![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative. This standard is drafted in accordance with the rules given in GB/T 1.1-2009. This standard replaces GB/T 176-2008 Methods for chemical analysis of cement, and the following main technical changes have been made with respect to GB/T 176-2008: —— The inductively coupled plasma emission spectrometry is added to the scope (see clause 1 of this standard, and clause 1 of Edition 2008). —— “Unless otherwise stated, the loss on ignition shall be determined while chemical analysis is carried out" is modified to "It is recommended to determine the loss on ignition while chemical analysis is carried out." (see 4.1 of this standard and 4.1 of Edition 2008). —— "Unless otherwise stated, the validity period of the standard volumetric solution is 3 months. If it exceeds 3 months, the solution shall be calibrated again." is added (see 4.8 of this standard). —— In the preparation of specimens "to completely pass through a square-mesh sieve with a pore diameter of 80 μm" is modified to "to completely pass through a square-mesh sieve with a pore diameter of 150 μm". "The metallic iron in the sieve residue shall be removed by magnet" is modified to "If the metallic iron brought in during the preparation may affect the determination of relevant chemical property, the metallic iron in the sieve residue shall be removed by magnet". "Before analyzing specimens of cement and cement clinker, there is no need to dry the specimens" is added to the note (see clause 5 of this standard and clause 7 of Edition 2008). —— In the calibration of sodium thiosulfate standard solution, "potassium dichromate standard volumetric solution” is changed to "potassium iodate standard volumetric solution" (see 6.1.85.2 of this standard and 5.84.2 of Edition 2008). —— Determination of loss on ignition is divided into "determination of loss on ignition of cement" and "determination of loss on ignition of portland slag cement". In the determination of loss on ignition of portland slag cement, specific requirements are set forth for the determination method of sulfate sulfur trioxide in the test portion after ignition (see 6.3, 6.4, and 6.39 of this standard, and clause 8 of Edition 2008). —— "Sulfur trioxide" is modified to "sulfate sulfur trioxide" (see 6.5, 6.28, 6.29, and 6.30 of this standard, and clauses 10, 30, 31, and 33 of Edition 2008). —— In the determination of sulfate sulfur trioxide - barium sulfate gravimetric method (reference method), the decomposition time of the specimen is changed from "slightly boiling for (5±0.5) min" to "slightly boiling for 5 min ~ 10 min” (see 6.5 of this standard, and clause 10 of Edition 2008). —— In the determination of insoluble matter - hydrochloric acid-sodium hydroxide treatment, “Proceed the next wash after the washings has completely passed through the filter paper” is added following "fully wash the residue and filter paper with hot ammonium nitrate solution for at least 14 times” (see 6.6 of this standard, and clause 9 of Edition 2008). —— In the determination of silica - ammonium chloride gravimetric method (reference method), the ignition temperature of silica precipitation is changed from "ignite it in a high-temperature furnace at 950℃ ~ 1,000℃ for 60 min" to "ignite it in a high-temperature furnace at (1,175±25) ℃ or 950℃~1,000℃ for 1 h [in case of any dispute, the results gained after igniting at (1,175±25) ℃ shall prevail]" (see 6.7 of this standard, and clause 11 of Edition 2008). —— For the determination of iron(III) oxide, the o-phenanthroline spectrophotometry is changed to the reference method, and EDTA direct titration method is changed to the alternative method (see 6.8 and 6.21 of this standard, and clauses 12 and 24 of Edition 2008). —— For the determination of aluminum oxide, iron-aluminum resultant titration with EDTA is added as the reference method, and EDTA direct titration method is changed to the alternative method (see 6.9 and 6.23 of this standard, clause 13 of Edition 2008). —— In the determination of magnesium oxide - atomic absorption spectrophotometry (reference method), the method of melting specimen with sodium carbonate is added (see 6.11.2.3 of this standard). —— In decomposing specimen with hydrofluoric acid-perchloric acid for determination of magnesium oxide - atomic absorption spectrophotometry (reference