 1:Definitions,test and procedure requirements
GB/T 19596 Terminology of electric vehicles
GB/T 22794-2017 Type F and type B residual current operated circuit-breakers with and without integral overcurrent protection for household and similar uses
GB/T 30789.2 Paints and varnishes - Evaluation of degradation of coatings - Designation of quantity and size of defects, and of intensity of uniform changes in appearance - Part 2: Assessment of degree of blistering
GB/T 30789.3 Paints and varnishes - Evaluation of degradation of coatings - Designation of quantity and size of defects, and of intensity of uniform changes in appearance - Part 3: Assessment of degree of rusting
GB/T 30789.4 Paints and varnishes-Evaluation of degradation of coatings-Designation of quantity and size of defects, and of intensity of uniform changes in appearance-Part 4:Assessment of degree of cracking
GB/T 30789.5 Paints and varnishes-Evaluation of degradation of coatings-Designation of quantity and size of defects, and of intensity of uniform changes in appearance-Part 5: Assessment of degree of flaking
GB/T 33594-2017 Charging cables for electric vehicles
QC/T 413-2002 Basic Technical Requirements for Automotive Electric Equipment
IEC 60364-7-722:2015 Low-voltage electrical installations - Part 7-722: Requirements for special installations or locations - Supplies for electric vehicles
3 Terms and definitions
For the purposes of this document, the terms and definitions given in GB/T 19596 and the following apply.
3.1
primary device
transmitting terminal of energy, which is the device coupled with the secondary device to convert the electric energy into an alternating electromagnetic field and transmit it directionally
3.2
secondary device
receiving terminal of energy, which is the device coupled with the primary device to receive alternating electromagnetic field and convert it into electric energy
3.3
wireless power transfer; WPT
a power supply mode that realizes the transfer of electric energy from the power supply terminal to the electrical equipment by means of intangible soft space medium (e.g., electric field, magnetic field, microwave, etc.)
Note: Wireless power transfer technology may also be called contactless power transfer (CPT).
3.4
electric vehicle wireless power transfer
supply of electric energy for the power battery of electric vehicle by AC or DC power grid (power supply) via wireless power transfer technology, which may also be used to supply power for on-board supply device
3.5
off-board power components
power conversion unit that converts electric energy of the power grid into electric energy required by the primary device
3.6
on-board power components
components installed on the vehicle, which converts the electric energy received by the secondary device into direct current through power converter so as to power the electric vehicle
3.7
off-board supply device
generic term for off-board devices of electric vehicle wireless power transfer system
Note: Off-board supply devices include primary devices, off-board power components, communication units, etc.
3.8
on-board supply device
generic term for on-board devices of electric vehicle wireless power transfer system
Note: On-board supply devices include secondary devices, on-board power components, communication units, etc.
3.9
wireless charging spot
generic term for off-board supply facilities that provide wireless charging service for an electric vehicle
Note: Wireless charging spots include parking spaces, off-board supply devices and other auxiliary facilities (e.g., device wells accommodating primary devices, off-board limiting devices, positioning auxiliary equipment, etc.).
3.10
mechanical air gap
the shortest distance between the upper surface of the primary device and the lower surface of the secondary device
3.11
operational air gap
distance between the upper surface of the magnetic field transmitting coil of the primary device and the lower surface of the magnetic field receiving coil of the secondary device
3.12
foreign objects
any object between the primary device and the secondary device, which is neither part of the electric vehicle nor part of the electric vehicle wireless charging spot
3.13
arm's reach
vertical distance from the ground to the fingertip of a person, or one-third of this distance in any direction (see Figure 1)
Key:
a——the distance when a person stretches the body completely;
b——the distance of a person to reach something.
Figure 1 Arm's reach
3.14
system efficiency
efficiency of power transfer from AC (or DC) power supply input to battery/on-board supply device of electric vehicle
Note: See Figure 2 for the measuring points of system efficiency.
3.15
protection areas
areas with the same kind of protection requirements in and around an electric vehicle
4 Abbreviations
For the purposes of this document, the following abbreviations apply.
