![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative. This standard is developed in accordance with the rules given in GB/T 1.1-2009. This standard was proposed by and is under the jurisdiction of the National Technical Committee on Hydrogen Energy of Standardization Administration of China (SAC/TC 309). Safety requirements for pressurized water electrolysis system for hydrogen production 1 Scope This standard specifies the hazardous and harmful factors, basic safety requirements and requirements concerning environmental conditions, system components, operation and maintenance, operators and emergency response of pressurized water electrolysis system for hydrogen production (hereinafter referred to as hydrogen production system). This standard is applicable to alkaline water electrolysis systems and proton exchange membrane water electrolysis systems with working pressures greater than or equal to 0.3 MPa and less than or equal to 5.0 MPa. Note: Any pressure in this standard is gauge pressure. 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. GB/T 150 (All parts) Pressure vessels GB/T 151 Heat exchangers GB 2894 Safety signs and guideline for the use GB 3836.1 Explosive atmospheres—Part 1: Equipment—General requirements GB/T 4272 General principles for thermal insulation technique of equipment and pipes GB 7231 Basic identification colors and code indications and safety sign for industrial pipelines GB 12014 Static protective clothing GB 12358 Gas monitors and alarms for workplace —General technical requirements GB 16808 Combustible gas alarm controller GB/T 19774 Specification of water electrolyte system for producing hydrogen GB 21146 Personal protective equipment — Occupational footwear GB/T 24499 Technology glossary for gaseous hydrogen, hydrogen energy and hydrogen energy system GB/T 27921-2011 Risk management—Risk assessment techniques GB/T 29639 Guidelines for enterprises to develop emergency response plan for work place accidents GB 30871 Safety code of special work in chemical manufactory GB 50030 Code for design of oxygen station GB 50057 Code for design protection of structures against lightning GB 50058 Code for design of electrical installations in explosive atmospheres GB 50177 Design code for hydrogen station GB 50217 Standard for design of cables of electric power engineering HG 20202 Code for construction and acceptance of degreasing project JB/T 2379 Metallic tube electric heating elements TSG D0001 Pressure pipe safety technology supervision regulation for industrial pressure pipe TSG 21 Supervision regulation on safety technology for stationary pressure vessel 3 Terms and definitions For the purposes of this standard, the terms and definitions specified in GB/T 24499 as well as the followings apply. 