![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative. Compared with JB/T 7261-1994 "Technical Provisions of Aluminum Plate-fin Heat Exchanger", the main amendments of this standard are as follows: ——The design pressure was raised to 8.0MPa from less than 6.3MPa and the design temperature range was revised to -269℃~200℃from -270℃~150℃; ——The terms and definitions for plate-fin heat exchanger were added; ——The Pressure ratio in hydraulic and pneumatic test was revised from 1.5times and 1.25 to 1.3 times and 1.25 times to be in line with international manufacturing industry; ——Requirements to select the material according to standard JB/T 4734 and GB/T 3198 were added; ——"Design" in Chapter 5 was added; ——The content such as fluoroscopic inspection, correction of the inconsistent extant defect and remedial measures were added in the inspection and acceptance aspect; ——Content of clearness test, vacuum leak test and cubical expansion test in the previous standard was deleted; ——Content of installations and operation requirements was added. In this standard, Annex A is normative; Annex B, Annex C and Annex D are informative. This standard was proposed by and is under the jurisdiction of the National Technical Committee on Pressure Vessels of Standardization Administration of China (SAC/TC 262). This standard was drafted and examined by the Subcommittee on Heat Exchanger of National Technical Committee on Boilers and Pressure Vessels of Standardization Administration of China (SC5). Chief drafting organizations: Hangzhou Oxygen Plant Group co., ltd., Lanzhou Petroleum Mechinery Research Institute, Kaifeng Air Separation Group co., ltd., Sichuan Air Separation Equipment (Group) Company Ltd., Anshan Iron and Steel Company and China Special Equipment Inspection and Research Institute. Chief drafting staffs: Yan Zhenhuang, Wang Jinhong, HongBaoling, Li Jianwei, Mao Yangping, Zeng Chuanyong, Zhou Wenxue, Tao Xianglun, Wang Jin, Jia Zhenwu, Zhang Yanfeng, Zhu Juxian, and Wang Weiguo. Distribution condition for all previous edition of this Standard is: ——JB/TQ 258—76; ——JB/T 7261—1994. Aluminum Plate-fin Heat Exchanger 铝制板翅式热交换器 1 Scope This standard specifies the requirements of design, manufacture, inspection acceptance, installations, application and maintenance of Aluminum plate-fin heat exchanger (hereinafter referred to as heat exchange). 1.1 This standard is applicable to the heat exchanger with design pressure no greater than 8.0MPa. For the heat exchanger with design pressure greater than 8.0MPa, it may be designed and manufactured with reference to this standard when the buyer is agreed upon. 1.2 The design temperature range suitable to this standard is -269℃~20. 1.3This standard is applicable to the heat exchangers applied in the situation of air separation and liquification equipment (ASU), natural gas processing (NGP) and liquification (LNG), petrochemical engineering and mechanical power devices. 1.4 The pressure parts of heat exchanger which couldn't be determined by this standard, through the assessment and ratification of the National Technical Committee on Boilers and Pressure Vessels of Standardization Administration of China, may be designed by adopting the following methods: a) The stress analysis (except the unit qualified for analysis design) including finite element method; b) Replication experimental analysis (such as experimental stress analysis and replication hydraulic test); c) The comparable structure which has been put into service shall be adopted to carry out the comparison empirical design. 2 Normative References The following documents are indispensable to the application of this standard. For dated reference, subsequent amendments to, or revisions of, any of these publications do not apply. For undated references, the latest edition of the normative document referred to applies. GB 150"Steel Pressure Vessels" GB/T 228 "Metallic Materials-Tensile Testing at Ambient Temperature" (GB/T 228—2002, ISO 6892: 1998(E), EQV) GB/T 229 "Metallic materials-Charpy Pendulum Impact Test Method" (GB/T 229—2007, ISO 148-1: 2006, MOD) GB/T 232 "Metallic Materials-Bend Test" (GB/T 232-1999, ISO 7438: 1985, EQV) GB/T 1804"General