method), polytetrafluoroethylene dish is added to decompose the specimen (see 6.11.2.1 of this standard, and 15.2.1 of Edition 2008). —— In decomposing specimen for determination of potassium oxide and sodium oxide - flame photometry (reference method), polytetrafluoroethylene dish is added to decompose the specimen (see 6.14.2 of this standard, and 17.2 of Edition 2008). —— In the determination of carbon dioxide - caustic asbestos absorption gravimetric method, the analytical procedure is canceled that "if the mass change of the second U-shaped tube 12 continuously exceeds 0.001 0 g, the first U-shaped tube 11 shall be replaced and the test shall be restarted" (see 6.18 of this standard, and clause 22 of Edition 2008). —— Determination of zinc oxide - atomic absorption spectrometry is added (see 6.19 of this standard). —— In the determination of silica - potassium fluosilicate volumetric method (alternative method), "add 10 mL to 15 mL of nitric acid" is changed to "add 15 mL of nitric acid"; "Place the solution at 30 ℃ for 15 min to 20 min" is changed to "Place the solution at a temperature of 10 ℃ to 26 ℃ for 15 min to 20 min" (see 6.20 of this standard, and clause 23 of Edition 2008). —— In the determination of iron(III) oxide - EDTA direct titration (alternative method), "pH 1.8 ~ 2.0" is changed to "pH 1.8" (see 6.21 of this standard, and clause 12 of Edition 2008). —— In the determination of aluminum oxide - copper sulfate back titration (alternative method), it is added that if the consumption of copper sulfate standard volumetric solution is less than 10 mL, increase the amount of EDTA standard volumetric solution added and test again (see 6.24 of this standard, and clause 26 of Edition 2008). —— In the determination of sulfate sulfur trioxide - coulometric titration (alternative method), "In addition to sulfide (S2-) and sulfate, there are other forms of sulfur in the specimen, which will cause errors to the determination results" is modified to "If the specimen contains a large amount of sulfide (S2-) or sulfur in other forms, it is possible that the sulfide or sulfur in other forms is not completely decomposed by formic acid, which will cause positive errors to the determination results, such as cement mixed with a large amount of slag." (see 6.29 of this standard, and clause 33 of Edition 2008). —— In the determination of sulfate sulfur trioxide - ion exchange method (alternative method), the requirement is added that "This method is only used for enterprise production control" (see 6.30 of this standard, and clause 31 of Edition 2008). —— Determination of sulfur trioxide - barium chromate spectrophotometry (alternative method) is deleted (see clause 32 of Edition 2008). —— Determination of chloride ions - (automatic) potentiometric titration (alternative method) is added (see 6.31 of this standard). —— Determination of chloride ion - ion chromatography (alternative method) is added (see 6.32 of this standard); —— Determination of chloride ions - phosphoric acid distillation-mercury salt titration (alternative method) is canceled (see clause 35 of Edition 2008). —— In the determination of free calcium oxide - ethylene glycol method (alternative method), air suction and filtration after heating for 4 min in the analytical procedure are canceled and changed to titrate immediately after heating for 5 min (see 6.37 of this standard, and clause 39 of Edition 2008). —— Determination of free calcium oxide - ethylene glycol extraction-EDTA titration (alternative method) is added (see 6.38 of this standard). —— Determination of loss on ignition of portland slag cement - correction method (alternative method) is added (see 6.39 of this standard). —— Determination of total sulfur in portland cement raw meal is added (see 6.40 of this standard). —— Modification is made to the repeatability limit and reproducibility limit for the determination results of methods for chemical analysis of cement (see 6.41 of this standard, and clause 41 of Edition 2008). —— The contents of "Building and verification of calibration curves and equations" in X-ray fluorescence analysis method are modified and supplemented (see clause 7 of this standard, and clause 40 of Edition 2008). —— Determination of the following by inductively coupled plasma mass spectrometry is added: iron(III) oxide, aluminum oxide, magnesium oxide, titanium oxide, potassium