3.1 hazardous and harmful factors factors that may cause casualties, affect people's physical health, and lead to diseases 3.2 hazardous area area where preventive measures required shall be taken for the structure, installation and application of electrical equipment due to the quantity of explosive mixture that may appear or expect to appear is sufficient 3.3 risk assessment overall process comprising risk recognition, risk analysis and risk evaluation 3.4 oxygen-enriched atmosphere environment in which the volume fraction of oxygen in the air is larger than 23.5% 3.5 hot work unconventional operations that may produce flames, sparks or hot surfaces in the fire forbidden area other than the process equipment that directly or indirectly produces open flames Note: For example, operations using electric welding, gas welding (cutting), blowtorch, electric drill, grinding wheel, etc. 4 Hazardous and harmful factors of hydrogen production system 4.1 Composition of hydrogen production system and hazardous and harmful factors of unit equipment The composition of hydrogen production system is determined by the usage and purity of produced hydrogen/oxygen. Refer to Annex A for block diagram of typical hydrogen production system. Refer to Annex B for major hazardous chemicals and hazardous and harmful factors of unit equipment of the hydrogen production system. 4.2 Leakage Hydrogen tends to leak through porous materials, mounting surfaces or sealing surfaces. Hydrogen will diffuse rapidly after being leaked, the process of which is invisible to the naked eyes and will enlarge the area contaminated by leakage. Electrolyte in alkaline water electrolysis system may leak for various reasons. 4.3 Fire and explosion Hydrogen fires or explosion may occur when the mixture of hydrogen and air or oxygen reaches the flammable or explosive limit at the presence of an effective ignition source. Hydrogen production system may have hydrogen/air (oxygen) mixture and ignition source, including but not limited to the following scenarios: a) Defects in the structure, components or assembly of the water electrolyser, resulting in the mixing or outward leakage of inside hydrogen and oxygen, or even causing the inside liquid being sprayed out with the gas and atomized in serious cases of leakage; b) Defects in materials, design, manufacture and installation of pressure vessels, pipelines and safety accessories, failure to inspect pressure vessels, pipelines and safety accessories on schedule, and absence or failure of safety accessories, causing system leakage and even physical or chemical explosion; c) For the gas-liquid processing unit communicated at the bottom of the hydrogen-oxygen separator, abnormality of liquid level control system, making hydrogen and oxygen mixed; d) Abnormality of gas purity analysis instrument and failure to detect the gas purity out of limits in time; failure of hydrogen leak detection device or mechanical ventilation system, resulting in hydrogen content out of limits in the environment; e) Insufficient replacement of the hydrogen system prior to use or reverse connection of the positive and negative poles of the power supply for the water electrolyser, causing mixing of hydrogen with air or oxygen; f) Ammonia gas containing excessive oxygen enters the deoxygenation tower of the ammonia purifier, and is compounded with oxygen to form water under the action of a