tolerances-Tolerances for Linear and Angular Dimensions without Individual Tolerance Indications" (GB/T 1804—2000, ISO 2768-1: 1989, EQV) GB/T 2624.1-2006 "Measurement of Fluid Flow by Means of Pressure Differential Devices Inserted in Circular Cross-section Conduits Running Full-Part 1: General Principles and Requirements" (GB/T 2624.1—2006, ISO 5167-1: 2003, IDT) GB/T 2624.2—2006 "Measurement of Fluid Flow by Means of Pressure Differential Devices Inserted in Circular Cross-section Conduits Running Full - Part 2: Orifice Plates"(GB/T 2624.2—2006, ISO 5167-2: 2003, IDT) GB/T 2624.3—2006 "Measurement of Fluid Flow by Means of Pressure Differential Devices Inserted in Circular Cross-section Conduits Running Full -Part 3: Nozzles and Venturi nozzles" (GB/T 2624.3—2006, ISO 5167-3: 2003, IDT) GB/T 2624.4—2006 "Measurement of Fluid Flow by Means of Pressure Differential Devices Inserted in Circular Cross-section Conduits Running Full-Part 4: Venturi Tubes" (GB/T 2624.4—2006, ISO 5167-4: 2003, IDT) GB/T 3190"Wrought Aluminum and Aluminum Alloys-Chemical Composition Limits" (GB/T 3190—2008, ISO 209: 2007(E), MOD) GB/T 3191—1998"Extrusion Rods and Bars of Aluminum and Aluminum Alloy" GB/T 3195—2008"Aluminum and Aluminum Alloys Drawn Round Wire" "Aluminum and Aluminum-alloy Foil" GB/T 3246.1"Wrought Aluminum and Aluminum Alloys Products Inspection Method for Structure" GB/T 3246.2"Wrought Aluminum and Aluminum Alloys Products Inspection Method for Macrostructure" GB/T 3880.1-2006 “Wrought Aluminum and Aluminum Alloy Plates, Sheets and Strips for General Engineering-Part 1: Technical Conditions of Delivery" GB/T 3880.2-2006 “Wrought Aluminum and Aluminum Alloy Plates, Sheets and Strips for General Engineering-part 2: Mechanical Properties" GB/T 3880.3-2006 “Wrought Aluminum and Aluminum Alloy Plates, Sheets and Strips for General Engineering -part 3: Tolerances on Forms and Dimensions" GB/T 4436 “Wrought Aluminum and Aluminum Alloy Tubes-Dimensions and Deviations” GB/T 4437.1-2006 “Aluminum and Aluminum Alloy Extruded Tubes-Part 1: Seamless Tubes" GB/T 6892-2006 "Wrought Aluminum and Aluminum Alloys Extruded Profiles for General Engineering" GB/T 6893-2000 "Aluminum and Aluminum Alloy Cold Drawn (rolled) Seamless Tubes" GB/T 8063-1994 "Designation of Cast Nonferrous Metals and Their Alloys" (GB/T 8063—1994, ISO 2092, NEQ) GB/T 9438-1999 "Aluminum Alloy Casting" (GB/T 9438—1999, ASTM B26/B26M: 1992, NEQ) GB/T 10858-2008 "Aluminum and Aluminum Alloy Wires and Rods" GB/T 13384"General Specifications for Packing of Mechanical and Electrical Product" GB/T 16474"Wrought Aluminum and Aluminum Alloy—Designation System" (GB/T 16474-1996, ANSIH35.1: 1993, EQV) GB/T 16475 "Temper Designation System for Wrought Aluminum and Aluminum Alloy" (GB/T 16475-2008, ISO 2107: 2007, MOD) JB/T 4730.2-2005 "Nondestructive Testing of Pressure Equipments-Part 2: Radiographic Testing" JB/T 4730.3-2005 "Nondestructive Testing of Pressure Equipments-Part 3: Ultrasonic Testing" JB/T 4730.5-2005 "Nondestructive Testing of Pressure Equipments-Part 5: Penetrant Testing" JB/T 4734 "Aluminum Welded Vessels" HG/T 20592~20635-2009 "Steel Pipe Flanges, Gaskets and Bolting YS/T 69-2005 "Aluminum Alloy Composite Sheet for Brazing" TSG R0004-2009 "Supervision Regulation on Safety Technology for Stationary Pressure Vessel" 3 General Provisions 3.1 Not only the requirements stipulated in this standard, but also those in the current relevant ones of the nation shall be complied with in the design, manufacture, inspection, acceptance, installation, operation and maintenance of heat exchanger. 3.2 Scope The scope of heat exchange covered by this standard includes heat exchanger body and the pressure parts integral to the body and has been defined in the following scope. 3.2.1 Connection of the heat exchanger to outer ducts: a) The bevel end surface of the first layer of girth joint connected by welding; b) The first flange sealing surface connected by flanges; c) The joint end surface of screw thread connected by screw thread; d) The first sealing surface connected by special connecting pieces or tubes. 