Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative.
This standard is drafted in accordance with the rules given in GB/T 1.1-2009.
This standard replaces GB/T 21087-2007 Air-to-air energy recovery equipment. In addition to a number of editorial changes, the following technical changes have been made with respect to GB/T 21087-2007:
——The requirements for the performance related to the net outdoor airflow rate in supply air are added (see 6.9 and 7.10 hereof);
——The requirements for the minimum filter level on the outdoor air side and exhaust air side of the energy recovery ventilators for outdoor air handling are added (see 5.13 hereof);
——Some test conditions are modified (see 7.1.3 hereof; 6.1.2 of Edition 2007);
——The test methods and related requirements for coefficient of energy and ratio of energy recovery are added (see 6.12, 6.13, 7.13 and 7.14 hereof);
——The performance and test methods of reciprocating energy recovery ventilators are added (see 7.12.3 and Annex G hereof);
——The alternating performance and test methods are added (see 6.24, 7.25 and Annex J hereof).
This standard was proposed by the Ministry of Housing and Urban-Rural Development of the People's Republic of China.
This standard is under the jurisdiction of the National Technical Committee on HVAC and Purification Equipment of Standardization Administration of China (SAC/TC 143).
The previous edition of the standard replaced by this standard is as follows:
——GB/T 21087-2007.
Energy recovery ventilators for outdoor air handling
1 Scope
This standard specifies the classification and identification, structure and materials, requirements, test methods, inspection rules, marking, packaging, transportation and storage of energy recovery ventilators for outdoor air handling.
This standard is applicable to energy recovery ventilators that recover exhaust energy in heating, ventilation, air conditioning and purification systems and pretreat outdoor air with cold, heat, humidity and filtration.
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
GB/T 755-2019 Rotating electrical machines—Rating and performance
GB/T 1236-2017 Industrial fans—Performance testing using standardized airways
GB/T 2423.3 Environmental testing—Part 2: Testing method—Test Cab: Damp heat, steady state
GB/T 3785.1-2010 Electroacoustics—Sound level meters—Part 1: Specifications
GB 4706.1-2005 Household and similar electrical appliances—Safety—Part 1: General requirements
GB 8624 Classification for burning behavior of building materials and products
GB/T 9068 Determination of sound power levels for noise emitted by heating ventilating and air conditioning equipment—Engineering method
GB/T 14295 Air filter
GB/T 14296 Air cooling and air heating coils
GB/T 16803 Equipment of heating, ventilating, air conditioning and air cleaning terminology
GB 21551.2 Antibacterial and cleaning function for household and similar electrical appliances—Particular requirements of material
GB/T 34012 Air cleaner for ventilation system
GB 50016 Code for fire protection design of buildings
3 Terms and definitions
For the purposes of this standard, the terms and definitions given in GB/T 16803 and the following apply.
3.1
energy recovery ventilators for outdoor air handling; ERV
equipment which takes sensible heat or total heat energy recovery component as the core and drives air flow through fan to realize the recovery of exhaust energy by outdoor air and outdoor air filtration
3.2
energy recovery components; ERC
heat exchange component that realizes sensible heat or total heat energy exchange between air and air.
3.3
total heat exchange
energy exchange in which sensible and latent heat transforms simultaneously
3.4
sensible heat exchange
energy exchange in which only sensible heat transformation occurs
3.5
standard air
air with atmospheric pressure of 101.3 kPa, dry-bulb temperature of 20°C, wet-bulb temperature of 15.8°C and density of 1.2 kg/m3
3.6
outdoor air
outdoor air entering from the outdoor air inlet
3.7
supply air
air sent out from the air supply outlet
3.8
return air
indoor air entering from the air return outlet
3.9
exhaust air
air discharged from the air outlet
3.10
rated value
performance value that ERV or ERC shall reach under the test conditions specified in this standard
3.11
supply air flow rate
volume flow of air sent out from the air supply outlet
Note: The unit is m3/h.