catalyst to release a large amount of heat, thus generating excessive high temperature in the deoxygenation tower; g) Hydrogen containing impurities flows too fast, and operators do not wear anti-static workwear, which may generate electrostatic sparks; h) Oxygen in contact with grease or impurity in high-speed oxygen flow may cause combustion; i) Explosion-proof tools are not used during operation, friction and impact of which generate sparks; j) Lightning protection design of the production plant area fails to meet the requirements of specifications, resulting in lightning damage to the equipment and hydrogen leakage and ignition; k) Electrical equipment generates arc or spark due to leakage, short circuit, overload and excessive contact resistance; the explosion-proof grade of electrical equipment in the hazardous area does not meet the use requirements, and may also become the ignition source; l) Rain or other electrical conductors fall on the water electrolyser, causing short circuit and damage to the electrolyser body, which may lead to fire or explosion; m) During maintenance, failure to take effective isolation measures between the maintenance equipment and the production system in use, incomplete replacement before hot work, unrepresentative sampling analysis or inaccurate analysis data may cause fire or explosion. 4.4 Asphyxia Hydrogen is a simple asphyxiating gas. In the air with a high concentration of chlorine, reduction in the partial pressure of oxygen will result in anoxic asphyxia. 4.5 Electric shock Equipment or facilities in the hydrogen production system that may cause electric shock include water electrolyser, rectifier transformer, rectifier cabinet, electrical cabinet, motor, power transmission copper bars, etc. During equipment operation and maintenance, operators are in danger of electric shock. 4.6 Burn and scald The working temperature range of the water electrolyser and some ancillary equipment in the hydrogen production system is 60℃ to 90℃, the working temperature of the deoxygenation catalyst bed of the hydrogen purifier may reach 150℃, and the regeneration temperature of the drying bed (temperature swing adsorption) of the hydrogen purifier may reach 350℃. Human will get scalded if directly contacting the surface of such equipment. Potassium hydroxide or sodium hydroxide involved in alkaline water electrolysis system is highly corrosive, which may cause chemical burns in direct contact with skin and eyes. 4.7 Mechanical injuries Mechanical injuries from hydrogen production system mainly refer to injuries caused by direct contact between moving parts of mechanical equipment and human body. 5 Basic requirements 5.1 It is required to avoid the accumulation of hydrogen/air (oxygen) mixture in a confined space and to control the ignition source. 5.2 Where possible, the number of personnel in hazardous environment shall be reduced and such personnel shall stay for a shorter time. 5.3 Risk assessment shall be conducted for hydrogen production system. One or more technologies in Annex B of GB/T 27921-2011 should be adopted for risk assessment. The risk assessment shall show that the countermeasures adopted will control the adverse effects of risks to an acceptable level. 