3.2.2 For the parts beyond the welded joints between the non pressure parts and the pressure parts, such as stiffening ring, supporter and lifting lug, shall be in accordance with those specified in this standard or the corresponding standards. 3.2.3 The overpressure relief devices shall be directly connected on the heat exchanger according to the requirements as specified in Annex B of GB 150 and the accessories connected on the heat exchanger meters shall be in accordance with those specified in this standard. 3.3 Terms and definitions The following terms and definitions set by JB/T 4734 are applicable to this standard. 3.3.1 Plate-fin heat exchanger The heat exchanger is composed of the accessories such as block (core), header, nozzle and supporter. Each story of layer of the fluid is composed of heat transfer fin, parting sheet and side bar and is installed with inlet and outlet of fluid on specific positions; then the inlet and outlet headers of the fluid being considered are respectively adopted to include each layer of the inlet and outlet and nozzles are welded. Figure 3.1 is the schematic diagram of multi-strand flow heat exchanger. Figure 3.1 Schematic Diagram Multi-strand Flow Heat Exchanger 3.3.2 Block (core) It is superposed and brazed with passages of all fluids. Each layer is composed of parting sheet (or cap sheet), heat transfer fin (or distributor fin) and side bar as is shown in Figure 3.2. Figure 3.2 Schematic Diagram of Basic Block (core) Structure 3.3.3 Heat transfer fin It is the primary part of heat exchanger and the heat transfer process is mainly finished through the heat conduction of heat transfer fin as well as the convection heat transfer between the heat transfer fin and fluid. 3.3.4 Distributor fin It shoulders mail the steering function for the fluid inlet and outlet, and it is generally multi-orifice heat transfer fin. 3.3.5 Side bar It is the primary part of heat exchanger, which are dispersed over the margins of heat exchanger and acts to seal and support each layer of passage. 3.3.6 Parting sheet It is the metal sheet between two layers of heat transfer fins, also called composite sheet; it covers a layer of brazing alloy on the surface of parent metal and when it is brazed, the alloy is melt and the heat transfer fin, side bar and sheet are welded together. 3.3.7 Cap sheet It is the parting sheet located at the outermost side of the heat exchanger block (core), also called cover plate. 3.3.8 Dummy layer It is the layer which is set on the top and bottom of the block (core) to connect with the ambient atmosphere for heat exchange resistance according to the requirements of strength, heat isolation and manufacture process. (And it is called the process layer). 3.3.9 Dead area It refers to the area where the heat transfer fin or distributor fins are connected or unconnected without media flowing. 3.3.10 Layer arrangement The layer arrangement manners may be classified into single banking, double banking and single and multiple banking. 3.3.10.1 Single banking When single banking is carried out, every hot layer shall be arranged with a cold layer, see Figure 3.3 a). 3.3.10.2 Double banking Every hot layer is alternate with two cold layers or every cold layer is alternate with two hot layers, see Figure 3.3). 3.3.10.3 Single and multiple banking In addition to the hot layer and cold layer adjointly arranged, there is also the situations that that a hot layer is alternate with two cold layers or a cold layer is alternate With two hot layers on the same block (core), see diagram 3.3 c). A—Cold layer; B—Hot layer a) Schematic Diagram of Layer Single Banking A—Cold layer; B—Hot layer b) Schematic Diagram of Layer Double Banking A—Cold layer; B—Hot layer c) Schematic Diagram of Layer Single and Multiple Banking Figure 3.3 Schematic Diagram of Layer Arrangement 3.3.11 Header The header is generally formed by welding the header body, nozzle, header with ends and flange (or nozzle cap) together. 3.3.11.1 Header body It refers to the semi circular cylinder parts of the header. 3.3.11.2 Header with ends It refers to the parts connected at both ends of the header body. 3.3.11.3 Nozzle It refers to the pipeline for the fluid in and out header. 