![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative. According to the requirements of Document JIANBIAO [2014] No.189 issued by the Ministry of Housing and Urban-Rural Development of the People's Republic of China - Notice on printing and distributing the development and revision plan on engineering construction standards and codes in 2015, the drafting group of standard has revised this standard through extensive investigation and study, careful summarization of practical experience and reference to relevant international and foreign advanced standards and on the basis of widely soliciting for opinions. This standard comprises 12 clauses and 1 annex, including general provisions, terms, water supply system, design flow, intake, pump house, water transmission and distribution, general layout of waterworks, water treatment, waste residuals treatment of waterworks, emergency water supply, monitoring and control, etc. The following main technical revisions have been made with respect to this standard: 1. The terms that are duplicated with the current national standard GB/T 50125 Standard for basic terms of water and wastewater engineering are no longer included in this standard, and some terms have been supplemented and adjusted. 2. High-speed clarification tank, arsenic removal, hollow fiber microfiltration and ultrafiltration membrane filtration, chlorine disinfection with sodium hypochlorite, chloramine disinfection with sodium hypochlorite and ammonium sulphate, ultraviolet disinfection and emergency water supply have been added. 3. The water consumption norm and design parameters of some water treatment structures have been adjusted. The provisions printed in bold type in this standard are compulsory and must be enforced strictly. The Ministry of Housing and Urban-Rural Development of the People's Republic of China is in charge of the administration of this standard and the interpretation of the compulsory provisions, and Shanghai Municipal Engineering Design Institute (Group) Co., Ltd. is responsible for the interpretation of specific technical contents. During the process of implementing this standard, you are kindly requested to send your opinions and advice (if any) to Shanghai Municipal Engineering Design Institute (Group) Co., Ltd. (Address: No.901, North Zhongshan No.2 Road, Zhongshan District, Shanghai, 200092, China). Standard for design of outdoor water supply engineering 1 General provisions 1.0.1 This standard is hereby formulated to standardize the design of outdoor water supply engineering, ensure the engineering design quality, meet the requirements of water flow, water quality and water pressure, and achieve the objectives of safety and reliability, advanced technology, economic rationality and convenient management. 1.0.2 This standard is applicable to the design for new construction, extension and renovation of permanent water supply engineering in towns and industrial areas. 1.0.3 The design of water supply engineering shall be based on the approved urban master plan and water supply system planning. Selection of water source, location of plants and stations, and determination of water transmission and distribution pipelines shall meet the requirements of relevant special planning. 1.0.4 The design of water supply engineering shall give comprehensive consideration to conservation of water resources, protection of water ecological environment and sustainable utilization of water resources, correctly handle various water use relationships and improve water use efficiency. 