5.4 Relevant operation procedures shall be prepared. 5.5 Operators shall receive post safety education and operation skill trainings. 5.6 Emergency response plans shall be prepared. 6 Environmental conditions 6.1 General requirements 6.1.1 The hydrogen production system shall be designed and installed in consideration of the influence of the environmental conditions at the user site on the safe operation of the equipment, such as environmental temperature, environmental humidity, altitude, seismic fortification intensity, etc. 6.1.2 The layout of hydrogen production system shall meet the provisions of GB 50177. 6.1.3 The use area of hydrogen production system shall be well ventilated to ensure that the hydrogen content in the air does not exceed 1% (volume fraction). 6.2 Hydrogen production system installation site 6.2.1 The fire hazard category of the hydrogen production system shall be "A", and the safety facilities at its installation site shall meet the provisions of GB 50177. 6.2.2 The hydrogen production system and its surrounding areas shall be set up with forbidden zones to prohibit irrelevant personnel from entering. 6.2.3 Hydrogen production sites shall be free of sundries, with the access unblocked. 6.2.4 In areas with alkali liquor, including the vicinity of sampling points for loading/unloading, storage and analysis of alkaline electrolyte, flushing and eye washing facilities shall be provided and equipped with boric acid solution with a concentration of 2% to 3%. 6.2.5 Emergency lighting should be provided at the hydrogen production sites. 6.2.6 Safety signs conforming to GB 2894 shall be set up at the hydrogen production sites. 7 Equipment and pipeline 7.1 General requirements 7.1.1 Oxygen recovery equipment, pipelines and accessories of hydrogen production system shall be designed, manufactured, installed and accepted in accordance with GB 50177 and GB/T 19774. 7.1.2 For the hydrogen production system in which oxygen is directly discharged into the equipment housing or room, oxygen shall be effectively diluted by ventilation flow to avoid the formation of an oxygen-enriched atmosphere. 7.1.3 The materials for equipment and pipelines shall be selected in comprehensive consideration of factors such as use conditions (e.g. medium characteristics, working temperature, working pressure, etc.), material properties (mechanical properties, technological properties, physical properties and chemical properties), equipment manufacturing process and economic rationality. 7.1.4 The equipment and pipelines shall be such arranged as to be convenient for operation and maintenance and personnel evacuation in case of emergency. 7.1.5 Condensate water in hydrogen equipment and pipelines shall be discharged outdoor through drainage water seal. 7.1.6 Preventive measures shall be taken for stress and displacement caused by thermal expansion and contraction of equipment and pipelines. 