3.3.11.4 Nozzle cap It refers to the parts which seal the nozzle when the pressure test or nitrogen sealing is carried out. 3.3.12 Composite block It refers to the block (core) which is parallel welded together with two or more blocks (core) and the Figure 3.4 is the block (core) which is connected together by parallel welding method. Figure 3.4 Structure Drawing of Heat Exchanger Block Composed by Multi-block (core) 3.3.13 Manifolded exchanger It is formed by connecting two or more heat exchangers according to different pipe arrangement form (parallel connection or series connection) as shown in Figure 3.5. Figure 3.5 Schematic Diagram of Manifolded Exchanger Formation 3.4 General Requirements 3.4.1 Design pressure 3.4.1.1 The heat exchanger is composed of several pressure layers (same or different pressure). The most harsh pressure combination that may occur in operation shall be taken into consideration in design. 3.4.1.2 The design pressure of each layer shall not be less than the maximum layer working pressure. 3.4.1.3 When the heat exchanger is installed in the pressure vessel, ambient design pressure of heat exchanger shall be provided by the buyer and the heat exchanger shall be able to bear the action of the internal and external pressure difference. 3.4.1.4 When the heat exchanger is installed in the vacuum vessel, the maximum working pressure of corresponding layers shall be affirmed and determined by the buyer. 3.4.1.5 When the heat exchanger is designed under external pressure, the maximum internal and external pressure difference that may occur in normal operating conditions shall be taken into consideration. 3.4.1.6 When the heat exchanger is operated in vacuum state, the design pressure of vacuum layer shall be considered according to the bore external pressure and when the safety control device is installed, the design pressure is taken with the minimum value of 1.25 times of the maximum internal and external pressure difference and the 0.1MPa; when no safety control device is installed, it shall be taken as 0.1MPa. 3.4.2 Design temperature 3.4.2.1 The increase of internal thermal stress shall not exceed the ultimate strength of material and the maximum recommended allowable temperature difference is 50℃between the aluminum heat exchanger layers (on the same section) in the steady state; However, for the fluid with phase change and instant circulation, the recommended temperature difference shall be 20℃~30℃. 3.4.2.2 When the design temperature is not greater than 65℃, the aluminum alloy with magnesium content of more than 3% shall not be adopted. 3.4.2.3 The design temperature shall not be less than the maximum temperature attained by the parts metals under operating conditions. For the metal Temperature of below 0℃, the design temperature shall be -269℃at the lowest. 3.4.2.4 When the metal temperatures of heat exchanger parts are different under operating conditions, the maximum temperature shall be complied with to design. In any case, the metal surface temperature of parts shall not exceed the allowable service temperature of material. 3.4.2.5 The metal temperature of parts may be attained by heat transmission calculation or measured on the heat exchanger in the same applied working condition or determined according to the medium temperature. For the heat exchanger in different working condition, it shall be designed according to the harsh working conditions group; the pressure and temperature values in the working conditions shall be indicated in the drawing or corresponding technical provisions. 3.4.3 Fluid medium The media characteristics used in the operational process shall be restricted. The fluid shall be clean and free of corrosive action to the aluminum alloy; generally the corrosion allowance is not taken into consideration. The media which can easily be scale formed, settled and block the heat exchanger shall be controlled. 