3.12
exhaust air flow rate
volume flow of air discharged from the exhaust outlet
Note: The unit is m3/h.
3.13
power input
sum of power input of air supply and exhaust fans and auxiliary electrical equipment (ERV) or power input of auxiliary electrical equipment (ERC)
Note: The unit is W or kW.
3.14
available pressure of ERV
difference between the total pressure of the outlet air and the total pressure of the inlet air in the ERV air supply channel and exhaust channel under the corresponding air flow rate
Note: The unit is Pa.
3.15
air pressure drop of ERC
pressure drop generated by ERC in ERC air supply channel and exhaust channel under the corresponding air flow rate
Note: The unit is Pa.
3.16
sensible exchange effectiveness
ratio of temperature difference between outdoor air inlet and supply air outlet to temperature difference between outdoor air inlet and return air inlet under corresponding air flow rate
Note: It is expressed as a percentage.
3.17
total exchange effectiveness
ratio of enthalpy difference of outdoor air inlet and supply air outlet to enthalpy difference of outdoor air inlet and return air inlet under corresponding air flow rate
Note: It is expressed as a percentage.
3.18
absolute humidity ratio exchange effectiveness
ratio of moisture content difference between outdoor air inlet and supply air outlet to moisture content difference between outdoor air inlet and return air inlet under corresponding air flow rate
Note: It is expressed as a percentage.
3.19
ratio of energy recovery of ERC
ratio of energy recovered by ERC to the electric energy consumed during energy recovery
Note: It is expressed as a percentage.
3.20
coefficient of energy of ERV
ratio of the sum of the total energy exchanged between the outdoor and exhaust air flows and the energy possessed by the air flow to the power input of ERV.
Note: It is expressed as a percentage.
3.21
external air leakage ratio
ratio of the air flow rate leaking in and out from the gap of ERV or ERC shell to the average flow rate of rated air supply and exhaust
Note: It is expressed as a percentage.
3.22
internal exhaust air leakage ratio
ratio of the air flow rate leaked from the exhaust air side into the outdoor air side in the ERV or ERC to the rated air supply flow rate
Note: It is expressed as a percentage.
3.23
net outdoor airflow rate in supply air
volume flow of outdoor air contained in the supply air of ERV or ERC
Note: The unit is m3/h.
3.24
net outdoor airflow ratio in supply air
ratio of the volume flow of outdoor air contained in the supply air of ERV or ERC to the supply air flow rate
Note: It is expressed as a percentage.
3.25
energy-saving controller
energy saving operation control device with monitoring and control function equipped by ERV
4 Classification and identification
4.1 Classification
4.1.1 The code of energy recovery ventilators for outdoor air handling is "ERV", and the code of energy recovery components is "ERC".
4.1.2 See Table 1 for the classification and corresponding codes of ERV and ERC.
Table 1 Classification and corresponding codes of ERV and ERC
Name Classification mode Category Code
Energy recovery ventilators for outdoor air handling (ERV) By installation mode Floor type LD
Hoisting type DZ
Wall-mounted type BG
Window type CS
Embedded type QS
Energy recovery component (ERC) By type of energy recovery Total heat type QR
Sensible heat type XR
By operating state Rotary type (including rotary wheel type, channel wheel type, etc.) XZ
Static type (including plate-fin type, heat pipe type, liquid circulation type, etc.) JZ
Reciprocating WF
By the shape of air inlet and outlet sections Circular Diameter × thickness × channel height
Rectangle Length × width × thickness × channel height
By fire resistance Fire retardant type NR
Non-flame retardant type —
By antibacterial properties Antibacterial type KJ
Ordinary type —
4.2 Labels
4.2.1 ERV label
Example:
For the total heat, hoisting type, rotary type, non-flame retardant and ordinary antibacterial energy recovery ventilators for outdoor air handling with rated supply air flow rate of 300 m3/h, it is labeled as:
ERV-300-QR-DZ-XZ
4.2.2 ERC label
Example:
For sensible, rotary, flame retardant and ordinary antibacterial energy recovery components with rotary wheel diameter of 300 mm, thickness of 100 mm and channel height of 2 mm, it is labeled as:
ERC-ɸ300×100×2-XR-XZ-NR
For the total heat, static, non-flame retardant and ordinary antibacterial energy recovery components with air inlet and outlet section size of 300 mm long, 250 mm wide, 200 mm thick and channel height of 2 mm, it is labeled as:
ERC-300×250×200×2-QR-JZ
5 Structure and materials
5.1 ERV and ERC shall be manufactured according to drawings and technical documents.
5.2 The interior of ERV and ERC shall be clean and free of sundries.
5.3 The surface of ERV and ERC plastic parts shall be flat, uniform in color, free from cracks, bubbles, etc. The plastic parts shall be resistant to aging.
5.4 Anti-rust measures shall be taken for sheet metal parts and spare parts of ERV and ERC.
5.5 The metal shell of ERV and ERC outdoor parts shall be treated with anti-rust treatment, and non-metallic materials shall be resistant to aging.
5.6 ERC’s thermal insulation material shall be non-toxic and odorless, and the paste shall be flat and firm.
5.7 The fire resistance characteristics of flame retardant ERC shall meet the relevant requirements of GB 50016 and shall be classified according to the relevant requirements of GB 8624.
5.8 The wiring connection between ERV and ERC shall be neat and firm, and shall be reliably earthed. Insulating sleeve or other protective measures shall be used for wire perforation and plug connection, and metal hose shall be used for protection of exposed wires outside the shell.
5.9 Electrical control components shall act sensitively and reliably.
5.10 For ERV or ERC with access doors, the access doors shall be tight and flexible, and the access doors accessible to personnel shall be opened both inside and outside.
5.11 ERV shall ensure the smooth removal of condensate during heat exchange.
5.12 The ERV shall be equipped with surface air cooler and heater that meet the requirements of GB/T 14296.
5.13 The ERV shall be equipped with air filter that meets the relevant requirements of GB/T 14295. Air filters with filtration efficiency not lower than C1 shall be arranged on the windward side of the exhaust air side of the heat exchange component (heat exchange core), and air filters with filtration efficiency not lower than Z1 shall be arranged on the windward side of the outdoor air side. The filters shall be easily replaced or cleaned.
5.14 Antibacterial ERC shall meet the relevant requirements of GB 21551.2.
5.15 ERV should be equipped with an energy-saving operation controller, which can reduce the energy consumption by adjusting fan speed and bypassing outdoor air and exhaust air under the condition of meeting the requirements of transmission and distribution air flow rate of outdoor air and exhaust air according to indoor and outdoor air conditions and motor power consumption.
5.16 The independently installed ERV outdoor air inlet and exhaust air outlet should be equipped with insulated airtight air valve.
6 Requirements
6.1 Appearance
The outer surface of the ventilator shall be smooth and the color tone shall be consistent, without obvious scratches, rust spots, indentations, flow marks, blisters and peeling. All kinds of marks and nameplates pasted on the outer surface shall be firm and in an obvious position.
6.2 Start-up and operation
The parts of ERV and ERC shall be free from looseness, noise and overheating.
6.3 Air flow rate
The measured value of supply air flow rate and exhaust air flow rate shall not be less than 95% of the rated value.
6.4 Available pressure
The measured available pressures on the outdoor air side and exhaust air side of ERV shall not be less than 95% of the rated value.
6.5 Static pressure drop
The measured static pressure drops on the outdoor air side and exhaust air side of ERC shall not be greater than 105% of the rated value.
6.6 Power input
For ventilators with rated power input not greater than 30 W, the measured value of power input shall not be greater than 120% of the rated value; for ventilators with rated power input greater than 30 W, the measured power input shall not be greater than 110% of the rated value.