7.1.7 Degreasing of equipment, pipelines, valves and accessories in contact with oxygen shall meet the provisions of GB 50030 and HG 20202. 7.1.8 According to the environmental conditions and process requirements, the thermal insulation measures for equipment and pipelines shall meet the provisions of GB/T 4272. 7.1.9 Where there is danger of personnel falling from high place on equipment and pipelines, ancillary facilities such as escalators, platforms, fences and tie-down devices shall be provided. 7.1.10 All rotating equipment shall be equipped with protective hoods or other protective measures. 7.1.11 Control measures such as sound insulation, noise reduction and shock absorption shall be adopted for equipment with high noise. 7.1.12 Equipment and valves shall be numbered uniformly; safety signs of pipelines shall meet the provisions of GB 7231. 7.2 Single equipment 7.2.1 Water electrolyser The performance parameters and structure of the water electrolyser shall be based on the basic requirements of reducing electricity consumption per unit hydrogen, decreasing manufacturing cost and prolonging service life. It is required to reasonably select the structural style of the water electrolyser, its electrolytic cells and electrode, diaphragm construction, coating and material, and to control the assembly process of the water electrolyser so as to eliminate the leakage risk. The water electrolyser shall be mounted by single-end fixing method. 7.2.2 Pressure vessels The pressure vessels of hydrogen production system are mainly used for gas-liquid separation, cooling, heating and storage. The materials, design, manufacture, inspection and acceptance of pressure vessels shall meet the provisions of TSG 21, GB/T 150 and GB/T 151. In cold and severe cold areas, corresponding anti-freezing measures shall be taken according to specific conditions at the bottom of outdoor moisture-containing tanks. 7.2.3 Hydrogen purifier Heat insulation measures shall be taken for hydrogen purifier. The inlet of hydrogen purifier should be equipped with flow meter. The temperature control and valve switching in the hydrogen purification process should be controlled by automatic control devices. 7.2.4 Circulating pump and make-up pump The flow, lift, working temperature and working pressure of the pump shall meet the process requirements. The material of the pump in contact with the conveying medium shall be suitable for alkali liquor/pure water. Pumps shall meet the provisions of 8.1.2 if they are installed in hazardous areas. 7.2.5 Cut-off/shut-off valve Cut-off/shut-off valve shall meet the provisions of 50177 and GB/T 19774. If the electric valve is installed in hazardous areas, it shall meet the provisions of 8.1.2. 7.2.6 Pressure relief device Safety valves shall be fully enclosed and shall not be used until they are calibrated and qualified with lead seals. The safety valves shall be installed vertically close to the protected equipment where it is convenient for inspection and maintenance. 