![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
This standard is developed in accordance with the rules given in GB/T 1.1-2009. This standard replaces GB/T 19289-2003 Methods of measurement of density, resistivity and stacking factor of electrical steel sheet and strip. The main changes of this standard with respect to GB/T 19289-2003 are as follows: ——The gas pyknometer method is introduced, and the liquid immersion method and the calculation method based on the chemical composition are quoted (see 5.3); ——An example of the apparatus for determination of the resistivity using a rectangular sheet, which was previously part of the main body of the text, is moved to constitute informative Annex A (see Annex A; 3.4.3 of 2003 edition); ——An example of the determination of the density by using the gas pyknometer method is added as an informative Annex B (see Annex B); ——An example of the determination of density based on the calculation of silicon and aluminium contents is added as an informative Annex C. (see Annex C). This standard, by means of translation, is identical to IEC 60404-13: 2018 Magnetic materials - Part 13: Methods of measurement of resistivity, density and stacking factor of electrical steel strip and sheet. The Chinese documents consistent and corresponding with the normative international documents in this standard are as follows: ——GB/T 1033.3-2010 Plastics - Methods for determining the density of non-cellular plastics - Part 3: Gas pyknometer method (ISO 1183-3: 1999, IDT) ——GB/T 2900.60-2002 Electrotechnical terminology - Electromagnetism [eqv IEC 60050 (121): 1998] ——GB/T 3655-2008 Methods of measurement of the magnetic properties of electrical steel sheet and strip by means of an epstein frame (IEC 60404-2: 1996, IDT) ——GB/T 9637 Electrotechnical terminology - Magnetic materials and components [eqv IEC 60050 (221): 1990] ——GB/T 13789-2008 Methods of measurement of the magnetic properties of magnetic sheet and strip by means of a single sheet tester (IEC 60404-3: 2002, IDT) The following editorial changes have been made in this standard: ——the name of this standard is modified; This standard was proposed by China Iron and Steel Industry Association. This standard is under the jurisdiction of SAC/TC 183 National Technical Committee on Iron and Steel of Standardization Administration of China. The previous editions of this standard are as follows: ——GB/T 2522-1988; ——GB/T 3655-1992; ——GB/T 19289-2003. Methods of measurement of resistivity, density and stacking factor of electrical steel strip and sheet 1 Scope This standard specifies the methods used for determining the resistivity, density and stacking factor of grain-oriented and non-oriented electrical steel strip and sheet. These quantities are necessary to establish the physical characteristics of the material. Moreover, the density is necessary to allow specified values of the magnetic polarization, resistivity and stacking factor to be determined. Since these properties are functions of temperature, the measurements will be made at an ambient temperature of 23℃±5℃ except when specified in this document. 