1.0.5 The design of water supply engineering shall implement the principle of land conservation and rational utilization of land resources. 1.0.6 The design of water supply engineering shall follow the principle of long-term planning, combining short-term and long-term planning, and giving priority to short-term planning. The short-term design period should be 5 to 10 years, and the long-term design period should be 10 to 20 years. 1.0.7 The design service life of the major structure of water supply engineering structures and the structure of underground main pipe for water transmission and distribution shall comply with the relevant provisions of the current national standard GB 50788 Technical code for water supply and sewerage of urban. The design service life of main equipment, apparatus and other pipelines should be determined by technical and economic comparison according to materials, product renewal cycle and convenience of replacement. 1.0.8 The design of water supply engineering shall actively adopt effective new technologies, new processes, new materials and new equipment on the basis of continuously summing up production practice experience and scientific research. 1.0.9 On the premise of ensuring the safety of water supply, the design of water supply engineering shall reasonably reduce the engineering cost and operation cost, lessen the environmental impact and facilitate the operation optimization and management. 1.0.10 In addition to this standard, the design of water supply engineering shall also comply with the requirements of the current relevant standards of the nation. 2 Terms 2.0.1 mixed well ground water intake structure consisting of partially penetrating large opening well and one or several tube well filters arranged below the bottom of the well 2.0.2 inverted layer graded gravel bed laid at the inlet of large opening well or infiltration gallery, with grain size from fine to coarse along the water flow direction 2.0.3 suction intank canal structure that connects the water inlet pipe (canal) with the suction sump (well), so that the inflow water flows evenly into the suction sump (well) 2.0.4 inflow runner water flow channel that connects the suction sump with the suction inlet of the water pump for improving the suction conditions of large water pump 2.0.5 biological pre-treatment water purification process that mainly uses biological action to remove ammonia nitrogen, foreign odor and organic micro-pollutants in raw water 2.0.6 shutter filter air-water backwash filter that may be equipped with single-layer or multi-layer filter materials, with water introduced at one side of the filter grid and drained through flap valve at the other side only when washing stops 2.0.7 flap valve valve that can be turned over within the range of 0° to 90° to form different opening degrees, with valve plate taking the long side as the rotation axis 2.0.8 ferrosoferric-coagulation sedimentation for defluorinate process in which the fluoride ions are removed from the water by filtration after adding substances with coagulability or those can generate sediments with fluoride into water to form a large number of destabilized colloidal substances or sediments, with the fluoride coagulated or precipitated consequently 2.0.9 activated aluminum process for defluorinate process in which the fluoride is removed from the water by using activated alumina filter material to adsorb and exchange fluoride ions 2.0.10 regeneration process in which the exchange capacity of ion exchanger or filter material has been restored