GB/T 24610 covers the following four parts under the general title Rolling Bearings - Measuring Methods for Vibration:
——Part 1: Fundamentals;
——Part 2: Radial Ball Bearings with Cylindrical Bore and Outside Surface;
——Part 3: Radial Spherical and Tapered Roller Bearings with Cylindrical Bore and Outside Surface;
——Part 4: Radial Cylindrical Roller Bearings with Cylindrical Bore and Outside Surface.
This part is Part 2 of GB/T 24610.
This part is developed in accordance with the rules given in GB/T 1.1-2009.
This part replaces GB/T 24610.2-2009 Rolling bearings - Measuring methods for vibration - Part 2: Radial ball bearings with cylindrical bore and outside surface, and the following main technical changes are made made with respect to GB/T 24610.1-2009:
——The part of the expression "rotational frequency" is modified (see 4.1, 4.1 of Edition 2009);
——The representation of the symbol "root mean square vibration velocity" is modified (see 5.1, 5.1 of Edition 2009);
——The "Examples of frequency ranges for non-standard rotational frequencies" table is added (see Table 3);
——Some graphs are modified and the illustration of the graph is added (see Figure 2, Figure 3 and Figure A.1; Figure 2, Figure 3 and Figure A.1 of Edition 2009);
——The "bearing cleanliness, lubrication, operator requirements" is deleted (see 6.1.2, 6.1.3, 6.4 of Edition 2009);
——The requirement of "non-prelubricated bearings" is added (see 6.1.2);
This part is identical with International Standard ISO 15242-2:2015 Rolling bearings - Measuring methods for vibration - Part 2: Radial ball bearings with cylindrical bore and outside surface.
The Chinese documents identical to the normative international documents given in this part are as follows:
——GB/T 1800.2-2009, Geometrical Product Specifications (GPS) - Limits and Fits - Part 2: Tables of Standard Tolerance Grades and Limit Deviations for Holes and Shafts (ISO 286-2:1988, MOD)
——GB/T 2298-2010, Mechanical Vibration, Shock and Condition Monitoring - Vocabulary (ISO 2041:2009, IDT);
——GB/T 6930-2002, Rolling Bearings - Vocabulary (ISO 5593:1997, IDT)
——GB/T 24610.1-2019, Rolling bearings - Measuring methods for vibration Part 1: Fundamentals ( ISO 15242-1:2015, IDT)
This standard was proposed by the China Machinery Industry Federation.
This part is under the jurisdiction of the National Technical Committee on Rolling Bearing of Standardization Administration of China (SAT/TC 98).
The previous editions of this part are as follows:
——GB/T 24610.2-2009.
Introduction
Vibration in rotating rolling bearings can be of importance as an operating characteristic of such bearings. The vibration can affect the performance of the mechanical system incorporating the bearing and can result in audible noise when the vibration is transmitted to the environment in which the mechanical system operates, can lead to damages, and can even create health problems.
Vibration of rotating rolling bearings is a complex physical phenomenon dependent on the conditions of operation. Measuring the vibration of an individual bearing under a certain set of conditions does not necessarily characterize the vibration under a different set of conditions or when the bearing becomes part of a larger assembly. Assessment of the audible sound generated by the mechanical system incorporating the bearing is further complicated by the influence of the interface conditions, the location and orientation of the sensing device, and the acoustical environment in which the system operates. Assessment of airborne noise, which for the purpose of GB/T 24610 (all parts) can be defined as any disagreeable and undesired sound, is further complicated by the subjective nature of the terms disagreeable and undesired. Structure-borne vibration can be considered the driving mechanism that ultimately results in the generation of airborne noise. Only selected methods for the measurement of the structure-borne vibration of rotating rolling bearings are addressed in GB/T 24610 (all parts).
Vibration of rotating rolling bearings can be assessed by a number of means using various types of transducers and measurement conditions. No simple set of values characterizing the vibration of a bearing is adequate for the evaluation of the vibratory performance in all possible applications. Ultimately, a knowledge of the type of bearing, its application and the purpose of the vibration measuring (e.g. as a manufacturing process diagnostic or an assessment of product quality) is required to select the most suitable method for measuring. The field of application for standards on bearing vibration is therefore not universal. However, certain methods have established a wide enough level of application to be considered as standard methods.
This part serves to define the detailed method for assessing vibration of radial ball bearings with cylindrical bore and outside surface on a measuring device.