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 1183-3 Plastics - Methods for determining the density of non-cellular plastics - Part 3: Gas pyknometer method IEC 60050-121 International electrotechnical vocabulary - Part 121: Electromagnetism IEC 60050-221 International electrotechnical vo-cabulary - Part 221: Magnetic materials and components IEC 60404-2 Magnetic materials - Part 2: Methods of measurement of the magnetic properties of electrical steel strip and sheet by means of an Epstein flame IEC 60404-3 Magnetic materials - Part 3:Methods of measurement of the magnetic properties of electrical steel strip and sheet by means of a single sheet tester 3 Terms and Definitions For the purposes of this document, the terms and definitions given in IEC 60050-121, IEC 60050-221 and ISO 1183-3 apply. 4 Determination of the resistivity 4.1 General Two methods for the determination of the resistivity of a test specimen are described in this clause; Method R1 using an Epstein strip specimen, and Method R2 using a rectangular sheet specimen. Note: Method R2 is based on the van-der-Pauw (VDP) method [1] which is based on the theory of conformal mapping of two-dimensional fields. For a body of uniform thickness and arbitrary shape, an exact mathematical formula exists for the resistivity determined from the voltage to current ratio obtained using four contacts. The formula is simplified when specimens and contact positions are highly symmetrical. Method R2 is particularly appropriate for rectangular sheet specimens. The method of determination of the resistivity ρ, based on the measurement of the geometric dimensions of the test specimen including the thickness, can be applied to all types of material specimens. However, the method for further use to determine the density ρm in accordance with 5.2 is restricted to the materials as specified in 5.1. 4.2 Principles of measurement 4.2.1 Method of determining ρ for an Epstein strip specimen (Method R1) The circuit for the measurement of the resistance of an Epstein strip specimen shall be connected as shown in Figure 1. Two electrical contacts A and B shall be arranged on either end of the shorter sides of the test specimen to supply a homogeneous current through the test specimen in the longitudinal direction. Two electrical contacts, C and D, located inside the contacts A and B shall be arranged on a longer side edge of the test specimen to measure the voltage over the length le. It is not necessary to remove the oxide layer or other insulating coatings because the contacts are made at the cut edges of the specimen. Key: A,B,C,D——electrical contact; A1——DC ammeter; V1——DC voltmeter; le——distance between C and D; IAB——current flowing between A and B; S——switch for current reversal; UCD——voltage between C and D. Figure 1 Circuit for the measurement of resistance of an Epstein strip specimen (Method R1) If a current flows homogeneously through the test specimen, the resistance R of the material over the length le of the Epstein strip specimen shall be calculated using Formula (1): (1) where, R——the resistance of the material over the length le between the contacts C and D, Ω; UCD——the voltage between the contacts C and D, V; IAB——the current flowing between the contacts A and B, A; The resistivity ρ shall be calculated using Formula (2): (2) where, ρ——the