as before with regenerant after its failure 2.0.11 adsorption capacity ability of a filter material or ion exchanger to adsorb certain substances or ions 2.0.12 fouling index overall indicator of the concentration and filtration characteristics of suspended solids and colloidal substances in the feed, and indicator of the clogging degree caused by the feed to the microporous membrane 2.0.13 chlorine disinfection process of oxidation and disinfection by adding liquid chlorine or sodium hypochlorite, bleaching powder and bleaching powder concentrate into water 2.0.14 ultraviolet (UV) reactor equipment for disinfection by irradiating water body with UV lamp, consisting of UV lamp, quartz casing, ballast, UV intensity sensor and cleaning system 2.0.15 closed vessel reactor UV reactor with UV lamp arranged in a closed pipeline 2.0.16 ozonation method for purifying water by using the direct oxidation of ozone in water and the oxidation ability of generated hydroxyl radicals 2.0.17 activated carbon adsorption tank treatment structure with single granular activated carbon as adsorption filler, also having biodegradation effect 2.0.18 granular activated carbon-sand filter filter that can remove turbidity and organic matters simultaneously by adding a thick sand filter layer under the carbon layer of the downflow activated carbon adsorption tank 2.0.19 inside-out hollow fiber membrane hollow fiber membrane that filters the water from inside to outside of the membrane under the action of pressure 2.0.20 outside-in hollow fiber membrane hollow fiber membrane that filters the water from outside to inside of the membrane under the action of pressure 2.0.21 pressurized membrane process membrane process in which water to be filtered is led under the action of positive pressure into a cylindrical pressure vessel filled with hollow fiber membrane for filtration 2.0.22 submerged membrane process membrane process in which the hollow fiber membrane is placed in a tank of water to be filtered, and water produced by the membranes is filtered under the action of negative pressure 2.0.23 dead-end filtration mode of filtration in which the water to be filtered completely penetrates through the membrane 2.0.24 cross-flow filtration mode of filtration in which the water to be filtered partially penetrates through the membrane and the rest only flows through the membrane surface 2.0.25 integrity test regular detection of pollutant removal capacity and membrane damage degree of the membrane system 2.0.26 module set filter unit that can operate independently in the pressurized membrane process system, consisting of membrane element, bracket, water collection and distribution pipe, air distribution pipe and various valves 2.0.27 membrane tank filter unit that can operate independently in the submerged membrane process system 2.0.28 membrane cassette basic filtration module in the membrane tank, including membrane element, bracket, water collection pipe and air distribution pipe 2.0.29 pressure decay test method of detecting the integrity of membrane system by monitoring the air pressure decay rate of membrane system based on bubble point principle 2.0.30 leak test method of locating the broken point of membrane by bubbles based on the bubble point principle 2.0.31 normal flux membrane flux when all module sets (membrane tanks) in the system are in filtration state under the conditions of design water temperature and design flow 2.0.32 maximum flux membrane flux when the minimum number of module sets (membrane tanks) in the system is in