CSU: Communication Service Unit
CB: Circuit Breaker
EMC: Electromagnetic Compatibility
EMF: Electromagnetic Fields
IVU: In-Vehicle Unit
MF-WPT: Wireless Power Transfer Through Magnetic Field
RCBO: Residual Current Circuit Breaker with Overcurrent Protection
RCD: Residual Current Device
5 General requirements for power transfer system
5.1 General
The general requirements for power transfer system include:
a) The voltage class of off-board supply device shall conform to the standard nominal voltage specified in GB/T 156. The alternating current frequency is 50Hz±1Hz, and other frequencies may be used for the alternating current for special purposes.
b) The on-board supply device shall have good coupling with the off-board supply device, so as to ensure the safe operation of the electric vehicle wireless power transfer system.
c) The off-board supply device of the electric vehicle wireless power transfer system shall ensure stable performance during normal use, and shall also be able to ensure the safety of the users of the electric vehicle wireless power transfer system and the surrounding environment to the greatest extent.
5.2 Schematic diagram
Figure 2 shows the schematic diagram for a wireless power transfer system of AC input electric vehicles. See Annex A for the block diagram of the electric vehicle wireless power transfer system. See Annex B for an example of magnetic coupling.
Foreword i
1 Scope
2 Normative references
3 Terms and definitions
4 Abbreviations
5 General requirements for power transfer system
5.1 General
5.2 Schematic diagram
5.3 Measurement principle
5.4 Installation of primary device
6 Classification
6.1 Classification bases
6.2 Power level
6.3 Environmental conditions
7 Interoperability requirements
7.1 General
7.2 Power level
7.3 Rated operating frequency
7.4 Resonant circuit
7.5 Tuning (optional)
7.6 System efficiency
8 Communication requirements
9 Environmental testing
9.1 General
9.2 Requirement for operating ambient temperature
9.3 Ambient humidity test
9.4 Dry heat test
9.5 Low temperature test
10 Safety requirements
10.1 General
10.2 Requirements for electric shock protection
10.3 Requirements for overload protection and short circuit withstand
10.4 Requirements for temperature rise and overheating prevention
10.5 Protection requirements for mechanical accidents
10.6 Protection areas
11 Structural requirements