3.4.4 Load The following loads shall be taken into consideration in design: a) Internal pressure, external pressure or the maximum pressure difference; b) The static pressure of fluid liquid column; c) The deadweight load of heat exchanger and the gravity load of build-in material under the normal working condition or pressure test state; d) The gravity loads of auxiliary facilities, heat insulating materials and pipes; e) Wind load and earthquake load; f) The counterforce of supporter, lug and other types of supports; g) The acting force of connecting pipe and other parts; h) The acting force due to the difference of temperature gradient or thermal expansion quantity; i) The impact load including pressure rapid fluctuation; j) The counter force of shock, such as counter force due to the fluid shock etc.; k) The acting force when it is transported or hoisted. 3.4.5 Additional thickness The additional thickness shall be determined according to Formula (3.1); C=C1+C2 (3.1) Where: C——the additional thickness, mm; C1——the thickness tolerance of aluminum products, which shall be specified by the requirements in GB/T 3880.3 and GB/T 4436, mm; C2——the corrosion allowance, which shall be specified according to the requirements in 3.4.3, C2=0. 3.5 Allowable stress This standard specifies that the allowable stress values of pressure parts for the aluminum product, such as header, nozzle, flange, side bar and cap sheet shall be determined according to those specified in JB/T 4734 or according to the mechanical property and safety factor as provided by the corresponding standards; for the materials of pressure parts, such as heat transfer fin and parting sheet, it shall be determined by dividing the tensile strength value as specified in GB/T 3198and YS/T 69 by the safety factor 4~6. 3.6 Welded joint factor The welded joint factor φ shall be determined according to the welding method and welded joint mode of pressure parts as well as the linear scale of nondestructive test: a) For the butt joint of both sides welding and the full penetration butt joint equivalent to the both sides welding: The 100%nondestructive test φ=0.95; Partial nondestructive test φ=0.8. b) The joint of single welded butt joint (stoolplate is closely clung to the base metal along the seam root full length): 100 % nondestructive test φ=0.90; Partial nondestructive test φ=0.8. When the welded joint couldn't be carried out with nondestructive test due to structure, full penetration structure shall be adopted for the welded joint and the welded joint coefficient is generally not greater than 0.6. 3.7 Pressure test Pressure test shall be carried out after the heat exchanger is manufactured. The manner, requirements and test pressure of pressure test shall be indicated in the drawing. The pressure test is generally adopted with hydraulic test and the testing liquid shall be carried out according to those specified in 6.2. For the heat exchanger which is not allowed to have residual liquid or the hydraulic test couldn't be carried out with full liquid due to structure may be adopted with the pneumatic test. The heat exchanger to carry out pneumatic test and leakage test shall be in accordance with those specified in 6.2. 3.7.1 Test pressure The minimum value of test pressure shall be in accordance with the following requirements and the upper limit of test pressure shall be in accordance with the restricts of stress check as specified in 5.1.8.2. 3.7.1.1 Internal pressure layer Hydraulic test pressure: (3.2) Pneumatic test pressure: (3.3) Air tight test pressure: pT=1.0p (3.4) Where: pT——the test pressure, MPa; p——the design pressure, MPa; [σ]——the allowable stress of material for heat exchanger at test temperature, MPa; [σ]t——the allowable stress of materials for heat exchanger at design temperature, MPa. 3.7.1.2 External pressure layer Hydraulic test pressure: pT=1.3p (3.5) Pneumatic test pressure: pT=1.25p (3.6) Leakage test: pT=1.0p (3.7) Where: pT——The test pressure, MPa; p——The design pressure, MPa; 3.7.1.3 The pressure test with special requirements For the heat exchanger which bears alternate load or is applied in special situations, the hydraulic test pressure shall be suitably raised and the specific requirements shall be carried out according to those specified in the drawing. 