6.7 Internal exhaust air leakage ratio
For ERV and ERC with supply air flow rate greater than 3,000 m3/h, the measured value of internal exhaust air leakage ratio shall not be greater than 10%, and shall not be greater than "rated value + 1%".
6.8 External air leakage ratio
For ERV and ERC with supply air flow rate greater than 3,000 m3/h, the measured value of external air leakage ratio shall not be greater than 3%.
6.9 Net outdoor airflow rate in supply air
The measured value of net outdoor airflow rate in supply air shall not be less than 95% of the rated value.
6.10 Net outdoor airflow ratio in supply air
For ERV and ERC with supply air flow rate not greater than 3,000 m3/h, the measured value of net outdoor airflow ratio in supply air shall not be less than 90%, and shall not be less than "rated value – 1%".
Foreword i
1 Scope
2 Normative references
3 Terms and definitions
4 Classification and identification
5 Structure and materials
6 Requirements
7 Test methods
8 Inspection rules
9 Marking, packaging, transportation and storage
Annex A (Normative) Test method for air flow rate, static pressure drop, available pressure and power input
Annex B (Normative) Field test method for energy recovery performance
Annex C (Normative) Test method for internal exhaust air leakage ratio
Annex D (Normative) Test method for external air leakage ratio
Annex E (Normative) Test method for net outdoor airflow rate in supply air and net outdoor airflow ratio in supply air
Annex F (Normative) Test method for exchange effectiveness, coefficient of energy and ratio of energy recovery
Annex G (Normative) Test method for performance of reciprocating energy recovery ventilators
Annex H (Normative) Test method for condensation and condensed water
Annex I (Normative) Test method for noise
Annex J (Normative) Test method for alternating performance
热回收新风机组
1 范围
本标准规定了热回收新风机组的分类与标记、结构和材料、要求、试验方法、检验规则、标志、包装、运输和贮存等。
本标准适用于在供暖、通风、空调、净化系统中回收排风能量,对新风进行冷、热、湿及过滤预处理的新排风通风机组。
2 规范性引用文件
下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T 755—2019 旋转电机 定额和性能