Rolling bearings - Measuring methods for vibration
Part 2: Radial ball bearings with cylindrical bore and outside surface
1 Scope
This part of GB/T 24610 specifies vibration measuring methods for single-row and double-row radial ball bearings, with a contact angle up to and including 45°.
It applies to radial ball bearings with cylindrical bore and outside surface.
It does not apply to bearings with filling slots and three- and four-point-contact ball bearings.
2 Normative references
The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 286-2 Geometrical product specifications (GPS) - ISO code system for tolerances on linear sizes - Part 2: Tables of standard tolerance classes and limit deviations for holes and shafts
ISO 2041:2009 Mechanical vibration, shock and condition monitoring - Vocabulary ISO 5593, Rolling bearings - Vocabulary
ISO 5593 Rolling bearings - Vocabulary
ISO 15242-1:2015 Rolling bearings - Measuring methods for vibration - Part 1:Fundamentals
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 2041, ISO 5593 and ISO 15242-1 apply.
4 Measurement process
4.1 Rotational frequency
The default rotational frequency shall be 1800 min−1 (30 s−1). The tolerance shall be of the nominal rotational frequency.
Other rotational frequencies and tolerances may be used by agreement between the manufacturer and the customer, for example, it may be necessary to use a higher rotational frequency for bearings in the smaller size range (e.g. 3600 min−1) in order to obtain an adequate vibration signal. Conversely, it may be necessary to use a lower rotational frequency for bearings in the larger size range (e.g. 700 min−1) to avoid possible ball and raceway damage.
4.2 Bearing axial load
The bearing load shall be in the axial direction with default values as specified in Table 1.
Table 1 Default values for bearing axial load
Bearing outside diameter
D Single-row and double-row deep groove and self-aligning radial ball bearings Single-row and double-row angular contact radial ball bearings
10° < Contact angle ≤ 23° 23° < Contact angle ≤ 45°
Default values for axial load
> ≤ min. max. min. max. min. max.
mm N N N
10 25 18 22 27 33 36 44
25 50 63 77 90 110 126 154
50 100 135 165 203 247 270 330
100 140 360 440 540 660 720 880
140 170 585 715 878 1072 1170 1430
170 200 810 990 1215 1485 1620 1980
Other axial loads and tolerances may be used by agreement between the manufacturer and the customer, for example, depending on bearing design, rotational frequency and lubricant used, it may be necessary to use a higher load to prevent ball/raceway slip or a lower load to avoid possible ball and raceway damage.
5 Measurement and evaluation methods
5.1 Physical quantity measured
The default physical quantity to be measured is root mean square vibration velocity, νrms(µm/s), in the radial direction.
5.2 Frequency domain
The vibration velocity shall be analysed in one or more bands with default frequency ranges as specified in Table 2.
Table 2 Default Frequency ranges for default rotational frequency of 1 800 min−1
Rotational frequency Low band (L) Medium band (M) High band (H)
Nominal band pass frequencies
min. max. flow fupp flow fupp flow fupp
min−1 Hz Hz Hz
1764 1818 50 300 300 1800 1800 10000
Other frequency ranges may be considered by agreement between the manufacturer and the customer in those instances where specific ranges have greater importance to successful operation of the bearing. Common used examples are listed in Table 3.
Changing the frequency of rotation should always come along with a proportional change of the filter frequencies and acceptance limits and minimum measuring time. Examples are given in Table 3.
Table 3 Examples of frequency ranges for non-standard rotational frequencies
Rotational frequency Low band (L) Medium band (M) High band (H)
Nominal band pass frequencies
nominal min. max. flow fupp flow fupp flow fupp
min−1 Hz Hz Hz
3600 3528 3636 100 600 600 3600 3600 20000
900 882 909 25 150 150 900 900 5000
700a 686 707 20 120 120 700 700 4000
a In case of 700 min−1, cut-off frequencies are rounded (not according to exact relation of the rotational frequency).
Narrow band spectral analysis of the vibration signal may be considered as a supplementary option.
5.3 Measurement of pulses and spikes
Detection of pulses or spikes in the time domain velocity signal, usually due to surface defects and/or contamination in the measured bearing, may be considered as a supplementary option. Various evaluation methods exist.
5.4 Measurement
All bearings, except for single-row angular contact ball bearings, shall be measured with the axial load applied from one side of the stationary ring and the measurement repeated with the axial load on the other side of the stationary ring. Single-row angular contact ball bearings shall be measured in their foreseen axial load carrying direction only.