oxide, sodium oxide, manganese oxide, zinc oxide, phosphorus pentoxide, and sulfate sulfur trioxide (see clause 8 of this standard). This standard is redrafted by reference to and not equivalent to ISO 29581-1: 2009 Cement - Test methods - Part 1: Analysis by wet chemistry This standard was proposed by China Building Materials Federation. This standard is under the jurisdiction of SAC/TC 184 National Technical Committee on Cement of Standardization Administration of China. The previous editions of this standard are as follows: —— GB/T 176-1956, GB/T 176-1962, GB/T 176-1976, GB/T 176-1987, GB/T 176-1996, and GB/T 176-2008; —— GB/T 19140-2003. Methods for chemical analysis of cement 1 Scope This standard specifies the determination of loss on ignition (LOI), SO3, insoluble matter (IR), SiO2, Fe2O3, Al2O3, CaO, MgO, TiO2, Cl-, K2O, Na2O, S2-, MnO, P2O5, CO2, ZnO, F-, free calcium oxide (fCaO), and SrO by methods for chemical analysis of cement, X-ray fluorescence analysis method, and inductively coupled plasma optical emission spectrometry. Methods for chemical analysis of cement are divided into reference method and alternative method. If multiple determination methods are listed for the same component, the reference method shall prevail in case of any dispute. This standard is applicable to common portland cement, the clinker and raw meal for preparing the said cement, and other types of cement and materials for which this standard is designated. 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. GB/T 5762 Methods for chemical analysis of limestone, quicklime and hydrated lime for building materials industry GB/T 6682 Water for analytical laboratory use - Specification and test methods GB/T 8170 Rules of rounding off for numerical values & expression and judgment of limiting values GB/T 12573 Sampling method for cement GB/T 15000 (All parts) Directives for the work of reference materials GSB 08-1110 X-ray fluorescence analysis of cement raw meal - Series reference sample GSB 08-1355 Composition analysis of cement clinker - Reference sample GSB 08-1356 Component analysis of ordinary portland cement - Reference sample GSB 08-1357 Component analysis of ordinary portland cement - reference sample GSB 08-2985 X-ray fluorescence analysis of cement - Series reference sample 3 Terms and definitions For the purposes of this document, the terms and definitions given in GB/T 15000 (all parts) and the following apply. 3.1 repeatability conditions conditions where independent test results are obtained on the same test object by the same operator using the same equipment according to the same method in the same laboratory in a short time 3.2 reproducibility conditions conditions where test results are obtained on the same test object by different operators using different equipment according to the same method in different laboratories 3.3 repeatability limit a value delimiting a probability of 95% that the absolute difference of two test results is less than or equal to it under the repeatability conditions (3.1) 3.4 reproducibility limit a value delimiting a probability of 95% that the absolute difference of two test results is less than or equal to it under the reproducibility conditions (3.2) 3.5 series certified reference materials for x-ray fluorescence analysis a complete set of reference samples associated with chemical compositions, which is used to calibrate analytical instruments such as X-ray fluorescence analyzer 4 General requirements for testing 4.1 Number of tests and requirements The number of tests for determination of each chemical property shall be two. The absolute difference between the two results shall be within the repeatability limit (Tables 3, 4 and 5). The mean of the two test results shall be used to express the test result. During routine production control analysis, determination of each chemical property by a single test shall be the minimum required. It is recommended to determine the loss on ignition while chemical analysis is carried out. Except for determination of loss on ignition, blank test shall be carried out in parallel, and the determination results shall be corrected. 