3.8 Drawing The outside drawing of product provided by the manufactory shall be equipped with all the data that is required for the buyer examination and mainly includes: a) Physical dimension, material thickness, model specification, heat interchanging area, layer volume, support and weight; b) The designation specification of material and the heat transfer fin type of applied heat transfer fin; c) Position of nozzle and flange, connection details and types of all fluids if necessary; d) Manufacturing and testing data, range and position of nondestructive test, test pressure and welding seam identification. 4 Materials The materials for heat exchanger shall be taken into consideration with the operating conditions (such as design temperature, design pressure, media characteristics and operating feature), manufacture process and inspection requirements of heat exchanger as well as the economical rationality; it shall also be provided with favorable corrosion resisting property, mechanical property, welding property, shaping property and other processing properties and physical properties. For the specified, the relevant requirements as specified in JB/T 4734, GB/T 3198 and YS/T 69 shall be taken as the reference. 5 Design 5.1 Header 5.1.1 When the header nozzle is connected with the external aluminum alloy pipe, welded structure shall be adopted. Please see Figure 5.1 a) for the details. 5.1.2 When the header nozzle is connected with the external pipe, flanged connection shall be adopted. Please see Figure 5.1 b) for the structure. 5.1.3 The header nozzle and external heterogeneous metal pipe (rustless steel or copper) shall be adopted with welded structure. Please see Figure 5.1 c) for the details. Figure 5.1 Header Structure Schematic Diagram 5.1.4 The arrangement form (see Figure 5.2 for the typical arrangement plan) of header/nozzle. Figure 5.2 Typical Header/Nozzle Form 5.1.5 Symbol explanation: B——the transverse width of composite header rectangular bottom surface, mm; C——the additional value of wall thickness, mm; Di——the internal diameter of semicircle cylinder, mm; di——the internal diameter of nozzle, mm ; Dp——the calculated diameter of slab-shaped header with end, for the circular slab, it is internal diameter and for the non circular slab, it is minor axis; F——the calculated resultant force on the interior section from nozzle to header, N; Fr——the allowable resultant force on the interior section from nozzle to header, N; Fx——the component force on the interior section of x direction from nozzle to header, N; Fy——the component force on the interior section of Y direction from nozzle to header, N; Fz——the component force on the interior section of Z axis direction from nozzle to header, N; h1, h2——the folding height of slab composite header, mm; h——the height of transitional short piece, mm; H——the height of slab composite header, mm; L——the longitudinal width of rectangular bottom surface for the composite header, mm; M——the calculated resultant moment on the interior section from nozzle to header, N·m; Mr——the allowable resultant moment on the interior section from nozzle to header, N·m; Mx——the component moment on the interior section of x direction from nozzle to header, N·m; My——the component moment on the interior section of Y axis direction from the nozzle to header, N·m; Mz——the component moment on the interior section of Z axis direction from nozzle to header, N·m; p——the design pressure, MPa ; Ri——the internal radius of header body, mm; Foreword I 1 Scope 2 Normative References 3 General Provisions 4 Materials 5 Design 6 Fabrication, Inspection and Acceptance 7 Installation and Operation Annex A (Normative) Test Methods of Heat Exchanger Performance Annex B (Informative) Welded Joint Type Annex C (Informative) Preparation Method of Heat Exchanger Type Annex D (Informative) Application Instruction of Heat Exchanger 铝制板翅式热交换器 1 范围 1.1 本标准规定了铝制板翅式热交换器(以下简称热交换器)的设计、制造、检验、验收、安装、使用和维护等要求。 1.2 本标准适用于设计压力不大于10.0MPa的热交换器。 1.3 本标准适用的热交换器设计温度范围为-269℃~200℃。 1.4 本标准适用于空气的分离与液化、天然气加工及液化、石油化工及机械动力装置等场合使用的热交换器。 1.5 对不能采用本标准进行设计计算的热交换器受压元件,可按GB/T 150.1—2011中4.1.6条规定的方法进行设计。 1.6 热交换器界定范围 a) 热交换器本体及其与外部管道的连接: 1)焊接连接的第一道环向接头坡口端面; 2)法兰连接的第一个法兰密封面; 3)螺纹连接的第一个螺纹接头端面; 4)专用连接件或管件连接的第一个密封面。 b) 非受压元件与受压元件的连接焊缝。 c) 直接连接在热交换器的非受压元件,如支座、吊耳、垫板等。 d) 直接安装在热交换器上的超压泄放装置。