11.1 General
11.2 Requirements for breaking capacity of switchgears
11.3 Structural requirements for on-board supply device
11.4 Requirements for power cable components
12 Material and component strength requirements
12.1 Corrosion protection
12.2 Enclosure inspection
12.3 Vehicle rolling
13 Identification and description requirements
13.1 General
13.2 Identification of device
Annex A (Informative) Block diagram for electric vehicle wireless power transfer system
Annex B (Informative) Magnetic coupling
3 术语和定义
GB/T 19596界定的以及下列术语和定义适用于本文件。
3.1
原边设备 primary device
能量的发射端,与副边设备耦合,将电能转化成交变电磁场并定向发射的装置。
3.2
副边设备 secondary device
能量的接收端,与原边设备耦合,接收交变电磁场并转化成电能的装置。
3.3
无线电能传输 wireless power transfer;WPT
一种借助于空间无形软介质(如电场、磁场、微波等)实现将电能由电源端传递至用电设备的一种供电模式。
注:无线电能传输技术也可称为非接触电能传输技术(contactless power transfer,CPT)。
3.4
电动汽车无线充电 electric vehicle wireless power transfer
将交流或直流电网(电源)通过无线电能传输技术,为电动汽车动力电池提供电能,也可以为车载设备供电。
3.5
非车载功率组件 off-board power components
将电网的电能转换成原边设备所需电能的功率变换单元。
3.6
车载功率组件 on-board power components
安装在车辆上,将副边设备接收的电能通过功率变换器转变为直流电,供给电动汽车。
3.7
地面设备 off-board supply device
电动汽车无线充电系统的地面侧设备的统称。
注:地面设备包括原边设备、非车载功率组件及通信单元等。
3.8
车载设备 on-board supply device
电动汽车无线充电系统的车载侧设备的统称。
注:车载设备包括副边设备、车载功率组件及通信单元等。
3.9
无线充电位 wireless charging spot
为一辆电动汽车提供无线充电服务的地面设施统称。
注:无线充电位包括停车位、地面设备和其他辅助设施(如容纳原边设备的设备井,地面限位装置,定位辅助设备等)。
3.10
机械气隙 mechanical air gap
原边设备上表面与副边设备下表面最短的间距。
3.11
工作气隙 operational air gap
原边设备磁场发射线圈上表面与副边设备磁场接收线圈下表面之间的距离。
3.12
异物 foreign objects
位于原边设备和副边设备之间的任何物体。其既不是电动汽车的一部分,也不是电动汽车无线充电位的一部分。
3.13
臂展范围 arm's reach
从地面到人指尖的垂直距离,或是任意方向下此距离的三分之一。(见图1)
说明:
a——表示一个人完全舒展开的距离;
b——表示一个人去够东西的距离。
图1 臂展范围
3.14
系统效率 system efficiency
电能传输从交流(或直流)电源输入到电动汽车电池/车载设备的效率。
注:系统效率的测量点见图2。
3.15
保护区域 protection areas
电动汽车内及周围具有同种类保护需求的区域。
4 缩略语
下列缩略语适用于本文件。
CSU:地面通信控制单元(Communication Service Unit)
CB:断路器(Circuit Breaker)
EMC:电磁兼容性(Electromagnetic Compatibility)
EMF:电磁辐射(Electromagnetic Fields)
IVU:车载通信控制单元(In-Vehicle Unit)
MF-WPT:以磁场为介质的无线电能传输(Wireless Power Transfer Through Magnetic Field)
RCBO:带过流保护的剩余电流动作保护器(Residual Current Circuit Breaker with Overcurrent Protection)
RCD:剩余电流动作保护器(Residual Current Device)
5 充电系统总体要求
5.1 一般要求
充电系统的一般要求包括:
a) 非车载供电设备的电压等级应符合GB/T 156规定的标准标称电压。其中,交流电频率50Hz±1Hz,对于特殊用途的交流电可以使用其他频率。
b) 车载设备应与地面设备具有良好的耦合性,从而确保电动汽车无线充电系统的安全运行。
c) 电动汽车无线充电系统的地面设备,应保证在正常使用时性能稳定,并能最大程度的保证对电动汽车无线充电系统使用者以及周边环境安全。
5.2 原理图