4.2 Expression of masses, volumes, titers and results Express masses in “grams (g)” to the nearest of 0.000 1 g and volumes from burettes in “milliliters (mL)” to the nearest of 0.01 mL. Express the titers of solutions in “milligrams per milliliter (mg/mL)”. Express the titer of benzoic acid-anhydrous ethanol standard volumetric solution for calcium oxide with three significant figures, while the concentration, titer and volume ratio of other standard volumetric solutions with four significant figures. Unless otherwise stated, all analysis results shall be based on mass fraction. The analysis result of chloride ion shall be expressed in % to three decimal places, and the analysis result of other items shall be expressed in % to two decimal places. The rounding off of numerical value shall comply with the requirements of GB/T 8170. 4.3 Repeatability limit and reproducibility limit The repeatability limit and reproducibility limit in this standard are expressed in mass fraction (%) as absolute deviation(s). When the same specimen is analyzed by the methods given in this standard under the repeatability conditions (3.1), the difference between the two analysis results shall be within the repeatability limits listed (Tables 3, 4 and 5). If the repeatability limit is exceeded, a third determination shall be carried out in a short time. If the difference between the determination result and both or either of the previous ones meets the repeatability limit, the mean shall be taken. Otherwise, the reason shall be found and analysis shall be carried out again according to the above requirements. When the same specimen is analyzed by the methods given in this standard under the reproducibility conditions (3.2), the difference between the two analysis results shall be within the reproducibility limits listed (Tables 3, 4 and 5). 4.4 Blank determinations Carry out a blank determination without a specimen, following the same procedure and using the same amounts of reagents. Correct the results obtained for the analytical determination accordingly. 4.5 Ignition Place the filter paper and its contents into a crucible that has been previously ignited and tared. Dry it, then incinerate slowly in an oxidizing atmosphere in order to avoid immediate flaming, while ensuring complete combustion. Ignite the crucible and its contents at the stated temperature, then allow it to cool to the room temperature in a desiccator (6.2.6). Weigh the crucible and its contents. 4.6 Constant mass After the first ignition, cooling and weighing, determine constant mass by making successive 15 min ignitions followed each time by cooling and then weighing. Constant mass is reached when the difference between two successive weighing is less than 0.000 5 g. Foreword i 1 Scope 2 Normative references 3 Terms and definitions 4 General requirements for testing 4.1 Number of tests and requirements 4.2 Expression of masses, volumes, titers and results 4.3 Repeatability limit and reproducibility limit 4.4 Blank determinations 4.5 Ignition 4.6 Constant mass 4.7 Check for absence of chloride ions (silver nitrate test) 4.8 Reagents - General 4.9 Test method verification 5 Preparation of specimens 6 Chemical analysis methods 6.1 Reagents and materials 6.2 Instruments and apparatus 6.3 Determination of loss on ignition of cement - ignition subtraction method 6.4 Determination of loss on ignition of portland slag cement - correction method (reference method) 6.5 Determination of sulfate sulfur trioxide - barium sulfate gravimetric method (reference method) 6.6 Determination of insoluble matter - hydrochloric acid-sodium hydroxide treatment 6.7 Determination of silica - ammonium chloride gravimetric method (reference method) 6.8 Determination of iron(III) oxide - o-phenanthroline spectrophotometry (reference method) 6.9 Determination of aluminium oxide - iron-aluminium resultant titration with EDTA (reference method) 6.10 Determination of calcium oxide - EDTA titration method (reference method) 6.11 Determination of magnesium oxide - atomic absorption spectrophotometry (reference method) 6.12 Determination of titanium dioxide - diantipyrylmethane spectrophotometry 6.13 Determination of chloride ion - ammonium thiocyanate volumetric method (reference method) 6.14 Determination of potassium oxide and sodium oxide - flame photometry (reference method) 6.15 Determination of sulfides - iodometric method 6.16 Determination of manganese oxide - potassium periodate oxidation spectrophotometry (reference method) 6.17 Determination of phosphorus pentoxide - phosphomolybdate blue spectrophotometry 6.18 