Foreword I
Introduction III
1 Scope
2 Normative references
3 Terms and definitions
4 Measurement process
4.1 Rotational frequency
4.2 Bearing axial load
5 Measurement and evaluation methods
5.1 Physical quantity measured
5.2 Frequency domain
5.3 Measurement of pulses and spikes
5.4 Measurement
6 Conditions for measurement
6.1 Bearing conditions for measurement
6.2 Conditions of the measurement environment
6.3 Conditions for the measuring device
Annex A (normative) Measurement of external axial loading alignment
ICS 21.100.20
J 11
GB
中华人民共和国国家标准
GB/T 24610.2—2019/ISO 15242-2:2015
代替GB/T 24610.2—2009
滚动轴承 振动测量方法
第2部分:具有圆柱孔和圆柱外表面的向心球轴承
Rolling bearings—Measuring methods for vibration—Part 2:Radial ball bearings with cylindrical bore and outside surface
(ISO 15242-2:2015,IDT)
2019-10-18发布 2020-05-01实施
国家市场监督管理总局
中国国家标准化管理委员会 发布
前言
GB/T 24610《滚动轴承 振动测量方法》分为4个部分:
——第1部分:基础;
——第2部分:具有圆柱孔和圆柱外表面的向心球轴承;
——第3部分:具有圆柱孔和圆柱外表面的调心滚子轴承和圆锥滚子轴承;
——第4部分:具有圆柱孔和圆柱外表面的圆柱滚子轴承。
本部分为GB/T 24610的第2部分。
本部分按照GB/T 1.1—2009给出的规则起草。
本部分代替GB/T 24610.2—2009《滚动轴承 振动测量方法 第2部分:具有圆柱孔和圆柱外表面的向心球轴承》,与GB/T 24610.2—2009相比,主要技术变化如下:
——修改了“旋转频率”的部分表述(见4.1,2009年版的4.1);
——修改了“均方根振动速度”符号的表示方法(见5.1,2009年版的5.1);
——增加了“非设定旋转频率的频率范围示例”表(见表3);
——修改了部分图形并增加了图的说明(见图2、图3、图A.1,2009年版的图2、图3、图A.1);
——删除了“轴承的清洁度、润滑、对操作者的要求”(见2009年版的6.1.2、6.1.3、6.4);
——增加了“非预润滑轴承”的要求(见6.1.2)。
本部分使用翻译法等同采用ISO 15242-2:2015《滚动轴承 振动测量方法 第2部分:具有圆柱孔和圆柱外表面的向心球轴承》。
与本部分中规范性引用的国际文件有一致性对应关系的我国文件如下:
——GB/T 1800.2—2009产品几何技术规范(GPS) 极限与配合 第2部分:标准公差等级和孔、轴极限偏差表(ISO 286-2:1988,MOD)
——GB/T 2298—2010机械振动、冲击与状态监测 词汇(ISO 2041:2009,IDT)
——GB/T6930—2002滚动轴承 词汇(ISO 5593:1997,IDT)
——GB/T24610.1—2019滚动轴承 振动测量方法 第1部分:基础(ISO 15242-1:2015,IDT)
本部分由中国机械工业联合会提出。
本部分由全国滚动轴承标准化技术委员会(SAC/TC 98)归口。
本部分所代替标准的历次版本发布情况为:
——GB/T 24610.2—2009。
引言
滚动轴承旋转时的振动是其一个重要运转特性。振动会影响装有轴承的机械系统的性能,当振动向运转的机械系统所处的环境传播时会引起可闻噪声,进而会导致系统损伤,甚至会造成健康问题。
滚动轴承旋转时的振动是与运转条件有关的一种复杂的物理现象。在某一组条件下测量的单套轴承的振动值并不一定表征不同的条件下或该轴承成为一较大部件中的一个零件时的振动值。评定装有轴承的机械系统产生的声响就更加复杂,它还受界面条件、感应装置的位置和方向以及系统运转所处声学环境的影响。空气噪声——GB/T 24610(所有部分)定义为任何令人不愉快的、不希望有的声音,由于术语“令人不愉快的、不希望有的”具有主观特性,因而其评定更为复杂。可以认为轴承的结构振动是最终导致空气噪声产生的驱动源。
GB/T 24610(所有部分)仅列入了经过选择的轴承结构振动的测量方法。
轴承振动可采用许多方法中的任一种来评定,不同的评定方法使用不同类型的传感器和测试条件。没有任何一组表征轴承振动的数值能够对所有可能的使用条件下的轴承振动性能进行评定。最终,还应根据已知的轴承类型、使用条件以及振动测试目的(例如,是作为制造过程诊断,或是作为产品质量评定)等,来选择最适用的测试方法。因此,轴承振动标准的适用范围并不是通用的。但对于本部分而言,只将某些适用范围十分广泛的方法确立为标准方法。
本部分详细规定了在测试装置上评定具有圆柱孔和圆柱外表面的向心球轴承振动的方法。
滚动轴承 振动测量方法
第2部分:具有圆柱孔和圆柱外表面的向心球轴承
1 范围
GB/T 24610的本部分规定了在所确立的测试条件下,接触角不大于45°的单列和双列向心球轴承的振动测量方法。
本部分适用于具有圆柱孔和圆柱外表面的向心球轴承。
本部分不适用于具有装填槽的轴承和三点、四点接触球轴承。
2 规范性引用文件
下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
ISO 286-2 产品几何技术规范(GPS) 线性尺寸公差ISO代号体系 第2部分;标准公差等级和孔、轴极限偏差表[Geometrical product specifications (GPS)—ISO code system for torlerances on linear sizes—Part2:Tables of standard tolerance grades and limit deviations for holes and shafts.]