filtration state under the conditions of design water temperature and design flow 2.0.33 normal transmembrane pressure transmembrane pressure difference when all module sets (membrane tanks) in the system are in filtration state under the conditions of design water temperature and normal flux 2.0.34 maximum transmembrane pressure transmembrane pressure difference when the maximum allowable number of module sets (membrane tanks) in the system is in unfiltered state under the conditions of design water temperature and design flux 2.0.35 chemical stability degree of influence of various chemical reactions in water on water quality and pipelines, including water corrosion on pipelines, precipitation of insoluble substances, dissolution and release of corrosion products on pipe walls, formation and accumulation of disinfection by-products in water, etc. 2.0.36 biostability potential of biodegradable organic matters in finished water to support the growth of heterotrophic bacteria 2.0.37 Larson Ratio (LR) index used to relatively quantitatively predict the corrosion tendency of chloride ions and sulfate ions in water to metal pipes and dissolution and release tendency of corrosion products on pipe walls 2.0.38 adjusting tank structure used to adjust the inflow and outflow of water 2.0.39 drain tank adjusting tank mainly used to receive and adjust the backwash wastewater of the filter tank, also called recycling water tank when the backwash wastewater is reused 2.0.40 sludge discharge tank adjusting tank mainly used to receive and adjust the waste residuals in sedimentation tank 2.0.41 sludge tank with floating trough sludge discharge tank with floating trough for collecting liquid supernatant 2.0.42 combined sludge tank adjusting tank used to receive and adjust not only waste residuals in sedimentation tank, but also backwash wastewater from filter tank 2.0.43 design turbidity value of raw water turbidity value of raw water used to determine the design scale of waste residuals treatment system, that is, the treatment capacity 2.0.44 supernumerary sludge amount of sludge caused by the difference when the turbidity of raw water is higher than the design value, including the amount of sludge caused by chemicals 2.0.45 sludge drying bed disposal facility that removes most water from sludge by soil infiltration or natural evaporation 2.0.46 emergency water supply water supply mode that is adopted by appropriate reduction, decompression or intermittent water supply, or by using emergency water resource or alternate water resource when an emergency occurs in the city and the original water supply system cannot meet the normal water demand of the city 2.0.47 alternate water resource water resource that is built to cope with the shortage or unavailability of common water resources caused by water quantity or water quality problems such as extreme arid climate, periodic tide and seasonal drainage, and can be used as alternate water resource for common water resources, usually aiming at meeting the guarantee rate of urban water supply in the planning period 2.0.48 emergency water resource water resource that is built to cope with sudden water pollution, with water quality basically meeting the requirements and with the ability of fast switching with common water resources, usually aiming at meeting the living and domestic water needs of urban residents to the maximum extent 2.0.49 emergency water treatment emergency purification measure taken to achieve water quality standards when water quality is affected by sudden pollution