7.2.7 Back-fire relief valve Back-fire relief valves shall be installed in the hydrogen blow-down pipes. Their arrangement shall conform to the relevant requirements of GB 50177. Foreword i 1 Scope 2 Normative references 3 Terms and definitions 4 Hazardous and harmful factors of hydrogen production system 5 Basic requirements 6 Environmental conditions 7 Equipment and pipeline 8 Electrical and instrument control 9 Operation and maintenance 10 Operators 11 Emergency response Annex A (Informative) Block diagram of typical hydrogen production system Annex B (Informative) Major hazardous chemicals and hazardous and harmful factors of unit equipment of the hydrogen production system Bibliography 压力型水电解制氢系统安全要求 1 范围 本标准规定了压力型水电解制氢系统(以下简称制氢系统)的危险和有害因素、安全基本要求及其在环境条件、系统组件、运行维护、作业人员和应急处理方面的要求。 本标准适用于工作压力大于或等于0.3 MPa且小于或等于5.0 MPa的碱性水电解系统和质子交换膜水电解系统。 注:在本标准中,压力均指表压力。 2规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 150(所有部分)压力容器 GB/T 151热交换器 GB 2894安全标志及其使用导则 GB 3836.1爆炸性环境 第1部分:设备通用要求 GB/T 4272设备及管道绝热技术通则 GB 7231工业管道的基本识别色、识别符号和安全标识 GB 12014 防静电服 GB 12358作业场所环境气体检测报警仪 通用技术要求 GB 16808可燃气体报警控制器 GB/T 19774 水电解制氢系统技术要求 GB 21146个体防护装备 职业鞋 GB/T 24499 氢气、氧能与氢能系统术语 GB/T 27921—2011风险管理 风险评估技术 GB/T 29639 生产经营单位生产安全事故应急预案编制导则 GB 30871化学品生产单位特殊作业安全规范 GB 50030氧气站设计规范 GB 50057建筑物防雷设计规范 GB 50058爆炸危险环境电力装置设计规范 GB 50177氢气站设计规范 GB 50217 电力工程电缆设计标准 HG 20202 脱脂工程施工及验收规范 JB/T 2379金属管状电热元件 TSG D0001 压力管道安全技术监察规程 工业管道 TSG 21 固定式压力容器安全技术监察规程 3术语和定义 GB/T 24499界定的以及下列术语和定义适用于本文件。 3.1 危险和有害因素hazardous and harmful factors 可对人造成伤亡、影响人的身体健康甚至导致疾病的因素。 3.2 爆炸危险区域hazardous area 爆炸性混合物出现的或预期可能出现的数量达到足以要求对电气设备的结构、安装和使用采取预防措施的区域。 3.3 风险评估 risk assessment 包括风险识别、风险分析和风险评价的全过程。 3.4 富氧环境oxygen-enriched atmosphere 空气中氧的体积分数大于23.5%的环境。 3.5 动火作业hot work 直接或间接产生明火的工艺设备以外的禁火区内可能产生火焰、火花或炽热表面的非常规作业。 注:如使用电焊、气焊(割)、喷灯、电钻、砂轮等进行的作业。 4制氢系统危险和有害因素 4.1 制氢系统组成及单元设备危险和有害因素 制氢系统组成由所产氢气/氧气的用途、纯度等因素确定。典型制氯系统框图参见附录A。 制氢系统主要危险化学品及单元设备危险和有害因素参见附录B。 4.2 泄漏 氢气易通过多孔材料、装配而或密封面泄漏。氢气泄漏后将迅速扩散,导致泄漏污染区不断扩大,且扩散过程肉眼不可见。 碱性水电解系统的电解液可能由于各种原因泄漏。 4.3火灾和爆炸 导致氢气着火或爆炸的条件是氢气与空气或氧气混合达到可燃或爆炸极限,并存在有效点燃源。制氢系统可能存在氢气/空气(氧气)混合物、点燃源,包括但不限于下述场景: a)水电解槽的结构、组件或组装过程存在缺陷,造成槽体内氢氧气体混合或向外泄漏,水电解槽泄漏严重时,槽内液体会随气体喷射而出并雾化; b)压力容器、管道及安全附件的材料、设计、制造、安装存在缺陷,压力容器、管道及安全附件未按期检验,安全附件缺失或故障,均可造成系统泄漏,甚至引发物理或化学爆炸; c)对于氢氧分离器底部连通的气液处理装置,其液位控制系统异常造成氢氧气体混合; d)气体纯度分析仪表工作异常,未及时发现气体纯度超标;氢气泄漏检测装置或机械通风系统故障,造成环境氢气含量超标; e)氢气系统在使用前置换不充分,或水电解槽电源正负极接反,会造成氢气与空气或氧气混合; f)含有过量氧气的氨气进入氨气纯化器的脱氧塔,在催化剂的作用下和氧气复合成水,放出大量热量,造成脱氧塔内部温度过高; g)含杂质的氢气流速过快,作业人员未穿防静电工作服,均可能产生静电火花; h)氧气接触油脂,或高速氧气流中的杂质颗粒均可导致燃烧; i)作业时未使用防爆工具,因摩擦、撞击产生火花; j)生产装置区的防雷设计不符合规范要求,导致雷击损坏设备,引发氢气泄漏并被点燃; k)电气设备由于漏电、短路、过载、接触电阻过大而产生电弧或火花;爆炸危险区域内电气设备的防爆等级不满足使用要求,也可能成为点燃源; l)雨水或其他导电体掉落在水电解槽上,造成短路而损坏槽体.可能引发火灾或爆炸; m)检修过程中,检修设备与在用生产系统未采取有效隔离措施,动火作业前未彻底置换,取样分析不具备代表性或分析数据不准确,均可能引发火灾或爆炸。 4.4 窒息 氯气为单纯性窒息性气体。在其高浓度时,空气中氧分压降低而导致缺氧性窒息。 4.5触电 制氢系统中可能造成人身触电事故的设备或设施包括水电解槽、整流变压器、整流柜、电气柜、电机和输电铜排等。在操作和维护设备时,作业人员有触电危险。 4.6 灼烫 制氢系统中水电解槽及其部分附属设备工作温度范围为60℃~90℃,氢气纯化器脱氧催化床工作温度可达150℃,氢气纯化器干燥床(变温吸附)再生温度可达350℃,人体直接接触设备表面会被烫伤。 碱性水电解系统涉及的氢氧化钾或氢氧化钠,具有强腐蚀性,直接接触皮肤和眼睛可造成化学灼伤。 4.7机械伤害 制氢系统机械伤害主要指机械设备的运动部件直接与人体接触所造成的伤害。 5基本要求 5.1 应避免氢气/空气(氧气)混合物在密闭空间积聚并控制点燃源。 5.2在可能的情况下,应减少危险环境中人员的数量,并缩短其停留时间。 5.3应对制氢系统进行风险评估。风险评估宜采用GB/T 27921—2011附录B中的一种或几种技术。