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 150.1—2011 压力容器 第1部分:通用要求 GB/T 150.3 压力容器 第3部分:设计 GB/T 150.4 压力容器 第4部分:制造、检验和验收 GB/T 151—2014 热交换器 GB/T 1804—2000 一般公差 未注公差的线性和角度尺寸的公差 GB/T 2624.1—2006 用安装在圆形截面管道中的差压装置测量满管流体流量 第1部分:一般原理和要求(GB/T 2624.1—2006,ISO 5167-1:2003,IDT) GB/T 2624.2—2006 用安装在圆形截面管道中的差压装置测量满管流体流量 第2部分:孔板 GB/T 2624.3—2006 用安装在圆形截面管道中的差压装置测量满管流体流量 第3部分:喷嘴和文丘里喷嘴(GB/T 2624.3—2006,ISO 5167-3:2003,IDT) GB/T 2624.4—2006 用安装在圆形截面管道中的差压装置测量满管流体流量 第4部分:文丘里管 GB/T 3198—2010 铝及铝合金箔 GB/T 3880.1—2012 一般工业用铝及铝合金板、带材 第1部分:一般要求 GB/T 3880.2—2012 一般工业用铝及铝合金板、带材 第2部分:力学性能 GB/T 3880.3—2012 一般工业用铝及铝合金板、带材 第3部分:尺寸偏差 GB/T 4436 铝及铝合金管材外形尺寸及允许偏差 GB/T 4437.1 铝及铝合金热挤压管 第1部分:无缝圆管 GB/T 6892—2015 一般工业用铝及铝合金挤压型材 GB/T 6893 铝及铝合金拉(轧)制无缝管 GB/T 13384 机电产品包装通用技术条件 GB/T 16474—2011 变形铝及铝合金牌号表示方法 GB/T 16475 变形铝及铝合金状态代号(GB/T 16475—2008,ISO 2107:2007,MOD) NB/T 47013.2—2015 承压设备无损检测 第2部分:射线检测 NB/T 47013.3—2015 承压设备无损检测 第3部分:超声检测 NB/T 47013.5—2015 承压设备无损检测 第5部分:渗透检测 JB/T 4734—2002 铝制焊接容器 YS/T 69—2012 钎焊用铝及铝合金复合板 TSG 21—2016 固定式压力容器安全技术监察规程 3 术语和定义 GB/T 151—2014、JB/T 4734界定的以及下列术语和定义适用于本标准。 3.1 板翅式热交换器 plate-fin heat exchanger 本标准中的热交换器是由芯体、封头、接管及支座等附件组成。图1为板翅式热交换器,以下简称热交换器。 流体1 流体2 接管 导流片 封头 流体3 隔板 封条 翅片 支座 侧板 图1 板翅式热交换器 3.2 芯体 core 芯体由各流体的通道按设计要求依次叠置、钎焊成一体。每层通道由隔板(侧板)、翅片(导流片)、封条等零件组成,图2为单层通道结构图。 隔板(或侧板) 封条 翅片(或导流片) 图2 单层通道结构 3.3 翅片 heat transfer fin 芯体中两隔板间实现传热强化与承压的波纹状元件。 3.3.1 翅片型式 fin type 翅片型式是指翅片的几何形状,主要有平直型翅片、锯齿型翅片、波纹型翅片等,其中平直型翅片和波纹型翅片可以根据需要打孔成为多孔型翅片。 3.3.2 开孔率 percentage of opening 多孔型翅片开孔后翅片表面积的减少量与开孔前翅片总表面积的比率。 3.4 导流片 distributor fin 在进出口引导流体进入芯体的翅片,一般为平直型(打孔或不打孔)翅片。 3.5 封条 side bar 在热交换器芯体中,起封闭和支撑各层通道作用的元件。 3.6 隔板 parting sheet 在热交换器芯体中,分隔两层翅片之间流体的平板,钎焊时与翅片、封条焊接成一体。 3.7 侧板 cap sheet 位于热交换器芯体最外侧的盖板。 3.8 强度层 dummy layer 设置在芯体顶部和底部与环境大气相通,不参与热交换的通道层。强度层(又称工艺层)仅满足强度、热绝缘和制造工艺等要求。 3.9 无效区域 dead area 通道中和翅片或导流片相连但无介质流动的区域。 3.10 通道排列 layer arrangement 实现冷热介质换热所需要的通道排列方式,可分为单叠排列、复叠排列、混叠排列。 3.10.1 单叠排列 single banking 每一热通道都与一冷通道相邻排列,通道单叠排列示意图见图3 a)。 3.10.2 复叠排列 double banking 每一个热通道都与两个冷通道相间,或每一个冷通道和两个热通道相间,通道复叠排列图见图3 b)。 3.10.3 混叠排列 single and multiple banking 在同一芯体中除有热通道与冷通道相邻排列外,在同一芯体中同时有单叠和复叠排列存在,通道混叠排列见图3 C)。 A—冷通道;B—热通道 a) 通道单叠排列示意图 A—冷通道;B—热通道 b) 通道复叠排列示意图 A—冷通道;B—热通道 c) 通道混叠排列示意图 图3 通道排列图 3.11 封头 header 封头通常由封头体、接管、封头端板、法兰(或封盖)等零件经焊接而成。 3.11.1 封头体 header body 组成封头的半圆筒部分,又称封体。 3.11.2 封头端板 header with ends 半圆封头两端与封头体连接的板,又称封瓦或半圆板,简称“端板”。 3.11.3 接管 nozzle 连接外部管路与封头的管子。 3.11.4 封盖 nozzle cap 试压或氮封时封闭接管的零件,又称闷盖。 3.12 多芯体热交换器 composite block 多芯体热交换器是指由两个或两个以上的芯体,通过并联焊接的方式连接成一体所组成的芯体,图4为多芯体组成的热交换器结构图。 3.13 热交换器组 manifolded exchanger 热交换器组是由两台或两台以上的热交换器按不同的配管形式进行组合(并联或串联)而构成,如图5所示。 3.14 传热面积 heat transfer area 传热面积是指同一流体所有通道传热表面积之和,传热面积包括一次传热表面和二次传热表面的面积。 3.14.1 一次传热表面 primary heat transfer surface 一次传热表面是指由隔板提供的传热表面。 3.14.2 二次传热表面 secondary heat transfer surface 二次传热表面是指由翅片提供的传热表面去除翅片与隔板直接焊接部分的表面。 3.15 当量直径 equivalent diameter 将非圆形通道尺寸按水力半径相等的原则换算而得到的圆管直径。 图4 多芯体组成的热交换器结构图 芯体1 芯体2 芯体3 图5 热交换器组的构成图 4 通用要求 4.1 通则 4.1.1 热交换器的设计、制造、检验、验收、安装、使用除符合本标准的规定外,还应遵守需方要求或是其指定的有关法规和标准规范,且应符合图样要求。 4.1.2 本标准的符合性声明参见GB/T 151—2014附录A的规定。 4.2 压力 4.2.1 热交换器是由数个压力通道(相等或不等)组成。应按各通道操作时可能出现的危险工况分别确定各自的设计压力。 4.2.2 每一个通道的设计压力应不低于该通道的最高工作压力。 4.2.3 热交换器按外压设计时,应考虑制造、使用过程中可能出现的最大内外压力差。 4.2.4 热交换器工作在真空状态时,真空通道的设计压力按承受外压考虑,当设置有安全控制装置时,设计压力取1.25倍的最大内外压力差或0.1MPa两者的较小值;当无安全控制装置时,取0.1MPa。 4.2.5 设计压力不应高于由爆破试验确定的翅片的最高允许工作压力。 4.3 温度 4.3.1 设计温度应不低于元件金属在工作状态可能达到的最高温度。对于0℃以下的金属温度,设计温度应不高于元件金属在工作状态可能达到的最低温度,最低为-269℃。 4.3.2 热交换器各部分在工作状态下的金属温度不同时,按最高的金属温度设计。在任何情况下,元件金属的表面温度不应超过材料的允许使用温度。 4.3.3 元件的金属温度可用传热计算确定,或在已使用的同种工况的热交换器上测定,也可按介质温度确定。 4.3.4 内部热应力应不超过所用材料允许使用范围。在稳定状态下,热交换器通道之间(同一截面)的最大允许温差为50℃左右;在有相变流体以及有在瞬间循环的条件下,最大允许温差不宜超过30℃。 4.3.5 不同工况的热交换器,应在图样或相应技术条件中分别注明各工况的压力和温度值。 4.4 设计 4.4.1 流体介质应洁净,且对铝合金无腐蚀作用。 4.4.2 热交换器型号的编制方法参见附录A。 4.4.3 设计时应考虑以下载荷: a) 内压、外压或最大压差; b) 液体液柱静压力; c) 热交换器的自重,以及正常工作条件下或压力试验状态下内装物料的重力载荷; d) 附属设备及隔热材料、管道等的重力载荷; e) 风载荷、地震载荷; f) 支座、支耳及其他型式支撑的反作用力; g) 连接管道和其他部件的作用力; h) 温度梯度或热膨胀量不同引起的作用力; i) 包括压力急剧波动的冲击载荷; j) 冲击反力,如由流体冲击引起的反力等; k) 运输或吊装时的作用力。 4.4.4 铝材厚度附加量按式(1)确定: C=C1+C2 (1) 式中: C——铝材厚度附加量,mm; C1——铝材厚度负偏差,按照GB/T 3880.3和GB/T 4436的规定,mm; C2——腐蚀裕量,按4.4.1的规定,C2=0。 4.5 焊接接头系数 4.5.1 焊接接头系数f应根据焊接方法和受压元件的焊接接头型式及无损检测的长度比例确定。 4.5.2 热交换器焊接接头系数确定如下: a) 双面焊对接接头和相当于双面焊的全焊透对接接头: 100%无损检测:f=1.0; 局部无损检测:f=0.85。 b) 单面焊对接接头(沿焊缝根部全长有紧贴基本金属的垫板): 100%无损检测:f=0.90; 局部无损检测:f=0.80。 c) 焊接接头无法进行无损检测时,焊接接头应采用全焊透结构,其焊接接头系数一般不大于0.60 4.6 耐压试验压力 4.6.1 耐压试验压力的最低值按下述规定,试验压力的上限应满足6.1.9.1应力校核的限制。 