or emergency water resource with relatively poor water quality is used 3 Water supply system 3.0.1 The selection of water supply system shall be determined according to the requirements of local topography, water resource conditions, town planning, overall urban-rural development, water supply scale, water quality, water pressure and water supply safety, combined with the original water supply engineering facilities, starting from the overall situation and through comprehensive consideration after technical and economic comparison. 3.0.2 The urban water supply system with large topographic elevation difference should adopt separate pressure water supply. For water supply areas far away from waterworks or with high local topography, pressurized pumping station may be set up and zoned water supply may be adopted. 3.0.3 When the industrial enterprises with large water consumption are relatively concentrated and suitable water resources are available, the industrial water supply system may be set up independently through technical and economic comparison, and separate quality water supply may be adopted. 3.0.4 When the topographic difference between water source and water supply area is available, technical and economic comparison shall be made between gravity water transmission and distribution system and pressurized water transmission and distribution system to choose the best of both. 3.0.5 When the water supply system supplies water to a wide range of cities and towns by means of zoned water supply, selection of raw water or clear water, layout of transmission pipelines and setting of adjusting tank and pressurized pumping station shall be determined through technical and economic comparison of multiple schemes. 3.0.6 The water supply system with multiple water resources shall have the ability to dispatch raw water or pipe network water to each other. 3.0.7 The alternate water resource or emergency water resource of urban water supply system shall comply with the relevant provisions of the current national standards GB 50788 Technical code for water supply and sewerage of urban and GB 50282 Code for urban water supply engineering planning. 3.0.8 The setting of water regulation structures in urban water supply system should be determined after technical and economic comparison of multiple schemes, which may be concentrated in the water purification plant (clean water tank) or partially located in the water distribution pipe network (high-level tank and tank pumping station). 3.0.9 The water quality of the water supply system for domestic water must comply with the relevant provisions of GB 5749 Standards for drinking water quality. The water quality of special industrial water supply system shall be determined according to the requirements of users. 3.0.10 When the water pressure of the water supply network is determined according to the storeys of the building to which water is supplied directly, the minimum service head at the user's connection shall be 10 m on the first floor, 12 m on the second floor and 4 m for each additional floor above the second floor. When the secondary water supply facilities mostly adopt the superimposed pressure water supply mode, the minimum service head at the user's connection of direct water supply by water pressure of the water supply network should be appropriately increased. 