Determination of carbon dioxide - caustic asbestos absorption gravimetric method 6.19 Determination of zinc oxide - atomic absorption spectrometry 6.20 Determination of silica - potassium fluosilicate volumetric method (alternative method) 6.21 Determination of iron(III) oxide - EDTA direct titration method (alternative method) 6.22 Determination of iron(III) oxide - atomic absorption spectrophotometry (alternative method) 6.23 Determination of aluminum oxide - EDTA direct titration method 6.24 Determination of aluminum oxide - copper sulfate back titration (alternative method) 6.25 Determination of calcium oxide - sodium hydroxide melting - EDTA titration (alternative method) 6.26 Determination of calcium oxide - potassium permanganate titration (alternative method) 6.27 Determination of magnesium oxide - EDTA titration solution subtraction method (alternative method) 6.28 Determination of sulfate sulfur trioxide - iodometric method (alternative method) 6.29 Determination of sulphate sulfur trioxide - coulometric titration (alternative method) 6.30 Determination of sulfate sulfur trioxide - ion exchange method (alternative method) 6.31 Determination of chloride ion - (automatic) potentiometric titration (alternative method) 6.32 Determination of chloride ion - ion chromatography (alternative method) 6.33 Determination of potassium oxide and sodium oxide - atomic absorption spectrometry (alternative method) 6.34 Determination of manganese oxide - atomic absorption spectrophotometry (alternative method) 6.35 Determination of fluorine ion - ion selective electrode method 6.36 Determination of free calcium oxide - glycerol method (alternative method) 6.37 Determination of free calcium oxide - ethylene glycol method (alternative method) 6.38 Determination of free calcium oxide - ethylene glycol extraction-EDTA titration (alternative method) 6.39 Determination of loss on ignition of portland slag cement - correction method (alternative method) 6.40 Determination of total sulfur in portland cement raw meal 6.41 Repeatability limit and reproducibility limit for the determination results of methods for chemical analysis of cement 7 X-ray fluorescence analysis method 7.1 Principle 7.2 Reagents 7.3 Instruments and apparatus 7.4 Preparation of test piece 7.5 Calibration and verification 7.6 Calculation and expression of results 7.7 Repeatability limit and reproducibility limit for the determination results of X-ray fluorescence analysis method 8 Inductively coupled plasma - optical emission spectrometry (ICP-OES) 8.1 Principle 8.2 Reagents 8.3 Instruments and apparatus 8.4 Determination of iron(III) oxide, aluminum oxide, magnesium oxide, titanium oxide, potassium oxide, sodium oxide, manganese oxide, zinc oxide and phosphorus pentoxide 8.5 Determination of sulfate sulfur trioxide 8.6 Repeatability limit and reproducibility limit for the determination results of inductively coupled plasma - optical emission spectrometry Annex A (Informative) Example for calculation of stoichiometric point for determination of chloride ion by potentiometric titration Annex B (Informative) Reference chromatographic conditions and chromatograms of carbonate eluent Annex C (Informative) Recommended wavelengths for inductively coupled plasma - optical emission spectrometry 水泥化学分析方法 1 范围 本标准规定了水泥化学分析方法、X射线荧光分析方法和电感耦合等离子体发射光谱法对烧失量(LOI)、SO3、不溶物(IR)、SiO2、Fe2O3、Al2O3、CaO、MgO、TiO2、Cl-、K2O、Na2O、S2-、MnO、P2O5、CO2、ZnO、F-、游离氧化钙(fCaO)、SrO的测定。水泥化学分析方法又分为基准法和代用法。如果同一成分列了多种测定方法,当有争议时以基准法为准。 本标准适用于通用硅酸盐水泥和制备上述水泥的熟料、生料及指定采用本标准的其他水泥和材料。 2规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 5762 建材用石灰石、生石灰和熟石灰化学分析方法 GB/T 6682分析实验室用水规格和试验方法 GB/T 8170数值修约规则与极限数值的表示和判定 GB/T 12573水泥取样方法 GB/T 15000(所有部分) 标准样品工作导则 GSB 08—1110 X射线荧光分析用水泥生料系列标准样品 GSB 08—1355水泥熟料成分分析标准样品 GSB 08—1356普通硅酸盐水泥成分分析标准样品 GSB 08—1357 硅酸盐水泥成分分析标准样品 GSB 08—2985 X射线荧光分析用水泥系列标准样品 3术语和定义 GB/T 15000(所有部分)界定的以及下列术语和定义适用于本文件。 3.1 重复性条件repeatability conditions 在同一试验室,由同一操作者使用相同设备,按相同的测定方法,并在短时间内从同一被测对象取得相互独立测试结果的条件。 3.2 再现性条件reproducibility conditions 在不同的试验室,由不同的操作者使用不同的设备,按相同的测定方法,从同一被测对象取得测试结果的条件。 3.3 重复性限 repeatability limit 一个数值,在重复性条件(3.1)下,两次测试结果的绝对差值不超过此数的概率为95%。 3.4 再现性限 reproducibility limit 一个数值,在再现性条件(3.2)下,两次测试结果的绝对差值不超过此数的概率为95%。 3.5 X射线荧光分析用系列标准样品 series certified reference materials for X-ray fluorescence analysis 用于校准X射线荧光分析仪等分析仪器与化学成分相关联的成套标准样品。 4试验的基本要求 4.1试验次数与要求 每一项测定的试验次数规定为两次,两次结果的绝对差值在重复性限(表3、表4和表5)内,用两次试验结果的平均值表示测定结果。 