GB/T 1236—2017 工业通风机 用标准化风道性能试验
GB/T 2423.3 环境试验 第2部分:试验方法 试验Cab:恒定湿热试验
GB/T 3785.1—2010 电声学 声级计 第1部分:规范
GB 4706.1—2005 家用和类似用途电器的安全 第1部分:通用要求
GB 8624 建筑材料及制品燃烧性能分级
GB/T 9068 采暖通风与空气调节设备噪声声功率级的测定 工程法
GB/T 14295 空气过滤器
GB/T 14296 空气冷却器与空气加热器
GB/T 16803 供暖、通风、空调、净化设备术语
GB 21551.2 家用和类似用途电器的抗菌、除菌、净化功能 抗菌材料的特殊要求
GB/T 34012 通风系统用空气净化装置
GB 50016 建筑设计防火规范
3 术语和定义
GB/T 16803界定的以及下列术语和定义适用于本文件。
3.1
热回收新风机组 energy recovery ventilators for outdoor air handling;ERV
以显热或全热回收装置为核心,通过风机驱动空气流动实现新风对排风能量的回收和新风过滤的设备。
3.2
热回收装置 energy recovery components;ERC
实现空气和空气间显热或全热能量交换的换热部件。
3.3
全热交换 total heat exchange
同时发生显热和潜热变换的能量交换。
3.4
显热交换 sensible heat exchange
只发生显热变换的能量交换。
3.5
标准空气状态 standard air
大气压力为101.3 kPa,干球温度为20℃、湿球温度为15.8℃,密度为1.2 kg/m3的空气。
3.6
新风 outdoor air
从新风口进入的室外空气。
3.7
送风 supply air
从送风口送出的空气。
3.8
回风 return air
从回风口进入的室内空气。
3.9
排风 exhaust air
从排风口排出的空气。
3.10
额定值 rated value
在本标准规定的试验工况下,ERV或ERC应能达到的性能值。
3.11
送风量 supply air flow rate
从送风口送出的空气体积流量。
注:单位为m3/h。
3.12
排风量 exhaust air flow rate
从排风口排出的空气体积流量。
注:单位为m3/h。
3.13
输入功率 power input
送、排风机和辅助用电设备输入功率之和(ERV)或辅助用电设备的输入功率(ERC)。
注:单位为W或kW。
3.14
ERV机外余压 available pressure of ERV
ERV送风通道及排风通道在对应风量下,出口空气全压与进口空气全压之差。
注:单位为Pa。
3.15
ERC压力损失 air pressure drop of ERC
ERC送风通道及排风通道在对应风量下,ERC产生的压降。
注:单位为Pa。
3.16
显热交换效率 sensible exchange effectiveness
对应风量的新风进口、送风出口温差与新风进口、回风进口温差之比。
注:以百分数表示。
3.17
全热交换效率 total exchange effectiveness
对应风量的新风进口、送风出口焓差与新风进口、回风进口焓差之比。
注:以百分数表示。
3.18
湿量交换效率 absolute humidity ratio exchange effectiveness
对应风量的新风进口、送风出口含湿量差与新风进口、回风进口含湿量差之比。
注:以百分数表示。
3.19
ERC能量回收比 ratio of energy recovery of ERC
ERC回收的能量与能量回收过程中消耗的电能之比。
注:以百分数表示。
3.20
ERV能效系数 coefficient of energy of ERV
新排风气流间交换的总能量和气流流动具备的能量之和与ERV的输入功率之比。
注:以百分数表示。
3.21
外部漏风率 external air leakage ratio
由ERV或ERC外壳缝隙漏入、漏出的风量与额定送、排风量均值之比。
注:以百分数表示。
3.22
内部漏风率 internal exhaust air leakage ratio
在ERV或ERC内部,由排风侧漏入新风侧的风量与额定送风量之比。
注:以百分数表示。
3.23
送风净新风量 net outdoor airflow rate in supply air
ERV或ERC的送风中含有的室外空气体积流量。
注:单位为m3/h。
3.24
送风净新风率 net outdoor airflow ratio in supply air
ERV或ERC的送风中含有的室外空气体积流量与送风量之比。
注:以百分数表示。
3.25