风险评估应表明,所采取的应对措施将风险的不利影响控制在可接受水平。 5.4应制定相应操作规程。 5.5应对作业人员进行岗位安全教育和操作技能培训。 5.6应制定事故应急预案。 6环境条件 6.1 一般要求 6.1.1制氢系统的设计和安装应考虑用户现场环境条件对设备安全运行的影响,如环境温度、环境湿度、海拔高度、抗震设防烈度等。 6.1.2 制氢系统的平面布置应符合GB 50177的规定。 6.1.3制氢系统使用区域应通风良好,确保空气中氢气含量不超过1%(体积分数)。 6.2制氢系统设置场所 6.2.1 制氢系统的火灾危险类别应为“甲”类,其设置场所的安全设施配备应符合GB 50177的规定。 6.2.2制氢系统及其周围区域应设置禁区,禁止无关人员入内。 6.2.3制氢场所内应无杂物,并应保持通道畅通。 6.2.4有碱液区域,包括碱性电解质装卸、储存和分析取样点附近,应设置冲淋、洗眼设施,并备有浓度为2%~3%的硼酸水溶液。 6.2.5 制氢场所宜设置应急照明。 6.2.6 制氢场所应设置符合GB 2894规定的安全标志。 7设备及管路 7.1 一般要求 7.1.1 制氢系统氧气回收设备、管道及其附件应按GB 50177、GB/T 19774的规定进行设计、制造、安装验收。 7.1.2对于氧气直接排入设备外壳或室内的制氢系统,氧气应被通风气流有效稀释,以免形成富氧环境。 7.1.3设备及管道用材料的选择应综合考虑使用条件(如介质特性、工作温度、工作压力等)、材料性能(力学性能、工艺性能、物理性能和化学性能)、设备制造工艺以及经济合理性等因素。 7.1.4 设备及管道的布置应便于操作和维护,出现紧急情况时便于人员撤离。 7.1.5氢气设备、管道内的冷凝水应经排水水封排至室外。 7.1.6对设备、管道热胀冷缩所产生的应力和位移应采取预防措施。 7.1.7 与氧气接触的设备、管道及其阀门、附件的脱脂应符合GB 50030、HG 20202的规定。 7.1.8根据环境条件及工艺要求,对设备、管道采取的绝热措施应符合GB/T 4272的规定。 7.1.9 在设备、管道上有发生人员高处坠落危险的部位,应配置扶梯、平台、围栏和系挂装置等附属设施。 7.1.10所有转动设备均应配备防护罩或采取其他防护措施。 7.1.11 对噪声较大的设备应采取隔声、消声、减震等控制措施。 7.1.12设备和阀门应统一编号;管道安全标识应符合GB 7231的规定。 7.2 单体设备 7.2.1 水电解槽 水电解槽的性能参数、结构应以降低单位氢气电能消耗、减少制造成本、延长使用寿命为基本要求。应合理选择水电解槽的结构型式、电解小室及其电饭、隔膜的构造、涂层和材质,控制水电解槽组装过程,以消除泄漏风险。 水电解槽的安装应采用单端固定方式。 7.2.2压力容器 制氢系统的压力容器主要用于气液分离、冷却、加热和储存。压力容器的材料、设计、制造、检验和验收应符合TSG 21、GB/T 150、GB/T 151的规定。 在寒冷和严寒地区,室外含湿气罐底部,应根据具体情况采取相应防冻措施。 7.2.3氢气纯化器 氢气纯化器应采取绝热措施。氢气纯化器入口宜设置流量检测仪表。氢气纯化过程的温度控制和阀门切换等操作,宜采用自动控制装置控制。 7.2.4循环泵和补水泵 机泵的流量、扬程、工作温度、工作压力应满足工艺要求。机泵与输送介质接触的材质应适用于碱液/纯水。如其安装在爆炸危险区域,应符合8.1.2的规定。 7.2.5关闭阀/切断阀 关闭阀/切断阀应符合GB 50177、GB/T 19774的规定。如电动阀门安装在爆炸危险区域,应符合8.1.2的规定。 7.2.6压力泄放装置 安全阀应选用全封闭式,经校准合格铅封后,方可使用。安全阀应靠近被保护设备垂直安装,其位置应便于检查和维修。 7.2.7 阻火器 氢气放空管道应设阻火器。阻火器的设置应符合GB 50177的相关规定。 7.3管路及附件 7.3.1 制氢系统管路及附件的设计、安装应符合GB/T 19774的相关规定。 7.3.2制氢系统应设置氨气吹扫置换接口。所有吹扫置换口前应配置切断阀、止回阀。 7.3.3 氢气管道与其他管道共架或分层敷设时,宜布置在外侧上层。 7.3.4 氢气/氧气管道的支、吊架应采用不燃材料制作。 7.3.5氢气/氧气管道安装后,应进行强度试验、气密性试验和泄漏量试验,此类试验应按GB 50177、GB 50030的规定进行。 7.3.6泄漏量试验合格的氢气/氧气管道的吹扫应符合GB 50177、GB 50030的相关规定。使用氮气吹扫时,应采取防止人员窒息的措施。 7.3.7氢气/氧气放空管应在避雷保护范围之内,并应有防止雨雪侵入和杂物堵塞的措施。 8 电气及仪表控制 8.1 一般要求 8.1.1 制氢系统爆炸危险区域等级范围划分应符合GB 50177、GB 50058的规定。 8.1.2爆炸危险区域的电气设备应按GB 50058的规定选用,其通用要求应符合GB 3836.1的规定,防爆等级不应低于氢气爆炸混合物的级别、组别。 8.1.3 在有爆炸危险环境内的电缆及导线敷设,应符合GB 50217的规定。 8.1.4水电解槽及其输电铜排周围应加装防触电隔离设施。 8.1.5应有防止导电体掉落在水电解槽上的安全措施。 8.2 直流电源 8.2.1 每台水电解槽应单独配置直流电源,宜采用高频开关整流器、晶闸管整流器或二极管整流器。 8.2.2 直流电源应具备调压和自动稳流功能,并应设置过流保护装置,超过预定值时自动停机。 8.2.3 直流电源配备的高压整流变压器应设在单独的变压器室内。 8.2.4应在电解间设置直流电源的紧急断电按钮,该按钮宜设在便于操作处。 8.3电热元件 8.3.1 金属管状电热元件的技术要求应符合JB/T 2379的规定。 8.3.2应根据金属管状电热元件的工作温度,选择电热丝和金属管外壳之间的绝缘填充材料。电热元件的绝缘电阻应符合制造厂规定。 8.3.3对于压力介质中的电热元件,应采取措施避免因其损坏而造成事故。 8.3.4氢气纯化器的电热元件应符合8.1.2的规定。 8.4 接地 8.4.1 制氢系统的金属外壳、金属管道、金属底座或框架均应接地。接地应符合GB 50177、GB 50057的规定。 8.4.2氢气/氧气设备、管道的阀门、法兰等连接处应采用金属线跨接,其跨接电阻应小于0.03 Ω。 8.4.3水电解槽应在连接管道前按结构特点进行接地电阻检查。对两端分别接入直流电源正负极的水电解槽,其对地电阻应不小于1.0 MΩ。 8.4.4电气装置的接地,应以单独接地线与接地干线相连接,不得采用串接方式。 8.4.5所有防雷、防静电接地装置,应定期检测接地电阻,每年至少检测一次。 8.5氢气泄漏检测 8.5.1 制氢系统应设置固定式氢气检测报警仪,其技术性能应符合GB 12358和GB 16808的规定。固定式氢气检测报警仪的检测器应安装在氢气易泄漏和积聚处。 8.5.2制氢系统应配备便携式氢气检测报警仪。 8.5.3 固定式氢气检测报警仪和便携式氢气检测报警仪均应定期校验。 8.5.4氢气检测报警仪在设备维护期间应正常工作。 8.5.5当空气中的氢气含量达到0.4%(体积分数)时,氢气检测报警仪应报警同时启动相应事故排风机;当空气中的氯气含量超过1%(体积分数)时,应停车检查。 8.6氢火焰检测 氢火焰检测报警仪应根据响应时间、检测距离、覆盖范围、灵敏度等因素选用,并符合8.1.2的规定。 