例行生产控制分析时,每一项测定的试验次数可以为一次。 在进行化学分析时,建议同时进行烧失量的测定。 除烧失量外,其他各项测定应同时进行空白试验,并对测定结果加以校正。 4.2 质量、体积、滴定度和结果的表示 质量用“克(g)”表示.精确至0.000 1 g。滴定管的体积用“毫升(mL)”表示,读数精确至0.01 mL。滴定度用“毫克每毫升(mg/mL)”表示。 苯甲酸-无水乙醇标准滴定溶液对氧化钙的滴定度保留三位有效数字,其他标准滴定溶液的浓度、滴定度和体积比保留四位有效数字。 除另有说明外,各项分析结果均以质量分数计。氯离子分析结果以%表示至小数点后三位,其他各项分析结果以%表示至小数点后二位。 数值的修约按GB/T 8170进行。 4.3重复性限和再现性限 本标准所列重复性限和再现性限为绝对偏差,以质量分数(%)表示。 在重复性条件下(3.1),采用本标准所列方法分析同一试样时,两次分析结果之差应在所列的重复性限(表3、表4和表5)内。如超出重复性限,应在短时间内进行第三次测定,测定结果与前两次或任一次分析结果之差值符合重复性限的规定时,则取其平均值,否则,应查找原因,重新按上述规定进行分析。 在再现性条件下(3.2),采用本标准所列方法对同一试样各自进行分析时,所得分析结果的平均值之差应在所列的再现性限(表3、表4和表5)内。 4.4 空白试验 不加入试样,按照相同的测定步骤进行试验并使用相同量的试剂,对得到的测定结果进行校正。 4.5灼烧 将滤纸和沉淀放入预先已灼烧并恒量的坩埚中,为避免产生火焰,在氧化性气氛中缓慢干燥、灰化,并灰化至无黑色炭颗粒后,放入高温炉(6.2.7)中,在规定的温度下灼烧。在干燥器(6.2.6)中冷却至室温,称量。 4.6 恒量 经第一次灼烧、冷却、称量后,通过连续对每次15 min的灼烧,然后冷却、称量的方法来检查恒定质量,当连续两次称量之差小于0.000 5 g时,即达到恒量。 4.7检查氯离子(硝酸银检验) 按规定洗涤沉淀数次后,用水冲洗一下漏斗的下端,继续用水洗涤滤纸和沉淀,将滤液收集于试管中,加几滴硝酸银溶液(6.1.31),观察试管中的溶液是否浑浊。如果浑浊,继续洗涤并检验,直至用硝酸银检验不再浑浊为止。 4.8试剂总则 除另有说明外,所用试剂应不低于分析纯,用于标定的试剂应为基准试剂。所用水应不低于GB/T 6682中规定的三级水的要求。 本标准所列市售浓液体试剂的密度指20℃的密度(ρ),单位为克每立方厘米(g/cm3)。 在化学分析中,所用酸或氨水,凡未注浓度者均指市售的浓酸或浓氨水。 用体积比表示试剂稀释程度,例如:盐酸(1+2)表示1份体积的浓盐酸与2份体积的水相混合。 除另有说明外,标准滴定溶液的有效期为3个月,如果超过3个月,重新进行标定。 4.9检验方法的验证 本标准所列检验方法可以依照有证标准样品/标准物质(如GSB 08—1110、GSB 08—1355、GSB 08—1356、GSB 08—1357、GSB 08—2985)进行对比检验,以验证方法的准确性。 5试样的制备 按GB/T 12573方法取样,送往实验室的样品应是具有代表性的均匀样品。采用四分法或缩分器将试样缩分至约100 g,经150 μm方孔筛筛析后,除去杂物,将筛余物经过研磨后使其全部通过孔径为150 μm方孔筛,充分混匀,装入干净、干燥的试样瓶中,密封,进一步混匀供测定用。 如果试样制备过程中带入的金属铁可能影响相关的化学特性的测定,用磁铁吸去筛余物中的金属铁。 提示:尽可能快速地进行试样的制备,以防止吸潮。分析水泥和水泥熟料试样前。不需要烘干试样。 6化学分析方法 6.1试剂和材料 6.1.1 盐酸(HCl) 1.18 g/cm3~1.19 g/cm3,质量分数36%~38%。 6.1.2氢氟酸(HF) 1.15 g/cm3~1.18 g/cm3,质量分数40%。 6.1.3硝酸(HNO3) 1.39 g/cm3~1.41 g/cm3,质量分数65%~68%。 6.1.4硫酸(H2SO4) 1.84 g/cm3,质量分数95%~98%。 6.1.5高氯酸(HClO4) 1.60 g/cm3,质量分数70%~72%。 6.1.6冰乙酸(CH3COOH) 1.05 g/cm3,质量分数99.8%。 6.1.7磷酸(H3PO4) 1.68 g/cm3,质量分数85%。 6.1.8 甲酸(HCOOH) 1.22 g/cm3,质量分数88%。 6.1.9过氧化氢(H2O2) 1.11 g/cm3,质量分数30%。 6.1.10氨水(NH3·H2O) 0.90 g/cm3~0.91 g/cm3,质量分数25%~28%。 6.1.11三乙醇胺[N(CH2CH2OH)3] 1.12 g/cm3,质量分数99%。 6.1.12 乙醇 乙醇的体积分数95%。 6.1.13无水乙醇(C2H5OH) 无水乙醇的体积分数不低于99.5%。 6.1.14 丙三醇[C3H5(OH)3] 体积分数不低于99%。 6.1.15乙二醇(HOCH2CH2OH) 体积分数99%。 6.1.16溴水(Br2) 质量分数≥3%。 6.1.17 盐酸(1+1);(1+2);(1+3);(1+5);(1+9);(1+10);(3+97) 6.1.18 硝酸(1+1);(1+2);(1+9);(1+100) 6.1.19 硫酸(1+1);(1+4);(1+9);(5+95) 6.1.20 磷酸(1+1) 6.1.21 乙酸(1+1) 6.1.22 甲酸(1+1) 6.1.23 氨水(1+1) 6.1.24 乙醇(1+4) 6.1.25 三乙醇胺(1+2) 6.1.26氢氧化钠(NaOH) 6.1.27无水碳酸钠(Na2CO3) 将无水碳酸钠用玛瑙研钵研细至粉末状,贮存于密封瓶中。 6.1.28氯化铵(NH4Cl) 6.1.29焦硫酸钾(K2S2O7) 将市售的焦硫酸钾在蒸发皿中加热熔化,加热至无气泡产生,冷却并压碎熔融物,贮存于密封瓶中。 6.1.30氯化钡溶液(100 g/L) 将100g氯化钡(BaCl2·2H2O)溶于水中,加水稀释至1 L,必要时过滤后使用。 6.1.31硝酸银溶液(5 g/L) 将0.5g硝酸银(AgNO3)溶于水中,加入1 mL硝酸,加水稀释至100 mL,贮存于棕色瓶中。 6.1.32氢氧化钠溶液(10 g/L) 将10 g氢氧化钠(NaOH)溶于水中,加水稀释至1 L,贮存于塑料瓶中。 6.1.33硝酸铵溶液(20 g/L) 将2 g硝酸铵(NH4NO3)溶于水中,加水稀释至100 mL。 6.1.34钼酸铵溶液(50 g/L) 将5 g钼酸铵[(NH4)6Mo7O24·4H2O]溶于热水中,冷却后加水稀释至100 mL,贮存于塑料瓶中,必要时过滤后使用。此溶液在一周内使用。 6.1.35抗坏血酸溶液(5 g/L) 将0.5 g抗坏血酸(V.C)溶于100 mL水中,必要时过滤后使用。用时现配。 6.1.36 邻菲罗啉溶液(10 g/L乙酸溶液) 将1 g邻菲罗啉(C12H8N2·2H2O)溶于100 mL乙酸(1+1)中,用时现配。 6.1.37乙酸铵溶液(100 g/L) 将10g乙酸铵(CH3COONH4)溶于100 mL水中。 6.1.38 pH 3.0的缓冲溶液 将3.2 g无水乙酸钠(CH3COONa)溶于水中,加入120 mL冰乙酸,加水稀释至1 L。配制后用精密pH试纸检验。 6.1.39氢氧化钾溶液(200 g/L) 将200 g氢氧化钾(KOH)溶于水中,加水稀释至1 L,贮存于塑料瓶中。 6.1.40氯化锶溶液(锶50 g/L) 将152 g氯化锶(SrCl2·6H2O)溶解于水中,加水稀释至1 L,必要时过滤后使用。 6.1.41 二安替比林甲烷溶液(30 g/L盐酸溶液) 将3 g二安替比林甲烷(C23H24N4O2)溶于100 mL热的盐酸(1+10)中,必要时过滤后使用。 6.1.42碳酸铵溶液(100 g/L) 将10 g碳酸铵[(NH4)2CO3]溶解于100 mL水中。用时现配。 6.1.43氯化亚锡(SnCl2·2H2O) 6.1.44氨性硫酸锌溶液(100 g/L) 将50 g硫酸锌(ZnSO4·7H2O)溶于150 mL水和350 mL氨水中。静置至少24 h后使用,必要时过滤后使用。 6.1.45 明胶溶液(5 g/L) 将0.5 g明胶(动物胶)溶于100 mL 70℃~80℃的水中。用时现配。 6.1.46碳酸钠-硼砂混合熔剂(2+1) 将2份质量的无水碳酸钠(Na2CO3)与1份质量的无水硼砂(Na2B4O7)混匀研细,贮存于密封瓶中。 6.1.47高碘酸钾(KIO4) 6.1.48氢氧化钠溶液(200 g/L) 将20 g氢氧化钠(NaOH)溶于水中,加水稀释至100 mL,贮存于塑料瓶中。 6.1.49钼酸铵溶液(15 g/L) 将3 g钼酸铵[(NH4)6Mo7O24·4H2O]溶于100 mL热水中,加入60 mL硫酸(1+1),混匀。冷却后加水稀释至200 mL,贮存于塑料瓶中,必要时过滤后使用。此溶液在一周内使用。 6.1.50抗坏血酸溶液(50 g/L) 将5 g抗坏血酸(V.C)溶于100 mL水中,必要时过滤后使用。用时现配。 6.1.51 氯化钾(KCl) 颗粒粗大时,研细后使用。 6.1.52氟化钾溶液(150 g/L) 将150 g氟化钾(KF·2H2O)置于塑料杯中,加水溶解后,加水稀释至1 L,贮存于塑料瓶中。 6.1.53氯化钾溶液(50 g/L) 将50 g氯化钾(KCl)溶于水中,加水稀释至1 L。 6.1.54 氯化钾-乙醇溶液(50g/L) 将5 g氯化钾(KCl)溶于50 mL水后,加入50 mL乙醇(6.1.12),混匀。 6.1.55 pH 4.3的缓冲溶液 将42.8 g无水乙酸钠(CH3COONa)溶于水中,加入80 mL冰乙酸,加水稀释至1 L。配制后用精密pH试纸检验。 6.1.56 氟化钾溶液(20 g/L) 将20 g氟化钾(KF·2H2O)置于塑料杯中,加水溶解后,加水稀释至1 L,贮存于塑料瓶中。 6.1.57草酸铵溶液(50 g/L) 将50 g草酸铵[(NH4)2C2O4·H2O)]溶于水中,加水稀释至1 L,必要时过滤后使用。 6.1.58酒石酸钾钠溶液(100 g/L) 将10 g酒石酸钾钠(C4H4KNaO6·4H2O)溶于水中,加水稀释至100 mL。 