3.0.11 The design for extension or renovation of the urban water supply system shall make full use of the original water supply facilities. Foreword i 1 General provisions 2 Terms 3 Water supply system 4 Design flow 5 Intake 5.1 Selection of water source 5.2 Ground water intake structure 5.3 Surface water intake structure 6 Pump house 6.1 General requirements 6.2 Suction intank canal, suction sump (well) and water suction condition of pump 6.3 Suction pipe and the discharge pipe within pump house 6.4 Hoisting equipment 6.5 Pump unit layout 6.6 Pump house layout 7 Water transmission and distribution 7.1 General requirements 7.2 Hydraulic calculation 7.3 Long distance water transmission pipeline 7.4 Piping layout and laying 7.5 Pipe (canal) materials and appurtenances 7.6 Storage structure 8 General layout of waterworks 9 Water treatment 9.1 General requirements 9.2 Pre-treatment 9.3 Dosage of coagulant and coagulant aid 9.4 Coagulation, sedimentation and clarification 9.5 Filtration 9.6 Groundwater deironing and demanganize 9.7 Defluorinate 9.8 Dearsenicing 9.9 Disinfection 9.10 Ozonation 9.11 Activated carbon adsorption 9.12 Hollow fiber microfiltration and ultrafiltration membrane filtration 9.13 Stabilization treatment of water quality 10 Waste residuals treatment of waterworks 10.1 General requirements 10.2 Process flow 10.3 Adjusting 10.4 Thickening 10.5 Balancing 10.6 Dewatering 10.7 Waste residuals reclaiming and reusing 10.8 Sludge cake disposing and utilizing 11 Emergency water supply 11.1 General requirements 11.2 Emergency water resource 11.3 Emergency water treatment 12 Monitoring and control 12.1 General requirements 12.2 Online monitoring 12.3 Control 12.4 Computer control and management system 12.5 Monitoring system 12.6 Water supply information system Annex A Hydraulic parameter values (n, Ch, Δ) for pipe friction head loss calculation Explanation of wording in this standard List of quoted standards 1 总 则 1. 0. 1 为规范室外给水工程设计 ,保障工程设计质量 ,满足水量 、 水质、水压的要求 ,做到安全可靠 、技术先进、经济合理、管理方便, 制定本标准 。 1. 0. 2 本标准适用于新建 、扩建和改建的城镇及工业区永久性给 水工程设计 。 1. 0. 3 给水工程设计应以批准的城镇总体规划和给水专业规划为主要依据 。水源选择、厂站位置、输配水管线路等的确定应符合相关专项规划的要求 。 1. 0. 4 给水工程设计应综合考虑水资源节约 、水生态环境保护和水资源的可持续利用 ,正确处理各种用水的关系 ,提高用水效率 。 1. 0. 5 给水工程设计应 贯彻 节约用地 和 土地资 源合理利 用的 原则 。 1. 0. 6 给水工程设计应按远期规划 、近远期结合、以近期为主的原则 。近期设计年限直采用 5 年 10 年.远期设计年限宜采用 10年 20 年 。 1. 0. 7 给水工程构筑物 主体结构和地下输 配水 干 管的结构设计使用年限应符合现行国家标准《 城镇 给 水排 水技术规范》 GB 50788 的有关规定 。主要设备 、器材 和其他管道的设计使用年限宜按材质、产品更新周期和更换的便捷性 ,经技 术 经 济 比较 确定 。 1. 0. 8 给水工程设计应 在不断总结生产实践经验和科学研究 的基础上 ,积极 采 用行 之 有 效 的新技 术 、新工 艺 、新材 料 和 新 设备 。 1. 0. 9 在保证供水安全的前提下 ,给水工程设计应合理降低工程造价及运行成本 、减少环境影响和便于运行优化及管理。 1.0.10 给水工程设计除应符合本标准的规定外 ,尚应符合国家 现行有关标准的规定 。 2 术语 2. 0.1 复合井 mixed well 由非完整式大口井和井底以下设置一根至数根管井过滤器所 组成的地下水取水构筑物 。 2. 0. 2 反滤层 inverted layer 在大口井或渗渠进水处铺设的粒径沿水流方向由细到粗的级 配砂砾层 。 2. 0. 3 前池 suction intank canal 连接进水管渠 和吸水池 ( 井) ,使进水水流均匀进 入吸水 池( 井) 的构筑物。 2. 0. 4 进水流道 inflow runner 为改善大型水泵吸水条件而设置的连接吸水池与水泵吸入口的水流通道。 2. 0. 5 生物预处理 biological pre-treatment 主要利用生物作用 ,去除原水中氨氮 、异臭 、有机微污染物等 的净水过程。 2. 0. 6 翻板滤池 shutter filter 在滤格一{则进水和另一侧采用翻板阀排水 ,冲洗时不排水 、冲 洗停止时以 翻板阀排水 ,可设置单层或 多层滤料 的气水反 冲洗 滤池 。 2. 0. 7 翻板阅 flap valve 阀板以长边为转动轴 ,可在 0°~ 90°。范围内翻转形成不同开度的阀门。 2. 0. 8 铁盐混凝沉淀 法 除氟 ferrosoferriccoagulation sedimentation for defluorinate 采用在水中投加具有凝聚能力或与氟化物产生沉淀的物质 , 形成大量脱稳胶体物质或沉淀 ,氟化物也随之凝聚或沉淀 ,后续再 通过过滤将氟离子从水中除去的过程 。 2. 0. 9 活性氧化铝吸附法除氟 activated aluminum process for defluorinate 采用活性氧化铝滤料吸附 、交换氟离子 ,将氟化物从水中除去 的过程。 2. 0. 10 再生 regeneration 离子交换剂或滤料失放后 ,用再生剂使其恢复到原形态交换 能力的工艺过程 。 2. 0. 11 吸附容量 adsorption capacity 滤料或离子交换剂吸附某种物质或离子的能力 。 2. 0.12 污染指数 fouling index 综合表示进料中悬浮物和胶体物质的浓度和过滤特性 ,表征 进料对微孔滤膜堵塞程度的指标 。 2. 0.13 氯消毒 chlorine disinfection 将液氯或次氯酸纳 、漂白粉 、漂白精投入水中接触完成氧化和 消毒的工艺 。 2. 0. 14 紫外线水消毒设备 ultraviolet ( UV ) reactor 通过紫外灯管照射水体而进行消毒的设备 ,由紫外灯、石英套 管 、镇流器 、紫外线强度传感器和清洗系统等组成 。 