ISO 2041:2009机械振动、冲击与状态监测词汇(Mechanical vibration,shock and condition monitoring—Vocabulary)
ISO 5593 滚动轴承 词汇( Rolling bearings—Vocabulary)
ISO 15242-1:2015 滚动轴承 振动测量方法 第1部分:基础( Rolling bearings—Measuring methods for vibration—Part 1:Fundamentals)
3 术语和定义
ISO 2041、ISO 5593和ISO 15242-1界定的术语和定义适用于本文件。
4 测量程序
4.1 旋转频率
旋转频率的设定值为1800min-1(30s-1),其偏差为标称旋转频率的 。
经制造厂与用户协商,也可采用其他旋转频率和偏差。例如,对于较小尺寸段的轴承,可以采用较高的旋转频率(如3600min-1),以便获得合适的振动信号。反之,对于较大尺寸段的轴承,可以采用较低的旋转频率(如700min-1),以避免球和滚道可能产生的损伤。
4.2 轴承轴向载荷
应对轴承施加轴向载荷,其设定值规定在表1中。
表1 轴承轴向载荷的设定值
轴承外径D 单列和双列深沟和调心向心球轴承 单列和双列角接触向心球铀承
10°<接触角≤23° 23°<接触角≤45°
> ≤ 轴向载荷的设定值
min. max. min. max. min. max.
mm N N N
经制造厂与用户协商,也可采用其他轴向载荷及偏差。例如,根据轴承结构、旋转频率以及所使用的润滑剂,可以采用更高的载荷以防止球与滚道产生打滑;或采用更低的载荷以避免球和滚道可能产生的损伤。
5 测量和评定方法
5.1 测量的物理量
测量时设定的物理量为径向均方根振动速度,vrms(μm/s)。
5.2 频域
振动速度应在一个或多个频带内、如表2中所规定的设定的频率范围内分析。
表2 旋转频率1800min-1的设定频率范围
旋转频率 低频带(L) 中频带(M) 高频带(H)
min. max. 标称频带
flow fupp flow fupp flow fupp
min-1 Hz Hz Hz
如果某一特定的频率范围对轴承获得良好运转极为重要时,经制造厂与用户协商,也可以采用其他的频率范围,常用的特定频率范围示例见表3。
旋转频率应根据滤波器频率的比例变化、可接收限值和最小测量时间进行改变,示例见表3。
表3 非设定旋转频率的频率范围示例
旋转频率 低频带(L) 中频带(M) 高频带(H)
标称 min. max. 标称频带
flow fupp flow fupp flow fupp
min-1 Hz Hz Hz
3600 3528 3636 100 600 600 3600 3600 20000
900 882 909 25 150 150 900 900 5000
700a 686 707 20 120 120 700 700 4000
a 旋转频率为 700min-1时,截止频率进行了圆整(未严格按与旋转频率之间的关系)。
振动信号的窄带频谱分析可作为补充选项。
5.3 脉冲和尖锐脉冲测量
被测轴承中的表面缺陷和/或污染常常造成时域速度信号的脉冲或尖锐脉冲,可以考虑将脉冲或尖锐脉冲的检测作为一种补充选项。可以采用不同的评定方法。
5.4 测试
除单列角接触球轴承外,所有轴承在测试时,应在静止套圈的一侧施加轴向载荷,然后在静止套圈的另一侧施加轴向载荷进行重复测试。单列角接触球轴承应仅在其预知的轴向承载方向上进行测试。
每个频带的最大振动示值应在极限值内。
用于诊断分析时,应在轴承静止套圈相对于传感器的不同角位置处进行多点测量。测试持续时间按ISO15242-1:2015中6.5的规定。