图2给出了一种交流输入电动汽车无线充电系统的原理示意图,电动汽车无线充电系统的系统框图参见附录A,一种磁耦合的示例参见附录B。
电网
供电端
电动汽车
无线电能传输系统
电池
车载电气设备
便携式无线电能传输系统
电池
车载电气设备
图2 交流输入电动汽车无线充电系统(固定安装设备和便携式设备)
图2中各个序号代表的含义见表1。
表1 电动汽车无线充电系统各部分名称
图中序号 名称
① 非车载功率组件
② 原边设备
③ 副边设备
④ 车载功率组件
⑤ 地面设备
⑥ 车载设备
⑦ 地面通信控制单元 (CSU)
⑧ 车载通信控制单元 (IVU)
⑨ 地面设备 (便携式 )
⑩ CB或者 RCD或者 RCBO
⑪ 效率测试点 1
⑫ 效率测试点 2
⑬ 插头和插座
a 无线电能传输
b 通讯
5.3 测量原则
5.3.1 坐标系
描述原副边设备的三维坐标系如图3所示,X 轴为车辆行驶方向,+X 表示车尾方向,Y 轴为垂直于行驶方向,Z 轴为高度,该坐标系的原点为参考点。
Z:高度
参考点
X:行驶方向
+X:车尾方向
Y:垂直于行驶方向
图3 坐标系方向定义
5.3.2 停车方位
原边设备安装位置如图4所示,参数说明见表2。
宽度
原边
参考零点
长度
图4 原边设备位置
表2 原边设备位置
方向 参数值 mm 坐标轴
行驶方向 ±x X
行驶方向的横向 ±y Y
高度方向 ±z Z
5.3.3 偏移量
X 、Y 方向上的偏移量为副边中心点与零点之间的偏差,如图5所示,其参数说明见表3。
-Y偏移
车尾
原边
副边
右
零点
车头
-X偏移
左
图5 X 方向和Y 方向的最大偏移
表3 偏移
方向 偏移距离 mm 坐标轴
行驶方向 ±x X
行驶方向的横向 ±y Y
5.3.4 原边设备尺寸测量
原边设备的尺寸测量定义如表4。
表4 原边设备
方向 参数值 mm 坐标轴
行驶方向 x X
行驶方向的横向 y Y
高度方向 z Z
5.3.5 机械气隙测量
机械气隙测量如表5。
表5 机械气隙
方向 参数值
mm 坐标轴
高度方向 z Z
5.4 原边设备的安装
5.4.1 安装方式
原边设备的安装方式有:
a) 地埋安装;
b) 地上安装;
c) 其他安装方式(如汽车顶部上方安装、墙面安装、原边设备升降式安装等)。
5.4.2 地埋安装
地埋安装如图6所示,原边设备完全埋藏于地下,原边设备的表面存在于Z 轴零坐标处。
图6 地埋安装
图6中各数字表示的含义在表6中给出。
表6 地埋安装各部分名称
图中序号 名称
① 工作气隙
② 机械气隙
③ 原边设备封装和保护高度 (含盖板 )
④ 副边设备封装和保护高度
⑤ 路面
注:原边设备和副边设备之间的距离大于或等于副边设备到地面的间隙。
5.4.3 地上安装
地上安装如图7所示,原边设备以突出地面一定高度的方式安装。在路面之上的安装高度由制造商的安装指南给定。
最大安装高度也应符合国家相关管理条例,如城市道路管理条例。
图7 地上安装
图7中各数字表示的含义在表7中给出。
表7 地上安装各部分名称
图中序号 名称
① 工作气隙
② 机械气隙
③ 原边线圈上表面到原边保护盖板上表面的高度
④ 副边线圈下表面到副边设备下表面的高度
⑤ 路面
⑥ 安装高度
6 分类
6.1 分类依据
本部分的磁耦合电动汽车无线充电系统分类依据如下两个因素:
a) 功率等级;
b) 环境状况。
6.2 功率等级
磁耦合电动汽车无线充电系统的输入功率等级分类见表8。
表8 输入功率等级分类
类别 MF-WPT1 MF-WPT2 MF-WPT3 MF-WPT4 MF-WPT5 MF-WPT6 MF-WPT7
功率范围 kW P≤3.7 3.7
66
注:MF-WPT3、MF-WPT4、MF-WPT5、MF-WPT6、MF-WPT7系统不适用于单相电输入。
6.3 环境状况
磁耦合电动汽车无线充电系统的地面设备,根据用途和环境状况可分为:
a) 室内使用;
b) 室外使用。
7 互操作性要求
7.1 一般要求
地面设备和车载设备满足以下条件时,为可互操作的,地面设备才能向电动汽车进行无线电能传输。
a) 功率等级符合表8的要求;
b) 工作气隙相匹配;
c) 相同的标称工作频率;
d) 电路拓扑结构相兼容;
e) 调谐(可选);
f) 合理的系统效率及功率因数;
g) 并且符合:
1) EMC及EMF要求;
2) 防护要求;
3) 输电过程使用兼容的通信方式。
7.2 功率等级
相同功率等级和不同功率等级的地面设备和车载设备之间的互操作性要求如表9所示。
表9 功率等级的互操作性
车载设备 地面设备
MF-WPT 1 2 3 4 5 6 7
1 支持 A A A A A A
2 B 支持 A A A A A
3 A A 支持 A A A A
4 A A A 支持 A A A
5 A A A A 支持 A A
6 A A A A A 支持 A
7 A A A A A A 支持
注1:A表示待定 ,待后续版本修订或在其他标准中制定。
注2:B表示建议设备商支持。
7.3 额定工作频率
可互操作的地面设备和车载设备应使用相同的额定工作频率。
7.4 谐振电路
原边设备的谐振电路拓扑应与副边设备谐振电路拓扑相匹配。
7.5 调谐(可选)
电动汽车无线充电系统工作频率宜调谐。
注:调谐的目的为防止系统出现超调,当原、副边设备出现错位、气隙波动等情况,可通过频率调谐进行校正。
7.6 系统效率
互操作性需要系统效率在额定工作点上及偏移条件下应不小于制造商标定的最低限值。
电动汽车无线充电系统的额定工作点应满足以下条件:
a) 系统以额定功率输出;
b) 原副边设备应处于对齐状态;
c) 工作气隙为厂商设定或说明的唯一的值。