8.7自动控制系统 8.7.1 制氢系统的自动控制系统应对主要工艺参数进行集中监控和自动调节,当设备发生故障时,其应及时报警、停车,并进行妥善处理。 8.7.2仪表的量程和精度等级应满足使用要求。与氧气接触的仪表应无油脂。 8.7.3水电解槽出口端应设置氧中氢和氢中氧含量在线分析仪器,实时监测气体纯度。氢气纯化器出口应设置氢气中杂质含量分析仪器。 8.7.4 自动控制系统宜具备但不限于下列报警或停车联锁功能: ——系统压力高; ——氧压力高; ——氢氧两侧差压高/低; ——水电解槽温度高; ——碱液/纯水液位高/低; ——碱液/纯水流量低; ——直流过电流/直流电源故障; ——直流电源紧急断电按钮动作/外部紧急停车信号; ——普氧中氢含量高; ——普氢中氧含量高; ——空气中氢含量高; ——纯水电导率高; ——氢气纯化器脱氧塔温度高; ——氢气纯化器干燥塔温度高; ——纯氢微氧高; ——纯氢露点高; ——行程开关显示自动阀门故障; ——机械通风系统故障; ——冷却水故障; ——仪表气源故障; ——电力供应故障; ——火灾。 8.7.5新设备投产前或检修后,应对其自动控制系统进行测试和模拟试验,并符合下列要求: a)每一操作控制单元或控制回路,其动作程序及技术要求,应符合生产工艺的规定; b)联锁控制动作应灵敏、可靠。 8.7.6 自动控制系统的不间断电源应时刻处于正常状态。 9运行和维护 9.1首次开车前准备 9.1.1 应确认制造厂提供的各种合格证、技术文件等齐全无误。这些资料至少应包括以下内容: a)制氢系统及主要零部件合格证; b)全部例行试验记录; c)压力容器相关技术资料和质量证明文件; d)水电解槽各部件、管道及附件的材质证明文件; e)工艺及仪电系统图纸; f)制氢系统使用及安装维护手册; g)仪器仪表、机泵等说明书; h)产品及辅料的化学品安全技术说明书; i)建议的备品、备件清单。 9.1.2 制氢系统应完成现场安装。设备、管道的布置、连接应符合设计文件要求,系统泄漏量试验应符合制造厂规定;应检查电气设备的绝缘和接线情况,机泵等动设备应按相关标准完成负荷试车;自动控制系统应完成测试,符合8.7.5的规定。 9.1.3开车前应进行全面安全检查,并对查出的问题逐项进行整改。 9.1.4现场的生产环境符合设计要求,各种生产辅助系统均应达到开车所应具备的条件。 9.1.5应按规定对制氢系统的氢气设备、管道进行置换,置换后其含氧量应小于0.5%(体积分数)。 9.2 设备运行 9.2.1 日常开车前准备应符合9.1.4和9.1.5的规定。如系统从保压状态开车,则无需置换。 9.2.2开车前,应确保水电解槽上无杂物,以防短路。 9.2.3应严格按照操作规程进行制氢系统开停车操作。 9.2.4 开车后,应关注气体纯度。氢气、氧气纯度合格后,才能对外送气。 9.2.5氢、氧气体相关手动阀门应缓慢开关。 9.2.6作业人员应执行巡回检查制度,发现异常情况及时处理。 9.2.7应定时测量水电解槽小室电压,各个小室电压应分布均匀。 9.2.8在开车或运行中发生报警或联锁停车时,应查明原因,严禁随意改变保护设定值或取消联锁。 9.2.9制氢系统短暂停车时,应保持正压状态;长时间停车时,应排空系统中氢气、氧气,并按规定进行置换,置换后其含氢量不应超过0.4%(体积分数)。 9.3 设备维护 9.3.1 制氢系统的维护、检修作业应制定作业方案,经批准后方可组织实施。 9.3.2维护、检修作业应执行上锁/挂牌程序。 9.3.3应按照系统维护手册的要求,定期检查、清洗或更换工艺设备的零部件,定期检查、调校各类电气设备和仪器仪表。 9.3.4不应随意敲击氢气设备、管道,没备、管道、阀门严禁带压拆卸。压力容器的修理、定期检验和安全附件的定期检验应符合TSG 21的规定;压力管道的维修和定期检验应符合TSG D0001的规定。 9.3.5 制氢系统在动火作业前,应在可靠隔离后进行置换,并取样分析合格。动火作业应严格遵守GB 30871的规定。 9.3.6应在设备维护、检修过程中采取措施,避免与氧气接触部件沾染油脂。 9.3.7对安全设施进行维护而没有其他替代措施时,其所保护的设备应停止运行。 9.3.8维护、检修作业记录应至少保留3年。 9.3.9 设备拆除工作应在没有雷电的天气进行。在设备拆除期间,应连续监测空气中的氢气含量,一旦超过0.4%(体积分数),应立即停止拆除工作。 10 作业人员 10.1作业人员应经过岗位培训,了解可能接触到的危险和有害因素,熟知事故现场应急处置措施,掌握制氢系统相关的理论知识和操作技能,考试合格后持证上岗。 10.2作业人员上岗时应穿符合GB 12014规定的阻燃、防静电工作服和符合GB 21146规定的防静电鞋,且应配戴必要的个人防护装置。 10.3 作业人员应严格遵守有关操作规程和安全守则。 10.4作业人员应无色盲或其他影响正常作业的生理缺陷或疾病,且作业前不应进行影响正常作业能活动。 11应急处理 11.1 应急预案 11.1.1 应建立健全安全规章制度,制定事故应急预案,配备应急救援人员和必要的应急救援器材、设备。 11.1.2应急预案应符合GB/T 29639的规定,并应与相关部门和单位的应急预案相衔接。其中针对可能发生的泄漏、火灾和爆炸,应急处置措施应分别符合11.2、11.3的规定。 11.1.3应定期进行应急预案演练。 11.1.4应定期对应急预案进行评估,并及时根据评估结果或实际情况的变化进行修订和完善。 11.2 泄漏 11.2.1应迅速查明泄漏情况.根据泄漏部位和泄漏程度,采取措施阻止或控制泄漏,并按应急预案规定进行报告。 11.2.2氢气泄漏污染区应被隔离,加强通风,并严禁火种。采取的措施同时应符合8.5.5的规定。 11.2.3 知有窒息人员,应及时将其救至通风良好处,实施人工呼吸,并迅速就医。 11.2.4碱液少量泄漏时,可用沙土、弱酸吸收中和;大量泄漏时,应封闭排水管道,收集回收或运至废物处理场所处置。 11.2.5应急处理人员应配戴个人防护装置以避免窒息或碱液灼伤。 11.3火灾和爆炸 11.3.1 制氢系统一旦发生火灾或者爆炸事故,应立即切断水电解槽电源并发出警报。 11.3.2应使氢气系统保持正压状态以防回火,并用消防水雾强制冷却着火设备。 11.3.3应采取有效措施。防止火灾扩大,如采用大量消防水雾喷射其他引燃物质和相邻设备。 11.3.4 氢火焰不易察觉,应急处理人员应配戴个人防护装置,预防外露皮肤烧伤。 |
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 |
服务热线:400-001-5431 | 电话:010-8572 5110 | 传真:010-8581 9515 | Email: bz@bzfyw.com | |
版权所有: 北京悦尔信息技术有限公司 2008-2020 京ICP备17065875号-1 51La |
本页关键词: |
GB/T 37563-2019, GB 37563-2019, GBT 37563-2019, GB/T37563-2019, GB/T 37563, GB/T37563, GB37563-2019, GB 37563, GB37563, GBT37563-2019, GBT 37563, GBT37563 |