resistivity of the material of the test specimen, Ω·m; b——the width of the test specimen, m; d——the thickness of the test specimen without an insulation layer, m. le——the distance between the contacts C and D, m. 4.2.2 Method of determining ρ for a rectangular sheet specimen (Method R2) with supplementary remarks for strip specimen The circuit for the measurement of the resistance of a square-shaped or rectangular sheet specimen shall be connected as shown in Figure 2. Four electrical contacts A, B, C and D shall be arranged symmetrically at the centre of each edge of the test specimen. The contacts A, B, C and D shall be as small as possible. With a current flowing through the contacts A and B, the voltage between the contacts C and D shall be measured. It is not necessary to remove the oxide layer or other insulating coatings because the contacts are made at the cut edges of the specimen. The resistance RAB,CD shall be calculated using Formula (3): (3) where, RAB,CD——the resistance measured between the contacts C and D, Ω; UCD——the voltage between the contacts C and D, V; IAB——the current flowing between the contacts A and B, A; Key: A, B, C, D——electrical contact; A1——DC ammeter; V1——DC voltmeter; IAB——switch for current reversal; S——reverse current switch; UCD——voltage between C and D. Figure 2 Circuit for the measurement of resistance of a rectangular sheet specimen (Method R2) Correspondingly, the resistance RAB,CD shall be obtained from the voltage between the contacts D and A and the current flowing through the contacts B and C. On the basis of the theory of conformal mapping of two-dimensional fields [1], for a body of uniform thickness and arbitrary shape, the following formula holds: (4) where, ρ——the resistivity of the material of the test specimen, Ω·m; d——the thickness of the test specimen without an insulation layer, m. Fρ——a function of the ratio only. If the ratio is close to 1, the function Fρ becomes 1, so that it can be omitted [1]. To ensure that this ratio is close to 1, the contacts shall be arranged symmetrically at the centres of the edges of the rectangular sheet specimen as shown in Figure 2. Method R2 can also be applied to Epstein strip specimen, in this case, to obtain a reliable result of the measurement, a certain number (e.g. >10) of Epstein strip specimens should be tested, and the average should be taken as the result. Note: It has been shown that Method R2 (van der Pauw method [1]) is equivalent to Method R1, within limits which are lower than the dispersion between individual strip specimens of one grade of material [2]. The Method R2 has the advantages of versatility of specimen shape [3]. 4.2.3 Determination of thickness d 4.2.3.1 General The thickness of the test specimen d used in Formulae (2) and (4) shall be determined as specified in 4.2.3.2. 