6.1.59 pH 10的缓冲溶液 将67.5 g氯化铵(NH4Cl)溶于水中,加入570 mL氨水,加水稀释至1 L。配制后用精密pH试纸检验。 6.1.60盐酸羟胺(NH2OH·HCl) 6.1.61 氯化亚锡-磷酸溶液 将1 000 mL磷酸放在烧杯中,在通风橱中于电炉上加热脱水,至溶液体积缩减至850 mL~950 mL时,停止加热。待溶液温度降至100℃以下时,加入100 g氯化亚锡(6.1.43),继续加热至溶液透明,且无大气泡冒出时为止(此溶液的使用期一般不超过两周)。 6.1.62 H型732苯乙烯强酸性阳离子交换树脂(1×12) 将250 g钠型732苯乙烯强酸性阳离子交换树脂(1×12)用250 mL乙醇(6.1.12)浸泡12 h以上,然后倾出乙醇,再用水浸泡6 h~8 h。将树脂装入离子交换柱中,用1 500 mL盐酸(1+3)以5 mL/min的流速淋洗。然后再用蒸馏水逆洗交换柱中的树脂,直至流出液中无氯离子为止(4.7)。将树脂倒出,用布氏漏斗抽气抽滤,然后贮存于广口瓶中备用(树脂久放后,使用时应用水倾洗数次)。 用过的树脂浸泡在稀盐酸中,当积至一定数量后,除去其中夹带的不溶残渣,然后再用上述方法进行再生。 6.1.63五氧化二钒(V2O5) 6.1.64 电解液 将6 g碘化钾(KI)和6 g溴化钾(KBr)溶于300 mL水中,加入10 mL冰乙酸。 6.1.65 pH 6.0的总离子强度配位缓冲溶液 将294.1 g柠檬酸钠(C6H5Na3O7·2H2O)溶于水中,用盐酸(1+1)和氢氧化钠溶液(6.1.48)调整溶液的pH至6.0,用精密pH试纸检验,加水稀释至1 L。 6.1.66 氢氧化钠-无水乙醇溶液(0.1 mol/L) 将0.4 g氢氧化钠(NaOH)溶于100 mL无水乙醇(6.1.13)中,防止吸潮。 6.1.67甘油-无水乙醇溶液(1+2) 将500 mL丙三醇(6.1.14)与1 000 mL无水乙醇(6.1.13)混合,加入0.1 g酚酞,混匀。用氢氧化钠-无水乙醇溶液(6.1.66)中和至微红色。贮存于干燥密封的瓶中,防止吸潮。 6.1.68硝酸锶[Sr(NO3)2] 6.1.69 乙二醇-无水乙醇溶液(2+1) 将1 000 mL乙二醇(6.1.15)与500 mL无水乙醇(6.1.13)混合,加入0.2 g酚酞,混匀。用氢氧化钠-无水乙醇溶液(6.1.66)中和至微红色。贮存于干燥密封的瓶中,防止吸潮。 6.1.70硝酸银标准溶液[c(AgNO3)=0.05 mol/L] 称取2.123 5 g已于(150±5)℃烘过2 h的硝酸银(AgNO3),精确至0.000 1 g,置于烧杯中,加水溶解后,移入250 mL容量瓶中,加水稀释至刻度,摇匀。贮存于棕色瓶中,避光保存。 6.1.71 硫氰酸铵标准滴定溶液[c(NH4SCN)=0.05 mol/L] 称取(3.8±0.1)g硫氰酸铵(NH4SCN)溶于水,稀释至1 L。 6.1.72二氧化硅(SiO2)标准溶液 6.1.72.1 二氧化硅标准溶液的配制 称取0.200 0 g已于1 000℃~1 100℃灼烧过1 h的二氧化硅(SiO2,光谱纯),精确至0.000 1 g,置于铂坩埚中,加入2 g无水碳酸钠(6.1.27),搅拌均匀,在950℃~1 000℃高温下熔融15 min。冷却后,将熔融物浸出于盛有约100 mL沸水的塑料烧杯中,待全部溶解,冷却至室温后,移入1 000 mL容量瓶中。用水稀释至刻度,摇匀,贮存于塑料瓶中。此标准溶液每毫升含0.2 mg二氧化硅。 吸取50.00 mL上述标准溶液放入500 mL容量瓶中,用水稀释至刻度,摇匀,贮存于塑料瓶中。此标准溶液每毫升含0.02 mg二氧化硅。 6.1.72.2工作曲线的绘制 吸取每毫升含0.02 mg二氧化硅的标准溶液0 mL、2.00 mL、4.00 mL、5.00 mL、6.00 mL、8.00 mL、10.00 mL分别放入100 mL容量瓶中,加水稀释至约40 mL,依次加入5 mL盐酸(1+10)、8 mL乙醇(6.1.12)、6 mL钼酸铵溶液(6.1.34),摇匀。放置30 min后,加入20 mL盐酸(1+1)、5 mL抗坏血酸溶液(6.1.35),用水稀释至刻度,摇匀。常温下放置1 h后,用分光光度计(6.2.14),10 mm比色皿,以水作参比,于波长660 nm处测定溶液的吸光度。用测得的吸光度作为相对应的二氧化硅含量的函数,绘制工作曲线。 6.1.73三氧化二铁(Fe2O3)标准溶液 6.1.73.1 三氧化二铁标准溶液的配制(0.1 mg/mL) 称取0.100 0 g已于(950±25)℃灼烧过1 h的三氧化二铁(Fe2O3,基准试剂),精确至0.000 1 g,置于300 mL烧杯中,依次加入50 mL水、30 mL盐酸(1+1)、2 mL硝酸,低温加热微沸,待溶解完全,冷却至室温后,移入1 000 mL容量瓶中,用水稀释至刻度,摇匀。 提示:如果三氧化二铁不能全部溶解,可采用无水碳酸钠(6.1.27)作熔剂在铂坩埚中于950℃~1 000℃下熔融,酸化后移入1 000 mL容量瓶中。 6.1.73.2工作曲线的绘制 6.1.73.2.1 用于分光光度法的工作曲线的绘制 吸取每毫升含0.1 mg三氧化二铁的标准溶液0 mL;1.00 mL;2.00 mL;3.00 mL;4.00 mL;5.00 mL;6.00 mL分别放入100 mL容量瓶中,加水稀释至约50 mL,加入5 mL抗坏血酸溶液(6.1.35),放置5 min后,加入5 mL邻菲罗啉溶液(6.1.36)、10 mL乙酸铵溶液(6.1.37),用水稀释至刻度,摇匀。常温下放置30 min后,用分光光度计(6.2.14),10 mm比色皿,以水作参比,于波长510 nm处测定溶液的吸光度。用测得的吸光度作为相对应的三氧化二铁含量的函数,绘制工作曲线。 6.1.73.2.2 用于原子吸收分光光度法的工作曲线的绘制 吸取每毫升含0.1 mg三氧化二铁的标准溶液0 mL;10.00 mL;20.00 mL;30.00 mL;40.00 mL;50.00 mL分别放入500 mL容量瓶中,加入30 mL盐酸及10 mL氯化锶溶液(6.1.40),用水稀释至刻度,摇匀。将原子吸收分光光度计(6.2.15)调节至最佳工作状态,在空气-乙炔火焰中,用铁元素空心阴极灯,于波长248.3 nm处,以水校零测定溶液的吸光度。用测得的吸光度作为相对应的三氧化二铁含量的函数,绘制工作曲线。 6.1.74 氧化镁(MgO)标准溶液 6.1.74.1 氧化镁标准溶液的配制 称取1.000 0 g已于(950±25)℃灼烧过1 h的氧化镁(MgO,基准试剂或光谱纯),精确至0.000 1 g,置于300 mL烧杯中.加入50 mL水,再缓缓加入20 mL盐酸(1+1),低温加热至全部溶解,冷却至室温后,移入1 000 mL容量瓶中,用水稀释至刻度,摇匀。此标准溶液每毫升含1 mg氧化镁。 吸取25.00 mL上述标准溶液放入500 mL容量瓶中,用水稀释至刻度,摇匀。此标准溶液每毫升含0.05 mg氧化镁。 6.1.74.2工作曲线的绘制 吸取每毫升含0.05 mg氧化镁的标准溶液0 mL;2.00 mL;4.00 mL;6.00 mL;8.00 mL;10.00 mL;12.00 mL分别放入500 mL容量瓶中,加入30 mL盐酸及10 mL氯化锶溶液(6.1.40),用水稀释至刻度,摇匀。将原子吸收分光光度计(6.2.15)调节至最佳工作状态,在空气-乙炔火焰中,用镁元素空心阴极灯,于波长285.2 nm处,以水校零测定溶液的吸光度。用测得的吸光度作为相对应的氧化镁含量的函数,绘制工作曲线。 6.1.75 二氧化钛(TiO2)标准溶液 6.1.75.1 二氧化钛标准溶液的配制 称取0.100 0 g已于(950±25)℃灼烧过1 h的二氧化钛(TiO2,光谱纯),精确至0.000 1 g,置于铂坩埚中,加入4 g~6 g焦硫酸钾(6.1.29),在700℃~750℃喷灯或高温炉中熔融至透明。冷却后,熔块用硫酸(1+9)浸出,加热至50℃~60℃使熔块全部溶解,冷却至室温后,移入1 000 mL容量瓶中,用硫酸(1+9)稀释至刻度,摇匀。此标准溶液每毫升含0.1 mg二氧化钛。 吸取100.00 mL上述标准溶液放入500 mL容量瓶中,用硫酸(1+9)稀释至刻度,摇匀。此标准溶液每毫升含0.02 mg二氧化钛。 6.1.75.2工作曲线的绘制 吸取每毫升含0.02 mg二氧化钛的标准溶液0 mL;2.00 mL;4.00 mL;6.00 mL;8.00 mL;10.00 mL;12.00 mL;15.00 mL分别放入100 mL容量瓶中,依次加入10 mL盐酸(1+2)、10 mL抗坏血酸溶液(6.1.35)、5 mL乙醇(6.1.12)、20 mL二安替比林甲烷溶液(6.1.41),用水稀释至刻度,摇匀。常温下放置40 min后,使用分光光度计(6.2.14),10 mm比色皿,以水作参比,于波长420 nm处测定溶液的吸光度。用测得的吸光度作为相对应的二氧化钛含量的函数,绘制工作曲线。 6.1.76 氧化钾(K2O)、氧化钠(Na2O)标准溶液 6.1.76.1 氧化钾、氧化钠标准溶液的配制 称取1.582 9 g已于105℃~110℃烘过2 h的氯化钾(KCl,基准试剂或光谱纯)及1.885 9 g已于105℃~110℃烘过2 h的氯化钠(NaCl,基准试剂或光谱纯),精确至0.000 1g,置于烧杯中,加水溶解后,移入1 000 mL容量瓶中,用水稀释至刻度,摇匀。贮存于塑料瓶中。此标准溶液每毫升含1 mg氧化钾及1 mg氧化钠。 吸取50.00 mL上述标准溶液放入1 000 mL容量瓶中,用水稀释至刻度,摇匀。贮存于塑料瓶中。此标准溶液每毫升含0.05 mg氧化钾和0.05 mg氧化钠。 6.1.76.2工作曲线的绘制 6.1.76.2.1 用于火焰光度法的工作曲线的绘制 吸取每毫升含1 mg氧化钾及1 mg氧化钠的标准溶液0 mL;2.50 mL;5.00 mL;10.00 mL;15.00 mL;20.00 mL分别放入500 mL容量瓶中,用水稀释至刻度,摇匀。贮存于塑料瓶中。将火焰光度计(6.2.16)调节至最佳工作状态,按仪器使用规程进行测定。