2. 0. 15 管式紫外线消毒设备( 管式消毒设备) closed vessel reactor 紫外灯管布置在闭合式的管路中的紫外线消毒设备 。 2. 0. 16 臭氧氧化 ozonation 利用臭氧在水中的直接氧化和所生成的起基自由基的氧化能力对水进行净化的方法 。 2. 0. 17 颗粒活性炭股附池 activated carbon adsorption tank 由单一颗粒活性炭作为吸附填料而兼有生物降解作用的处理构筑物 。 2. 0.18 炭砂滤池 granular activated carbon-sand filter 在下向流颗粒活性炭吸附池炭层下增设较厚的砂滤层,可同 时除浊 、除有机物的滤池 。 2.0. 19 内压力式中空纤维膜 inside-out hollow fiber membrane 在压力驱动下待滤水自膜丝内过滤至膜丝外的中空纤维膜 。 2. 0. 20 外压力式中空纤维膜 outside-in hollow fiber membrane 在压力驱动下待滤水自膜丝外过滤至膜丝内的中空纤维膜 。 2. 0. 21 压力式膜处理工艺 pressurized membrane process 由正压驱动待滤水进入装填中空纤维膜的柱状压力容器进行过滤的膜处理工艺 。 2. 0. 22 摆设式膜处理工艺 submerged membrane process 中空纤维膜置于待滤水水池内并由负压驱动膜产水进行过滤的膜处理工艺 。 2. 0. 23 死端过滤 dead-end filtration 待滤水全部透过膜滤的过捷方式 。 2. 0. 24 错流过滤 cross-flow filtration 待滤水部分透过膜滤 、其他仅流经膜表面的过滤方式 。 2. 0. 25 膜完整性检测 integrity test 膜系统污染物去除能力及膜破损程度的定期检测 。 2. 0. 26 膜组 module set 压力式膜处理工艺系统中由膜组件 、支架、集水配水管、布气 管以及各种阀门构成的可独立运行的过滤单元 。 2. 0. 27 膜地 membrane tank 浸没式膜处理工艺系统中可独立运行的过捷单元 。 2. 0. 28 膜箱 membrane cassette 膜池中带有膜组件 、支架、集水管和布气管的基本过滤模块 。 2. 0. 29 压力衰减测试 pressure decay test 基于泡点原理 ,通过监测膜系统气压衰减速率检测膜系统完 整性的方法 。 2. 0. 30 泄漏测试 leak test 基于泡点原理 ,通过气泡定位膜破损点的方法 。 2. 0. 31 设计通量 normal flux 设计水温和设计流量条件下 ,系统内所有膜组( 膜池) 均处 于 过滤状态时的膜通量 。 2. 0. 32 最大设计通量 maximum flux 设计水温和设计流量条件下 ,系统内最少数量的膜组( 膜地) 处于过滤状态时的膜通量 。 2. 0. 33 设计跨膜压差 normal transmembrane pressure 设计水温和设计通量条件下 ,系统内所有膜组( 膜池) 均处于 过滤状态时的跨膜压差 。 2. 0. 34 最大设计跨膜用差 maximum transmembrane pressure 设计水括主和设计通量条件下 ,系统内最大允许数量的膜组( 膜池)处于未过滤状态时的跨膜压差 。 2. 0. 35 化学稳定性 chemical stability 水中发生的各种化学反应对水质与管道的影响程度 ,包括水 对管道的腐蚀 、难溶性物质的沉淀析出、管壁腐蚀产物的溶解释放 以及水中消毒副产物的生成积累等 。 2. 0. 36 生物稳定性 biostability 出厂水中可生物降解有机物支持异养细菌生长的潜力 。 2. 0. 37 拉森指数 Larson Ratio ( LR ) 用以相对定量地预测水中氯离子 、硫酸根离子对金属管道腐 蚀及对管壁腐蚀产物溶解释放倾向性的指数 。 2. 0. 38 调节池 adjusting tank 用以调节进 、出水流量的构筑物。 2. 0. 39 排水池 drain tank 用以接纳和调节滤池反 冲洗废水为主的调节池 ,当反 冲洗废 水回用时 ,也称回用水池 。 2. 0. 40 排泥池 sludge discharge tank 用以接纳和调节沉淀池排泥水为主的调节池 。 2. 0. 41 浮动槽排泥池 sludge tank with floating t rough 设有浮动槽收集上清液的排泥池 。 2. 0. 42 综合排泥池 combined sludge tank 既接纳和调节沉淀池排泥水 ,又接纳和调节滤池反 冲洗废水 的调节池。 2. 0. 43 原水 浊 度设 计取值 design turbidity value of raw water 用以确定排泥水处理系统设计规模即处理能力的原水浊度取值。 2. 0. 44 超量泥渣 supernumerary sludge 原水浊度高于设计取值时 ,其差值所引起的泥渣量( 包括药剂 所引起的泥渣量) 。 2. 0. 45 干化场 sludge drying bed 通过土壤渗滤或自然蒸发 ,从泥渣中去除大部分含水量的处 置设施 。 2. 0. 46 应急供水 emergency water supply 当城市发生突发性事件 ,原有给水系统无法满足城市正常用 水需求,需要采取适当减量 、减压 、间歇供水或使用应急水源和备 用水源的供水方式 。 2. 0. 47 备用水源 alternate waterresource 为应对极端干旱气候或周期性咸潮 、季节性排涝等水源水量 或水质问题导致的常用水游、可取水量不足或无法取用而建设,能 与常用水源互为备用 、切换运行的水源,通常以满足规划期城市供 水保证率为目标 。 2. 0. 48 应急水源 emergency water resource 为应对突发性水源污染而建设 ,水源水质基本符合要求 ,且具 备与常用水源快速切换运行能力的水源 ,通常以最大限度地满足 城市居民生存 、生活用水为目标。 2. 0. 49 应急净水 emergency water treatment 在水源水质受到突发污染影响或采用水质相对较差的应急水 掘时,为实现水质达标所采取的应急净化处理措施 。 3 给 水 系 统 3. 0. 1 给水系统的选择应根据当地地形 、水源条件、城镇规划、城 乡统筹 、供水规模 、水质、水压及安全供水等要求,结合原有给水工 程设施 ,从全局出发 ,通过技术经济比较后综合考虑确定 。 3. 0. 2 地形高差大的城镇给水系统宜采用分压供水 。对于远离 水厂或局部 地形较高的供水区域 ,可 设 置 加压泵 站 ,采 用分区 供水 。 3. 0.3 当用水量较大的工业企业相对集中.且有合适水源可利用 时 ,经技术经济比较可独立设置工业用水给水系统 ,采用分质供水 。 3. 0. 4 当水源地与供水区域有地形高差可利用时 ,应对重力输配 水与加压输配水系统进行技术经济比较 ,择优选用 。 3. 0. 5 当给水系统采用区域供水 ,向范围较广的多个城镇供水 时 ,应对采用原水输送或清水输送以及输水管路的布置和调节水 池 、增压泵站等的设置 ,做多方案技术经济比较后确定 。 3. 0. 6 采用多水源供水的给水系统应具有原水或管网水相互调 度的能力 。 3. 0. 7 城市给水系统的备用水源或应急水源应符合现行国家标 准《 城镇给水排水技术规范》 GB 50788 和《 城市给 水 工程规划规 范》GB 50282 的有关规定。 3. 0. 8 城镇给水系统中水量调节构筑物的设置 ,宜对集中设于净 水厂内( 清水池) 或部分设于配水管网内( 高位水池 、水池泵站)做 多方案技术经济比较后确定 。 3. 0.9 生活用水的给水 系统供水水质必窥符合现行国家标准《生 活饮用水卫生标准》 GB 5749 的有关规定 ,专用的工业用水给水系 统水质应根据用户的要求确定 。 3. 0.10 给水管网水压按直接供水的建筑层数确定时 ,用户接管 处的最小服务水头,一层应为 l0m ,二层应为 12m,二层以上每增 加一层应增加 4m 。当二次供水设施较多采用叠压供水模式时 ,给 水管网水压直接供水用户接管处的最小服务水头宜适当增加 。 3. 0. 11 城镇给水系统的扩建或改建工程设计应充分利用原有给 水设施 。 4 设 计 水 量 4. 