4.2.3.2 Calculating the thickness from the density ρm The thickness of the test specimen d shall be calculated using the value of the density ρm determined as specified in 5.3, or supplied by the manufacturer. The thickness d shall be determined from the following formula: (5) where, m——the mass of the test specimen, kg; ρm——the density of the material of the test specimen, kg/m3; b——the width of the test specimen, m; l——the length of the test specimen, m. 4.3 Test specimen 4.3.1 Epstein strip specimen The Epstein strip specimen used in Method R1 (according to 4.2.1), conforming with IEC 60404-2, shall have the following dimensions: ——width b = 30 mm ±0.2 mm; ——length 280 mm ≤ l ≤ 320 mm with a tolerance of ± 0.5 mm. 4.3.2 Rectangular sheet specimen The dimensions of the square-shaped or rectangular sheet specimen used in Method R2 (according to 4.2.2), conforming with IEC 60404-3, shall be as follows: ——width 300 mm ≤ b ≤ 500 mm with a tolerance of ± 0.5 mm; ——length 500 mm ≤ l ≤ 610 mm with a tolerance of ± 0.5 mm. 4.4 Apparatus 4.4.1 Common requirements for Method R1 and Method R2 The following equipment is required: ——according to 4.2.3.2, a calibrated balance, capable of weighing the mass of the test specimen to within ± 0.1%; ——a power supply consisting of a stable low voltage DC current source capable of supplying a current of the order 1A to 10A (unless a four-terminal ohm meter is used, as specified in 4.5.2 and 4.5.3); ——a resistance measuring device (e.g. ammeter and voltmeter of accuracy ±0.1% or better, or a Kelvin bridge or a four-terminal ohm meter of corresponding accuracy) capable of measuring the resistance R of the test specimen to within ±1%; ——a jig for making contact with the test specimen (as specified in 4.4.2 and 4.4.3) and, between the contacts, a supporting flat plate smaller than the test specimen (on sides where contacts are arranged) but not by more than 5mm (10mm for rectangular sheet specimens) on each side. The thickness of the support shall allow the contacts to touch the specimen lying on the support. 4.4.2 Requirements for Method R1 The apparatus for making electrical contact with the strip specimen employs four contacts: two voltage contacts (tips) are mounted on a removable bridge and two current contacts are fixed to the base plate. The four contacts shall be arranged so that the two voltage contacts C and D lie on a longer edge of the strip between the current contacts A and B (see Figure 1). The current contacts shall be arranged symmetrically in the center of each of the shorter edges of the strip within ±0.5 mm. The two voltage contacts shall have a relatively sharp edge (e.g. with a radius of curvature of 1mm). The distance between the voltage contacts C and D shall exceed 200 mm. The minimum distance between the voltage contacts and the current contacts shall be not less than the width of the test specimen (the distance le between the tips shall be determined within ±0.5mm, see Figure 1). 4.4.3 Requirements for Method R2 Four contacts with a relatively sharp edge (e.g. with a radius of curvature of 1 mm) shall each be mounted on a holder which is fixed to the base plate. The contacts shall be arranged symmetrically in the center of each edge of the specimen, within ± 1mm (or ± 0.5 mm for an Epstein strip specimen) (see Figure 2). Foreword i 1 Scope 2 Normative references 3 Terms and Definitions 4 Determination of the resistivity 4.1 General 4.2 Principles of measurement 4.3 Test specimen 4.4 Apparatus 4.5 Measuring procedure 4.6 Reproducibility 4.7 Test report 5 Determination of the density 5.1 General 5.2 Method based on the measurement of