节能运行控制器 energy-saving controller
ERV自带的、具有监测控制功能的节能运行控制装置。
4 分类与标记
4.1 分类
4.1.1 热回收新风机组代号为“ERV”,热回收装置代号为“ERC”。
4.1.2 ERV和ERC的分类及相应代号见表1。
表1 ERV和ERC的分类及相应代号
名称 分类方式 类别 代号
热回收新风机组(ERV) 按安装方式分 落地式 LD
吊装式 DZ
壁挂式 BG
窗式 CS
嵌入式 QS
热回收装置(ERC) 按热回收类型分 全热型 QR
显热型 XR
按工作状态分 旋转式(含转轮式、通道轮式等) XZ
静止式(含板翅式、热管式、液体循环式等) JZ
往复式 WF
按进、出风断面形状分 圆形 直径×厚度×通道高度
长方形 长×宽×厚度×通道高度
按防火性能分 难燃型 NR
非阻燃型 —
按抗菌性能分 抗菌型 KJ
普通型 —
4.2 标记
4.2.1 ERV标记
内置ERC抗菌性能
内置ERC防火性能
内置ERC工作状态
安装方式
热回收类型
送风量额定值,m3/h
热回收新风机组(ERV)
示例:
额定送风量为300 m3/h、全热、吊装式、旋转式、非阻燃和普通抗菌的热回收新风机组,标记为:
ERV-300-QR-DZ-XZ
4.2.2 ERC标记
抗菌性能
防火性能
工作状态
热回收类型
断面形状
热回收装置(ERC)
示例:
转轮直径为300 mm、厚度为100 mm、通道高度2 mm的显热、旋转式、难燃和普通抗菌的热回收装置,标记为:
ERC-φ300×100×2-XR-XZ-NR
进、出风断面尺寸为长300 mm、宽250 mm、厚度200 mm、通道高度2 mm的全热、静止式、非阻燃和普通抗菌的热回收装置,标记为:
ERC-300×250×200×2-QR-JZ
5 结构和材料
5.1 ERV和ERC应按图纸和技术文件制造。
5.2 ERV和ERC内部应整洁干净、无杂物。
5.3 ERV和ERC的塑料件表面应平整、色泽均匀,不应有裂痕、气泡等,塑料件应耐老化。
5.4 ERV和ERC的钣金件、零配件等应有防锈措施。
5.5 ERV和ERC室外部分的金属外壳应作防锈处理,非金属材料应具有防老化性能。
5.6 ERC隔热保温材料应无毒、无异味,粘贴应平整、牢固。
5.7 难燃型ERC的防火特性应满足GB 50016的相关要求,并应按GB 8624的相关要求给出分级。
5.8 ERV和ERC的线路连接应整齐牢固,并应有可靠的接地,电线穿孔和接插头应采用绝缘套管或其他保护措施,壳体外外露电线宜采用金属软管保护。
5.9 电气控制元器件应动作灵敏、可靠。
5.10 对于有检修门的ERV或ERC,其检修门应严密、灵活,人员能进入的检修通道门应内外均能开启。
5.11 ERV应确保热交换时凝结水排除畅通。
5.12 ERV配置的表面空气冷却器和加热器应满足GB/T 14296的相关要求。
5.13 ERV配置的空气过滤器应满足GB/T 14295的相关要求,在热交换部件(换热芯体)排风侧迎风面应布置过滤效率不低于C1的空气过滤器,在新风侧迎风面应布置过滤效率不低于Z1的空气过滤器,过滤器应可以便捷地更换或清洗。
5.14 抗菌型ERC应满足GB 21551.2的相关要求。
5.15 ERV宜设置节能运行控制器,在满足新风排风输配风量要求的条件下,可根据室内外空气状态、电机功耗等情况,通过调整风机转速、旁通新风排风等手段,实现ERV能耗降低。
5.16 独立安装的ERV新风口和排风口宜配置保温密闭风阀。
6 要求
6.1 外观
机组外表面应光洁,色调应一致,无明显刮伤、锈斑、压痕、流痕、气泡和剥落。外表面所粘贴的各种标识、铭牌应牢固,位置应明显。
6.2 启动与运转
ERV和ERC的零部件应无松动、杂音和过热等异常现象。
6.3 风量
送风量和排风量的实测值不应小于额定值的95%。
6.4 机外余压
ERV的新风侧和排风侧的机外余压实测值不应小于额定值的95%。
6.5 静压损失
ERC的新风侧和排风侧的静压损失实测值不应大于额定值的105%。
6.6 输入功率
对于额定输入功率不大于30 W的机组,其输入功率实测值不应大于额定值的120%;对于额定输入功率大于30 W的机组,其输入功率实测值不应大于额定值的110%。
6.7 内部漏风率
送风量大于3 000 m3/h的ERV和ERC,其内部漏风率实测值不应大于10%,且不应大于“额定值+1%”。
6.8 外部漏风率
送风量大于3 000 m3/h的ERV和ERC,其外部漏风率实测值不应大于3%。
6.9 送风净新风量
送风净新风量实测值不应小于额定值的95%。
6.10 送风净新风率
送风量不大于3 000 m3/h的ERV和ERC,其送风净新风率实测值不应小于90%,且不应小于“额定值—1%”。
6.11 交换效率
交换效率实测值不应小于额定值的90%,且应满足表2要求。