0. 1 设计供水量应由下列各项组成 : 1 综合生活用水.包括居民生活用水和公共设施用水 ; 2 工业企业用水 ; 3 挠洒市政道路 、广场和绿地用水; 4 管网漏损水量 ; 5 未预见用水 ; 6 消防用水 。 4. 0. 2 水厂设计规模应按设计年限 ,规划供水范围内综合生活 用水 、工业企业用水、浇洒市政道路、广场和绿地用水,管网漏损 水量 ,未预见用水的最高 日用水量之 和 确定 。当城市供水 部分 采 用再生 水 直接 供 水 时 ,水 厂 设计规模应 扣除 这 部分再 生 水 水量 。 4. 0. 3 居民生活用水定额和综合生活用水定额应根据当地国民 经济和社会发展 、水资源充沛程度、用水习惯,在现有用水定额基础上 ,结合城市总体规划和给水专业规划 ,本着 节约用水的原则 ,综合分析确定 。当缺乏实际用水资料情况下.可参照类似地区确定.或按表 4. 0. 3-1~ 表 1. 0. 3-4 选用。 表"4. 0. 3-1 最高日居民生活用水定额[ L/( 人 .d ) ] 城市 类型 超大 城市 特大 城市 I 型 大城市 II型 大城市 中等 城市 I型 小城市 II 型 小城市 一区 180~320 160~300 140 ~280 130~ 260 120~ 240 110~ 220 100~ 200 二区 110~ 190 100 ~180 90 ~ 170 80~ 160 70~ 150 60~ 110 50~130 三区 80~ 150 70 ~ 140 60~ 1 30 50~ 120 表 4. 0. 3-2 平均日居民生活用水定额[ L/(人 .d ) ] 城市 类型 超大 城市 特大 城市 I 型 大城市 II 型 大城市 中等 城市 l 型 小城市 II 型 小城市 一区 140 ~280 130~ 250 120 ~ 220 110 ~ 200 100 ~ 180 90 ~ 170 80 ~ 160 二区 100 ~ 150 90 ~ 140 80 ~ 130 70 ~ 120 60 ~ 110 50 ~ 100 40 ~ 90 三区 70 ~ 110 60 ~ 100 50 ~ 90 40 ~ 80 表 4. 0.3-3 最高日综合生活用水定额〔 L/(人 .d )] 城市 类型 越大 城市 特大 城市 I 型 大城市 II型 大城市 中等 城市 I型 小城市 II型 小城市 区 250 ~ 480 240 ~ 450 230~ 420 220 ~ 400 200 ~ 380 190 ~ 350 180 ~320 二区 200 ~ 300 170 ~ 280 160 ~ 270 150 ~260 130 ~ 240 120 ~ 230 110 ~ 220 士区 150 ~250 130~ 230 120 ~220 110 ~ 210 表 4. 0. 3-4 平均日综合生活用水定额 L/(人 .d ) 城市 类型 超大 城市 特大 城市 I型 大城市 II 型 大城市 中等 城市 I型 小城市 II型 小城市 一区 210 ~ 400 180 ~ 360 150 ~ 330 140 ~ 300 130 ~280 120~ 260 110~ 240 二区 150 ~ 230 130 ~ 210 110 ~ 190 90 ~ 170 80 ~ 160 70 ~ 150 60~ 140 三区 90 ~ 160 80 ~ 150 70 ~ 140 60~ 130 注 :1 超大城市指城区常住人口 1000 万及以上的城市.特大城市 指城区常住人口 500 万以上 1000 万以下的城市 . I型大城市街城区常住人口 300 万以上500 万以下的城市 .Il 型大城市指城区常住人门 100 万以上 300 万以下的 城市.中等城市指城区常位人口 50 万以上 100 万以下的城市. I型小城市 指城区常住人口 20 万以上50 万以下的城市 ,II 型小城市指城区常住人口 20 万以下的城市 。以上包括本数. 以下不包括本数 。 2 一区包括 :湖北 、湖南、江西、浙江、福建、广东、广西、海南、上海、江苏、安 徽.二区包括:重庆 、四川、贵州、云南 、黑龙江、吉林、辽宁、北京、天津、河 北 、山西、河南、山东、宁夏、陕西、内蒙古河套以东和甘肃黄河以东的地区。二区包括.新疆 、青海、西藏、内蒙古河套以阴阳甘肃黄河以西的地区 。 3 经济开发区和特区城市.根据用水实际情况.用水定额可酌情增加 。 4 当采用海水或污水 再生水等作为冲刷用水时 .用水定额相应减少 。 4. 0. 4 工业企业生产过程用水量应根据生产工艺要求确定 。大 工业用水户或经济开发区的生产过程用水量宜单独计算 ;一般工 业企业的用水量可根据国民经济发展规划 ,结合现有工业企业用 水资料分析确定 。 4. 0. 5 消防用水量 、水压及延续时间应符合现行国家标准《 建筑设计防火规范》 GB 50016 和《消防给水及消火栓 系统技术规范》GB 50974 的有关规定。 4. 0.6 浇洒市政道路 、广场和绿地用水量应根据路面 、绿化、气候 和土壤 等 条件 确定 。浇 洒 道 路 和 广 场用水 可 根 据 浇洒 面 积按 2. 0L/ ( m2 • d)~3. 0 L/ ( m2 • d) 计算 ,浇酒绿地用水可根据浇洒 面积按 1. 0 L/ ( m2 • d )~3. 0 L/ ( m2 • d ) 计算 。 4.0. 7 城镇配水管网的基本漏损水量宜按综合生活用水 、工业企 业用水 、浇洒市政道路、广场和绿地用水量之和的10% 计算 ,当单 位供水量管长值大或供水压力高时 ,可按现行行业标准《 城镇供水 管网漏损控制及评定标准》 CJJ 92 的有关规定适当增加 。 4. 0. 8 未预见水量应根据水量预测时难以预见因素的程度确定 , 宜采用综合生活用水 、工业企业用水 、提洒市政道路、广场和绿地 用水 、管网漏损水量之和的 8 %~12 % 。 4. 0. 9 城镇供水的时变化系数 、日变化系数应根据城镇性质和规 模 、国民经济和社会发展 、供水系统布局.结合现状供水曲线和日 用水变化分析确定 。当缺乏实际用水资料时 ,最高日 城市综合用 水的时变化系数宜采用 1. 2 ~1. 6 ,日变化系数宜采用 1. 1~1. 5 。 当二次供水设施较多采用叠压供水模式时 ,时变化系数宜取大值 。 5 取水 5.1 水源选 择 5. 1. 1 水源选择前的水资掘勘察和论证应符合现行国家标准《 城 镇给水排水技术规范》 GB 50788 的有关规定。 5. 1. 2 水源的选用应通过技术经济比较后综合确定 ,并应满足下 列条件 : 1 位于水体功能区划所规定的取水地段 : 2 不易受污染 ,便于建立水源保护区 ; 3 选择次序宜先当地水 、后过境水,先自然河道 、后需调节径 流的河道 ; 4 可取水量充沛可靠 ; 5 水质符合国家有关现行标准 6 与农业 、水利综合利用 7 取水 、输水、净水设施安全经济和维护方便; 8 具有交通 、运输和施工条件 。 5. 1. 3 供水水源采用地下水时 ,应有与设计阶段相对应的水文地 质勘测报告 ,取水量应符合现行国家标准《 城镇给水排水技术规 范》GB 50788 的有关规定。 5. 1. 4 供水水源采用地表水时的设计枯水流量年保证率和设计 枯水位的保证率应符合现行国家标准《 城镇给水排水技术规范》 GB 50788 的有关规定。 5. 1. 5 备用水源或应急水源的选择与构建应结合当地水资源状 况 、常用水源特点以及备用或应急水源的用途 ,经技术经济比较后 确定 。 |
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 |
服务热线:400-001-5431 | 电话:010-8572 5110 | 传真:010-8581 9515 | Email: bz@bzfyw.com | |
版权所有: 北京悦尔信息技术有限公司 2008-2020 京ICP备17065875号-1 51La |
本页关键词: |
GB 50013-2018, GB/T 50013-2018, GBT 50013-2018, GB50013-2018, GB 50013, GB50013, GB/T50013-2018, GB/T 50013, GB/T50013, GBT50013-2018, GBT 50013, GBT50013 |