resistance (Method D1) 5.3 Gas pyknometer method (Method D2) 5.4 Test report 6 Determination of the stacking factor 6.1 General 6.2 Test specimen 6.3 Measuring procedure 6.4 Reproducibility 6.5 Test report Annex A (Informative) An example of the apparatus for the measurement of the resistivity using a rectangular sheet specimen (Method R2) Annex B (Informative) An example of the determination of density using the gas pyknometer method (Method D2) Annex C (Informative) Calculation of density based on silicon and aluminium content (Method D4) Bibliography 电工钢带(片)的电阻率、密度和叠装系数的测量方法 1 范围 本标准规定了取向和无取向电工钢带(片)的电阻率、密度和叠装系数的测定方法。这些物理参数是材料物理性能的表征。其中,密度是测定磁极化强度、电阻率和叠装系数时需要的条件参数。 由于这些性能参数与温度相关,除非另有规定,测量将在室温23℃±5℃进行。 2规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 ISO 1183-3塑料 非泡沫塑料的密度的测定方法 第3部分:气体比重瓶法(Plastics—Methods for determining the density of non-cellular plastics—Part 3:Gas pyknometer method) IEC 60050-121 国际电工术语 第121部分:电磁学(International electrotechnical vocabulary—Part 121:Electromagnetism) IEC 60050-221 国际电工术语 第221部分:磁性材料与元件(International electrotechnical vo-cabulary—Part 221:Magnetic materials and components) IEC 60404-2 磁性材料 第2部分:用爱泼斯坦方圈法测量电工钢带(片)磁性能的方法(Magnetic materials—Part 2:Methods of measurement of the magnetic properties of electrical steel strip and sheet by means of an Epstein flame) IEC 60404-3磁性材料 第3部分:单片电工钢带(片)磁性能测量方法(Magnetic materials—Part 3:Methods of measurement of the magnetic properties of electrical steel strip and sheet by means of a single sheet tester) 3术语和定义 IEC 60050-121、IEC 60050-221和ISO 1183-3界定的术语和定义适用子本文件。 4电阻率的测定 4.1 总则 本章描述了两种电阻率的测量方法;方法R1采用爱泼斯坦方圈试样,方法R2采用矩形试样。 注:方法R2源于范德堡(van-der-Pauw)法(VDP法)[1],该方法以二维空间保角映射理论为基础。对于任意形状厚度均匀的物体,电阻率的测定可先通过四端接触法得到电压与电流的比值,再由确切的数学公式计算得到。当试样和触点位置的对称性很好时,公式可简化。方法R2尤其适用于矩形试样。 电阻率ρ的测量方法是基于对试样几何尺寸(厚度)的测量,适用于所有类型材料的试样。但是当该方法进一步用于密度ρm测定时(见5.2),适用范围仅限于5.1中规定的材料。 4.2测量原理 4.2.1 用爱泼斯坦方圈试样测ρ的方法(方法R1) 用爱泼斯坦方圈试样测定电阻的电路连接方式如图1所示。电接触点A和B应分别排布在试样的两条短边上,使电流沿试样长度方向均匀流过试样。另两个间距为le的电接触点C和D应排布在试样一条长边上且位于触点A和B之间,用于测定试样长度le上的电压。由于电接触点是与试样的剪切边接触,因此无需去除试样表面的氧化层或绝缘涂层。 电源 试样 说明: A,B,C,D——电接触点; A1——直流电流表; V1——直流电压表; le——C和D之间的距离; IAB——通过A和B的电流; S——反向电流开关; UCD——C和D之间的电压。 图1 爱泼斯坦方圈试样电阻测量电路图(方法R1) 当电流均匀流过爱泼斯坦方圈试样时,则长度le上的材料电阻R可由式(1)计算: (1) 式中: R——试样上触点C和D之间长度le的材料电阻,单位为欧姆(Ω); UCD——触点C和D之间的电压,单位为伏特(V); IAB——触点A和B之间的电流,单位为安培(A)。 电阻率ρ可根据式(2)计算: (2) 式中: ρ——试样材料的电阻率,单位为欧姆米(Ω·m); b——试样的宽度,单位为米(m); d——无绝缘层的试样的厚度,单位为米(m); le——触点C和D之间的距离,单位为米(m)。 4.2.2用矩形试样测定ρ的方法(方法R2)及用于爱泼斯坦方圈试样的补充要求 用于测定正方形或矩形试样电阻的电路连接方式如图2所示。四个电接触点A、B、C和D应分别对称排布在试样每条边的中心。触点与试样的接触面积应尽可能小。当有电流流过触点A和B,应测量触点C和D间的电压。由于电接触点是与试样的剪切边接触,因此无需去除试样表面的氧化层或绝缘涂层。 电阻RAB,CD可根据式(3)计算: (3) 式中: RAB,CD——触点C和D之间的材料电阻,单位为欧姆(Ω); UCD——触点C和D之间的电压,单位为伏特(V); IAB——触点A和B之间的电流,单位为安培(A)。 电源 试样 说明: A,B,C,D——电接触点; A1——直流电流表; V1——直流电压表; IAB——通过A和B的电流; S——反向电流开关; UCD——C和D之间的电压。 图2 矩形试样电阻测量电路图(方法R2) 相应地,电阻RBC,DA可由流过触点B和C的电流和触点D和A之间的电压得到。 根据二维空间保角映射理论[1],对于任意形状厚度均匀的物体,电阻率可根据式(4)计算: (4) 式中: ρ——试样材料的电阻率,单位为欧姆米(Ω·m); d——无绝缘层的试样的厚度,单位为米(m); Fρ——仅与比率 相关的函数。 若比率 近似为1,则函数Fρ为1,那么该项可省略[1]。为确保该电阻比率近似为1,触点应对称地排布在矩形试样边长的中点(如图2所示)。 方法R2也适用于爱泼斯坦方圈试样,此时,为了获得可靠的测量结果,宜测定一定数量(如大于10)的爱泼斯坦方圈试样,取平均值作为测量结果。 注:有证据表明,同钢种材料各试样之间的差异大于方法R1和方法R2之间的差异[2],因此,可以认为方法R2(范德堡方法[1])在一定程度上是与方法R1等效的。方法R2的优点是可以采用多种形状的试样进行测量[3]。 4.2.3厚度d的测定 4.2.3.1 总则 式(2)和式(4)中的试样厚度d应根据4.2.3.2的规定测定。 