6 测量条件
6.1 轴承的测量条件
6.1.1 预润滑轴承
预润滑(脂润滑、油润滑或固体润滑)轴承,包括密封轴承和防尘轴承,应在供货状态下测试。
6.1.2 非预润滑轴承
由于污染物影响振动水平,因此,轴承应进行有效的清洗,注意不要引入污染物或其他振源。
注:某些防锈剂可满足振动测试的润滑要求,此时不必清除防锈剂。
非预润滑轴承应根据轴承类型和大小,使用公称运动黏度在10mm2/s~100mm2/s之间并经精细过滤的润滑油进行充分润滑。
润滑过程中应进行试运转,以使轴承内的润滑剂均匀分布。
6.2 测试环境条件
轴承应在不影响振动的环境中进行测试。
6.3 测量装置条件
6.3.1 主轴/心轴的刚度
用于支承和驱动轴承的主轴(包括心轴)的结构,不仅可传递旋转运动,而且还可作为旋转轴线的刚性参照系。在使用的频带范围内,主轴/心轴和轴承之间振动的传递与所测量的振动速度相比,可以忽略不计。
6.3.2 加载机构
用于对轴承被测套圈施加载荷的加载机构的结构,应使套圈在所有方向——径向、轴向、角向或挠曲型(视轴承类型而定)的振动本质上处于自由振动状态,并能够保证轴承的正常运转。
6.3.3 轴承外加载荷的大小和对中精度
施加于轴承静止套圈上的恒定外加轴向载荷的大小规定在4.2中。
由于各机械零件的接触而引起的轴承套圈变形与被测轴承自身的几何精度相比,可忽略不计。
外加载荷的位置和方向应与主轴旋转轴线重合,其偏差应在图1和表4所规定的范围内。测量方法按附录A的规定。
a 外加载荷的轴线。
b 轴承内圈旋转轴线。
c 外加载荷轴线与轴承内圈旋转轴线的径向和角度偏差(见表4)。
图1 载荷轴线相对于轴承内圈旋转轴线的偏差
表4 载荷轴线相对于轴承内圈旋转轴线的偏差值
轴承外径
D 与轴承内圈旋转轴线间的径向偏差
H
max. 与轴承内圈旋转轴线间的角度偏差
β
max.
> ≤
mm mm (°)
10 25 0.2 0.5
25 50 0.4
50 100 0.8
100 140 1.6
140 170 2.0
170 200 2.5
6.3.4 传感器的轴向位置和测量方向
传感器的定位如下:
设定的轴向位置:在静止套圈的外表面上且对应于受载静止套圈滚道与球接触中部的平面上(对于静止外圈,见图2),轴承制造厂应提供该数据。
说明:
a——传感器位置和方向。
b——轴向载荷方向。
图2 振动测量——传感器设定的位置
另一种位置(深沟球轴承除外):位于静止套圈宽度的中心,见图3(这种测点位置可能会产生不同的振动信号)。
说明:
a——传感器位置和方向。
b——轴向载荷方向。
图3 振动测量——另一种传感器测点位置
传感器的位置确定后,允许的最大轴向位置偏差为:
——外径D≤70mm时:±0.5mm;
——外径D>70mm时:±1.0mm。
方向:垂直于旋转轴线(见图4)。在任何方向上与径向中心线的偏差不应超过5°。
a 在任何方向。
图4 与径向中心线的偏差
6.3.5 心轴
用于安装轴承内圈的心轴圆柱表面,其外径公差应符合ISO 286-2中f5级的规定,且具有最小的几何误差,确保心轴以滑配合装入轴承内孔中。
应控制径向和轴向跳动,以便不影响测试。跳动应采用ISO 15242-1:2015中附录C给出的装置进行测量。
附录A
(规范性附录)
外加轴向载荷轴线对中精度的测量
加载机构的偏移量是利用安装在主轴(见图A.1)支架上的两个千分表进行测量的,两个千分表在轴向间隔一定的距离。主轴应缓慢转动,千分表可测量加载活塞的径向跳动。
由两个千分表测得的径向跳动应根据测试轴承的轴向位置加以校正,以便能够与表4规定的极限偏差值进行比较。
说明:
1,2——千分表;
3——安装千分表的支架;
4——心轴;
5——加载机构。
图A.1 外加轴向载荷对中精度的测量