4.6.1.1 内压通道试验压力应按式(2)计算: a) 液压试验压力: (2) b) 气压试验或气液组合试验压力: (3) 式中: pT——试验压力,MPa; p——设计压力,MPa; [σ]——热交换器用材料在耐压试验温度下的许用应力,MPa; [σ]t——热交换器用材料在设计温度下的许用应力,MPa。 注1:热交换器铭牌上规定有最大允许工作压力时,式中应以最大允许工作压力代替设计压力p。 注2:热交换器各元件所用材料不同时,应取各元件材料的[σ]/[σ]t比值最小者。 4.6.1.2 外压通道的试验压力按下式计算: 液压试验压力: pT=1.3p (4) 气压试验或气液组合试验压力: pT=1.25p (5) 4.6.1.3 承受交变载荷以及在特殊场合使用的热交换器,其液压试验压力应适当提高,具体要求按照图样规定执行。 4.7 图样 4.7.1 制造厂应提供板翅式热交换器的总图(或技术文件)以供审核。 4.7.2 总图(或技术文件)至少应包含以下信息: a) 项目代号; b) 最大允许工作压力,设计压力(设备若在真空状态下工作,则还须包括真空度),试验压力,最高设计温度,最低设计金属温度,板翅式热交换器的检验或操作的限制条件; c) 板翅式热交换器外形尺寸及支座位置; d) 板翅式热交换器所有的尺寸标注; e) 耐压试验及泄漏试验; f) 板翅式热交换器的质量,包括净重和带液重; g) 板翅式热交换器分别在空置与工作条件下的重心; h) 主要零部件的材料牌号及标准; i) 与设备连接的接管或接管法兰所允许的力和力矩; j) 所有接管的尺寸、法兰等级与法兰密封面形式、位置、方向、流体方向; k) 相应的设计规范。 5 材料 5.1 一般要求 5.1.1 热交换器用铝材应考虑使用条件(如设计温度、设计压力、介质特性及操作特点等)、热交换器的制造工艺与检验要求以及经济合理性等因素,并应具有良好的耐蚀性能、力学性能、焊接性能、成形等其他工艺性能和物理性能。 5.1.2 热交换器的封头、封条和侧板等受压元件用铝材应附有生产单位的铝材质量证明书原件,热交换器制造单位应按照铝材质量证明书对铝材进行验收,必要时还应进行复验。如无铝材生产单位的铝材质量证明书原件时,则应按TSG 21—2016中2.1条的规定执行。 5.1.3 热交换器采用境外牌号材料时,应按TSG 21—2016中2.1.2条的规定执行。 5.1.4 首次使用于热交换器芯体的材料,应进行爆破试验。 5.1.5 设计温度大于65℃时,不得选用镁含量大于3%的铝合金。热交换器用铝制元件最大允许设计温度范围参见附录B。 5.2 热交换器零部件 5.2.1 热交换器常用铝材见附录C,同时可按照JB/T 4734、GB/T 3880、GB/T 6893、GB/T 4437.1及YS/T 69的相关规定执行。采用本标准附录C未列出的铝材时,应按照相应材料标准的规定执行。 5.2.2 热交换器用封头、封条和侧板等受压元件铝材的许用应力值按照附录C选取,超过附录C设计温度范围的许用应力值按JB/T 4734的有关规定选取。 5.2.3 热交换器用翅片、隔板等受压元件的许用应力,按GB/T 3198、GB/T 3880.2和YS/T 69规定的抗拉强度值除以TSG 21—2016规定的安全系数计算确定。 5.2.4 附录C所列材料可以是复合材料,如果采用复合材料,其最高设计温度、机械性能按照基体材料确定。 5.2.5 铝合金状态依据GB/T 16475的规定。 5.2.6 铝合金牌号见GB/T 16474—2011的规定。 6 设计 6.1 封头 6.1.1 封头的接管与外部铝合金管道连接采用焊接结构时,结构应按图6 a)。 6.1.2 封头的接管与外部管道连接采用法兰连接时,结构应按图6 b)。 6.1.3 封头的接管与外部异种金属管道(不锈钢或铜)连接采用焊接结构时,应按图6 c)。 a) 与外部管道焊接连接结构 封盖 接管 封头体 端板 b) 与外部管道法兰连接结构 法兰 接管 封头体 端板 c) 与外部异种金属管道焊接连接结构 封盖 异种金属接管 封头体 端板 图6 与管道连接结构图 6.1.4 封头与接管的配置形式见图7。 a) 径向接管 b) 斜接管 c) 切向接管 图7 典型的封头与接管的配置形式 6.1.5 本章计算公式中的符号规定如下: C——壁厚附加量,mm; Di——半圆筒内直径,mm; di——接管内直径,mm; Dp——平板形端板计算直径,圆形平板为内直径,非圆形平板为短轴,mm; F——接管到封头与芯体连接处截面上所计算的合力,N; Fr——接管到封头与芯体连接处截面上所允许的合力,N; Fx——接管到封头与芯体连接处截面上X轴方向的分力,N; Fy——接管到封头与芯体连接处截面上Y轴方向的分力,N; Fz——接管到封头与芯体连接处截面上Z轴方向的分力,N; h——过渡短节高度,mm; L——组合式封头矩形底面纵向宽度,mm; M——接管到封头与芯体连接处截面上所计算的合力矩,N·m; Mr——接管到封头与芯体连接处截面上所允许的合力矩,N·m; Mx——接管到封头与芯体连接处截面上X轴方向的分力矩,N·m; My——接管到封头与芯体连接处截面上Y轴方向的分力矩,N·m; Mz——接管到封头与芯体连接处截面上Z轴方向的分力矩,N·m; p——设计压力,MPa; Ri——封头体内半径,mm; Rp——平板形端板计算半径,mm; dp——平板形端板厚度(包括壁厚附加量),mm; α——斜平板形端板的倾角,45°≤α≤90°,如图10所示; d——封头体壁厚,mm; f——焊接接头系数; [σ]t——设计温度下材料的许用应力,MPa。 6.1.6 热交换器封头结构形式见图8~图11。 6.1.7 封头与芯体的连接结构根据设计压力和封头厚度,可采用图12的结构形式。 图8 弧形端板封头 图9 平板形端板封头 图10 斜平板形端板封头 图11 弧形端板组合式封头 a) 不带过渡板短节 芯体 b) 带过渡板短节 芯体 图12 封头与芯体连接 6.1.8 当需采用平板形端板时,其结构可按图13选用。 壳体可延伸 图13 平板形端板结构 6.1.9 热交换器各部件壁厚计算与强度校核应符合以下规定: 6.1.9.1 端板及封头体的壁厚计算: a) 当di/Di≤0.5时(图8~图11),由式(6)计算: (6) 其中f=0.6。 b) 当di/Di>0.5时(图12),可采用应力分析确定壁厚,或采用有实践经验的公式计算壁厚,否则应对每一设计尺寸按式(7)进行应力校核: (7) 式中: σT——试验压力下圆筒的应力,MPa; Ri——圆筒内直半径,mm; pT——试验压力,MPa; de——圆筒的有效厚度,mm。 σT应满足下列条件: 液压试验时: σT≤0.9fRp0.2 气压试验时: σT≤0.8fRp0.2 式中: Rp0.2——圆筒材料在试验温度下的规定非比例延伸强度,MPa; f——圆筒的焊接接头系数。 6.1.9.2 平板形端板的壁厚计算: 圆形平板最小厚度按式(8)计算: (8) 半圆形平板最小厚度按式(9)计算: (9) 其中45°≤α≤90°。 6.2 侧板、隔板 6.2.1 侧板应和所配用的封头厚度相适应,侧板厚度一般为3mm~6mm。 6.2.2 隔板厚度的选择应考虑压力引起的来自侧封条的拉应力。隔板厚度一般为0.8mm~2.5mm,由设计者根据应力选取。 6.3 翅片和导流片 6.3.1 翅片高度、厚度及翅片节距一般按下列规定选取: a) 翅片高度h=2.5mm~20.0mm; b) 翅片材料厚度t=0.1mm~0.6mm; c) 翅片节距P=0.8mm~4.2mm。 6.3.2 翅片的最高允许设计压力按附录D确定,安全系数范围为4~6,可根据使用场合选取。 6.3.3 翅片分为锯齿型、多孔型、平直型、波纹型等,具体结构如图14所示。 a) 锯齿型翅片 b) 多孔型翅片 图14 主要翅片类型 c) 平直型翅片 d) 波纹型翅片 图14 (续) 6.3.4 不同结构形式的翅片,根据高度(h)、厚度(t)、节距(P)不同,可组成多种翅片规格尺寸,如图15所示。常用的规格尺寸见表1~表3。 图15 翅片规格尺寸定义 表1 锯齿型翅片常用规格 翅高 h/mm 节距 P/mm 翅厚 t/mm 当量直径 De/mm 通道截面积 ƒi/m2 传热面积 Fi/m2 二次换热面积所占比例 表2 多孔型翅片、平直型翅片常用规格 翅高 h/mm 节距 P/mm 翅厚 t/mm 当量直径 De/mm 通道截面积 ƒi/m2 传热面积 Fi/m2 二次换热面积所占比例 表3 波纹型翅片常用规格 翅高 h/mm 节距 P/mm 翅厚 t/mm 当量直径 De/mm 通道截面积 ƒi/m2 传热面积 Fi/m2 二次换热面积所占比例 6.3.5 选用表1中锯齿型翅片时还应标明锯齿齿长lp。 6.3.6 选用表2中开孔翅片时应扣除开孔所占有的传热面积,多孔型还应标明开孔率。 6.3.7 根据芯体的宽度及导流片在芯体内的开口位置和开口方向,导流片主要分为图16 a)~j)所示的10种型式。 |
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 |
服务热线:400-001-5431 | 电话:010-8572 5110 | 传真:010-8581 9515 | Email: bz@bzfyw.com | |
版权所有: 北京悦尔信息技术有限公司 2008-2020 京ICP备17065875号-1 51La |
本页关键词: |
NB/T 47006-2009(JB/T4757), NB 47006-2009(JB4757), NBT 47006-2009(JBT4757), NB/T47006-2009(JB/T4757), NB/T 47006, NB/T47006, NB47006-2009(JB4757), NB 47006, NB47006, NBT47006-2009(JBT4757), NBT 47006, NBT47006 |