4.2.3.2根据密度ρm计算厚度 试样厚度d应由密度值ρm(根据5.3测得或由生产商提供)根据式(5)计算: (5) 式中: m——试样的质量,单位为千克(kg); ρm——试样材料的密度.单位为千克每立方米(kg/m3); b——试样的宽度,单位为米(m); l——试样的长度,单位为米(m)。 4.3试样 4.3.1 爱泼斯坦方圈试样 方法R1(见4.2.1)采用的爱泼斯坦方圈试样应满足IEC 60404-2的要求,具有以下尺寸: ——宽度:b=30 mm±0.2 mm; ——长度:280 mm≤l≤320 mm,公差为±0.5 mm。 4.3.2矩形试样 方法R2(见4.2.2)采用的矩形或正方形试样应满足IEC 60404-3的要求,具有以下尺寸: ——宽度:300 mm≤b≤500 mm,公差为±0.5 mm; ——长度:500 mm≤l≤610 mm,公差为±0.5 mm。 4.4测量装置 4.4.1 方法R1和方法R2的通用要求 测量装置要求如下: ——根据4.2.3.2的要求,一台经过校准的天平,其称量试样的误差在±0.1%以内; ——一台低压直流稳压电源,其电流负载范围为1 A~10 A(或使用四端欧姆计,见4.5.2和4.5.3); ——一台电阻测量装置,其测量试样电阻R的误差在±1%以内[例如,准确度为±0.1%或更好的电流表和电压表,或一台具有相应准确度的开尔文(Kelvin)电桥或四端欧姆计]; ——一个面积应小于试样的支撑平板,其上配置一种用于接触试样的夹紧装置(见4.4.2和4.4.3),可使电接触点在试样边缘排布,平板边缘距离试样各条边的距离应不大于5 mm(对矩形试样应不大于10 mm)。支撑平板应有足够的厚度能使试样放平,并使电接触头和试样充分接触。 4.4.2方法R1的要求 与试样电接触的装置采用四个触点:两个固定在可拆卸桥架上的电压触点(触针)和两个固定在基座上的电流触点。四个触点排布方式如下:两个电压触点C和D布于试样长边上,且位于两个电流触点A和B之间(见图1);电流触点对称布于试样的短边中心(位置偏差在±0.5 mm以内)。两个电压触点的头部应相对尖锐(例加,具有1 mm的曲率半径)。电压触点C和D的间距应超过200 mm。电压触点与电流触点间的最小距离应不小于试样宽度(触针间距le的测量准确度应在±0.5 mm以内,见图1)。 4.4.3方法R2的要求 四个头部相对尖锐(例如,具有1 mm的曲率半径)的触点应安装在固定在基板的支架上。各个电接触点应在试样各边的中心位置对称排布。位置偏差在±1 mm以内(或对于爱泼斯坦方圈试样,位置偏差在±0.5 mm以内)(见图2)。 注1:附录A给出了方法R2测量装置的实例。 注2:其他触点方式,例如在矩形试样A、B、C及D点上焊接电线(见图2),也可使电路保持良好电接触。 4.5 测量程序 4.531 试样厚度d的测定 试样厚度d应根据4.2.3.2测定。应使用满足要求的测量装置和天平,分别测量试样长度l及宽度b和质量m。 4.5.2使用爱泼斯坦方圈试样的测量程序(方法R1) 按图1所示连接电路,电流值IAB范围应控制在1 A~5 A之间,该值取决于材料的厚度及性能。通过试样的电流应足够大,以确保电压UCD的测量准确度满足要求。如果使用能确保测量准确度的四端欧姆计,电流值可适当调低。记录电压值UCD和电流值IAB,或使用四端欧姆计或开尔文电桥直接测量电阻值。为减小热电压影响,应反向设置相同电流值,再记录电压值UCD,并计算两次读数的平均值。 应采用式(1)计算电阻R,或使用四端欧姆计或开尔文电桥直接测量电阻。 应结合式(5),并采用式(2)计算电阻率ρ。 4.5.3使用矩形试样的测量程序(方法R2) 按图2所示连接电路,电流值范围应控制在2 A~10 A之间,通过试样触点A和B的电流应足够大,以确保电压UCD的读数满足规定的测量准确度要求。如果使用能确保测量准确度的四端欧姆计,电流值可适当调低。记录电压值UCD和电流值IAB,或使用四端欧姆计或开尔文电桥直接测量电阻值。为减小热电压影响,应反向设置相同电流值,再记录电压值UCD,并计算两次读数的平均值。 应采用式(3)计算电阻RAB,CD,或使用四端欧姆计或开尔文电桥直接测量电阻。相应地,电阻RBC,DA根据相同的程序测量。 应结合式(5),并采用式(4)计算电阻率ρ。 4.6再现性 根据比对试验[3],符合第4章规定的电阻率测量方法的再现性用相对标准差表示为0.5%。 4.7检测报告 除非相关方另有约定,检测报告应指明对本标准的引用,并至少包括以下信息: a)完整标识试样所需的详细信息,诸如材料型号、等级,标称厚度; b)试样宽度b和长度l; c)试样质量m; d)采用的检测方法(若采用方法R2,使用爱泼斯坦方圈试样测定,应标明试样数); e)测量进行时的室温; f)电阻率ρ检测结果,单位为欧姆米(Ω·m),修约间隔为0.1×10-8 Ω·m。 5密度的测定 5.1 总则 本标准涉及以下四种测定密度的方法: ——方法D1,是基于爱泼斯坦方圈试样或矩形试样的电阻率测量的方法; ——方法D2,是根据ISO 1183-3的气体比重瓶法,这是基础方法; ——方法D3,是根据ISO 1183-2:2012[4]和ISO 2738:1999[5]的液体浸没法; ——方法D4,是基于试样化学成分的理论计算法,参见附录C。 方法D1是基于第4章描述的电阻率测定方法R1和方法R2的间接测量方法。5.2中方法D1只适用于无取向电工钢,并且化学成分应在以下范围内: ——硅:CSi≤4%; ——铝:0.17 CSi-0.28≤CAl≤0.17 CSi+0.28,且CAl≥0; ——其他合金成分总含量:Cres≤0.4%。 其中: CSi为硅元素的质量分数,以百分比表示; CAl为铝元素的质量分数,以百分比表示; Cres为除硅和铝以外其他所有合金元素的质量分数,以百分数表示。 当化学成分未知时,若要采用间接测量方法,应先确定化学成分。通常,电工钢的化学成分由生产方自行确定。 方法D2(见5.3)是直接测量方法,取向和无取向电工钢都适用。 方法D3称为液体浸没法,依据ISO 1183-1:2012[4]和ISO 2738:1999[5],是直接测量方法。 注1:对于密度的测定,液体浸没法早先作为有争议时使用的基础仲裁方法。然而,经验表明,由于附着在试样表面的残留气泡不易去除,该方法很难用于表面积相对较大的电工钢片状试样。相比之下,根据ISO 1183-3的气体比重瓶法更为实用.对于电工钢片状试样具有更高的准确性。 方法D4是基于试样化学成分进行理论计算的间接测定方法,该方法的使用由相关方协议规定。附录C给出了通过硅和铝元素含量计算得到密度的实例。 注2:在材料生产过程中,生产方可比较容易由较厚的块状试样的尺寸测量得到体积,并确定材料的密度。
|
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 |
服务热线:400-001-5431 | 电话:010-8572 5110 | 传真:010-8581 9515 | Email: bz@bzfyw.com | |
版权所有: 北京悦尔信息技术有限公司 2008-2020 京ICP备17065875号-1 51La |
本页关键词: |
GB/T 19289-2019, GB 19289-2019, GBT 19289-2019, GB/T19289-2019, GB/T 19289, GB/T19289, GB19289-2019, GB 19289, GB19289, GBT19289-2019, GBT 19289, GBT19289 |