用测得的检流计读数作为相对应的氧化钾和氧化钠含量的函数,绘制工作曲线。 6.1.76.2.2 用于原子吸收分光光度法的工作曲线的绘制 吸取每毫升含0.05 mg氧化钾及0.05 mg氧化钠的标准溶液0 mL;2.50 mL;5.00 mL;10.00 mL;15.00 mL;20.00 mL;25.00 mL分别放入500 mL容量瓶中,加入30 mL盐酸及10 mL氯化锶溶液(6.1.40),用水稀释至刻度,摇匀,贮存于塑料瓶中。将原子吸收分光光度计(6.2.15)调节至最佳工作状态,在空气-乙炔火焰中,分别用钾元素空心阴极灯于波长766.5 nm处和钠元素空心阴极灯于波长589.0 nm处,以水校零测定溶液的吸光度。用测得的吸光度作为相对应的氯化钾和氧化钠含量的函数,绘制工作曲线。 6.1.77一氧化锰(MnO)标准溶液 6.1.77.1 无水硫酸锰(MnSO4) 取一定量硫酸锰(MnSO4,基准试剂或光谱纯)或含水硫酸锰(MnSO4·xH2O,基准试剂或光谱纯)置于称量瓶中,在(250±10)℃温度下烘干至恒量,所获得的产物为无水硫酸锰(MnSO4)。 6.1.77.2一氧化锰标准溶液的配制(0.05 mg/mL) 称取0.106 4 g无水硫酸锰(6.1.77.1),精确至0.000 1 g,置于烧杯中,加水溶解后,加入约1 mL硫酸(1+1),移入1 000 mL容量瓶中,用水稀释至刻度,摇匀。 6.1.77.3工作曲线的绘制 6.1.77.3.1 用于分光光度法的工作曲线的绘制 吸取每毫升含0.05 mg一氧化锰的标准溶液0 mL;2.00 mL;6.00 mL;10.00 mL;14.00 mL;20.00 mL分别放入200 mL烧杯中,加入5 mL磷酸(1+1)、10 mL硫酸(1+1),加水稀释至约50 mL,加入1 g高碘酸钾(6.1.47),加热微沸30 min左右至溶液达到最大颜色深度,冷却至室温后,移入100 mL容量瓶中,用水稀释至刻度,摇匀。使用分光光度计(6.2.14),10 mm比色皿,以水作参比,于波长530 nm处测定溶液的吸光度。用测得的吸光度作为相对应的一氧化锰含量的函数,绘制工作曲线。 6.1.77.3.2 用于原子吸收分光光度法的工作曲线的绘制 吸取每毫升含0.05 mg一氧化锰的标准溶液0 mL;5.00 mL;10.00 mL;15.00 mL;20.00 mL;25.00 mL;30.00 mL分别放入500 mL容量瓶中,加入30 mL盐酸及10 mL氯化锶溶液(6.1.40),用水稀释至刻度,摇匀。将原子吸收分光光度计(6.2.15)调节至最佳工作状态,在空气-乙炔火焰中,用锰元素空心阴极灯,于波长279.5 nm处,以水校零测定溶液的吸光度。用测得的吸光度作为相对应的一氧化锰含量的函数,绘制工作曲线。 6.1.78五氧化二磷(P2O5)标准溶液 6.1.78.1五氧化二磷标准溶液的配制 称取0.191 7 g已于105℃~110℃烘过2 h的磷酸二氢钾(KH2PO4,基准试剂),精确至0.000 1 g,置于烧杯中,加水溶解后,移入1 000 mL容量瓶中,用水稀释至刻度,摇匀。此标准溶液每毫升含0.1 mg五氧化二磷。 吸取50.00 mL上述标准溶液放入500 mL容量瓶中,用水稀释至刻度,摇匀。此标准溶液每毫升含0.01 mg五氧化二磷。 6.1.78.2工作曲线的绘制 吸取每毫升含0.01 mg五氧化二磷的标准溶液0 mL;2.00 mL;4.00 mL;6.00 mL;8.00 mL;10.00 mL;15.00 mL;20.00 mL;25.00 mL分别放入200 mL烧杯中,加水稀释至50 mL,加入10 mL钼酸铵溶液(6.1.49)和2 mL抗坏血酸溶液(6.1.50),加热微沸(1.5±0.5)min,冷却至室温后,移入100 mL容量瓶中,用盐酸(1+10)洗涤烧杯并用盐酸(1+10)稀释至刻度,摇匀。用分光光度计(6.2.14),10 mm比色皿,以水作参比,于波长730 nm处测定溶液的吸光度。用测得的吸光度作为相对应的五氧化二磷含量的函数。绘制工作曲线。 6.1.79氧化锌(ZnO)标准溶液 6.1.79.1 氧化锌标准溶液的配制 称取1.000 0 g氧化锌(ZnO,纯度不小于99.99%),精确至0.000 1g,置于300 mL烧杯中,加入50 mL水,再加入20 mL盐酸(1+1)。加热溶解,冷却至室温,移入1 000 mL容量瓶中,用水稀释至刻度,摇匀。此标准溶液每毫升含1 mg氧化锌。 吸取25.00 mL上述标准溶液放入500 mL容量瓶中,用水稀释至刻度,摇匀。此标准溶液每毫升含0.05 mg氧化锌。 6.1.79.2工作曲线的绘制 吸取每毫升含0.05 mg氧化锌的标准溶液0 mL;1.00 mL;2.00 mL;3.00 mL;4.00 mL;5.00 mL;6.00 mL分别放入500 mL容量瓶中,加入30 mL盐酸及10 mL氯化锶溶液(6.1.40),用水稀释至刻度,摇匀。将原子吸收分光光度计(6.2.15)调节至最佳工作状态,在空气-乙炔火焰中,用锌元素空心阴极灯,于波长213.8nm处,以水校零测定溶液的吸光度。用测得的吸光度作为相对应的氧化锌含量的函数,绘制工作曲线。 6.1.80碳酸钙标准溶液[c(CaCO3)=0.024 mol/L] 称取0.6 g(m1)已于105℃~110℃烘过2 h的碳酸钙(CaCO3,基准试剂),精确至0.000 1g,置于300 mL烧杯中,加入约100 mL水,盖上表面皿,沿杯口慢慢加入6 mL盐酸(1+1),搅拌至碳酸钙全部溶解,加热煮沸并微沸1 min~2 min。冷却至室温后,移入250 mL容量瓶中,用水稀释至刻度,摇匀。 6.1.81 EDTA标准滴定溶液[c(EDTA)=0.015 mol/L] 6.1.81.1 EDTA标准滴定溶液的配制 称取5.6 g EDTA(乙二胺四乙酸二钠,C10H14N2O8Na2·2H2O)置于烧杯中,加入约200 mL水,加热溶解,加水稀释至1 L,摇匀,必要时过滤后使用。 6.1.81.2 EDTA标准滴定溶液浓度的标定 吸取25.00 mL碳酸钙标准溶液(6.1.80)放入300 mL烧杯中,加水稀释至约200 mL水,加入适量的CMP混合指示剂(6.1.94),在搅拌下加入氢氧化钾溶液(6.1.39)至出现绿色荧光后再过量2 mL~3 mL,用EDTA标准滴定溶液滴定至绿色荧光消失并呈现红色(V1)。 EDTA标准滴定溶液的浓度按式(1)计算: (1) 式中: c(EDTA)——EDTA标准滴定溶液的浓度,单位为摩尔每升(mol/L); m1——按6.1.80配制碳酸钙标准溶液的碳酸钙的质量,单位为克(g); V1——滴定时消耗EDTA标准滴定溶液的体积,单位为毫升(mL); V01——空白试验滴定时消耗EDTA标准滴定溶液的体积,单位为毫升(mL); 100.09——CaCO3的摩尔质量,单位为克每摩尔(g/mol); 10——全部碳酸钙标准溶液与所分取溶液的体积比。 6.1.81.3 EDTA标准滴定溶液对各氧化物的滴定度的计算 EDTA标准滴定溶液对三氧化二铁、三氧化二铝、氧化钙、氧化镁的滴定度分别按式(2)、式(3)、式(4)、式(5)计算: =c(EDTA)×79.84 (2) =c(EDTA)×50.98 (3) =c(EDTA)×56.08 (4) =C(EDTA)×40.31 (5) 式中: ——EDTA标准滴定溶液对三氧化二铁的滴定度,单位为毫克每毫升(mg/mL); ——EDTA标准滴定溶液对三氧化二铝的滴定度,单位为毫克每毫升(mg/mL); ——EDTA标准滴定溶液对氧化钙的滴定度,单位为毫克每毫升(mg/mL); ——EDTA标准滴定溶液对氧化镁的滴定度,单位为毫克每毫升(mg/mL); c(EDTA)——EDTA标准滴定溶液的浓度,单位为摩尔每升(mol/L); 79.84——(1/2Fe2O3)的摩尔质量,单位为克每摩尔(g/mol); 50.98——(1/2Al2O3)的摩尔质量,单位为克每摩尔(g/mol); 56.08——CaO的摩尔质量,单位为克每摩尔(g/mol); 40.31——MgO的摩尔质量,单位为克每摩尔(g/mol)。 6.1.82硫酸铜标准滴定溶液[c(CuSO4)=0.015 mol/L] 6.1.82.1 硫酸铜标准滴定溶液的配制 称取3.7g硫酸铜(CuSO4·5H2O)溶于水中,加入4滴~5滴硫酸(1+1),加水稀释至1 L,摇匀。 6.1.82.2 EDTA标准滴定溶液与硫酸铜标准滴定溶液体积比的标定 从滴定管中缓慢放出10.00 mL~15.00 mL EDTA标准滴定溶液(V2,6.1.81)于300 mL烧杯中,加水稀释至约150 mL,加入15 mL pH 4.3的缓冲溶液(6.1.55),加热至沸,取下稍冷,加入4滴~5滴PAN指示剂溶液(6.1.99),用硫酸铜标准滴定溶液滴定至亮紫色(V3)。 EDTA标准滴定溶液与硫酸铜标准滴定溶液的体积比按式(6)计算: (6) 式中: K1——EDTA标准滴定溶液与硫酸铜标准滴定溶液的体积比; V2——加入EDTA标准滴定溶液的体积,单位为毫升(mL); V3——滴定时消耗硫酸铜标准滴定溶液的体积,单位为毫升(mL)。 6.1.83氢氧化钠标准滴定溶液[c(NaOH)=0.15 mol/L] 6.1.83.1 氢氧化钠标准滴定溶液的配制 称取30 g氢氧化钠(NaOH)溶于水后,加水稀释至5 L,充分摇匀,贮存于塑料瓶或带胶塞(装有钠石灰干燥管)的硬质玻璃瓶内。 |
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 |
服务热线:400-001-5431 | 电话:010-8572 5110 | 传真:010-8581 9515 | Email: bz@bzfyw.com | |
版权所有: 北京悦尔信息技术有限公司 2008-2020 京ICP备17065875号-1 51La |
本页关键词: |
GB/T 176-2017, GB 176-2017, GBT 176-2017, GB/T176-2017, GB/T 176, GB/T176, GB176-2017, GB 176, GB176, GBT176-2017, GBT 176, GBT176 |