![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative. All technical contents of this part of this standard are compulsory. GB 150 "Pressure Vessels" comprises the following four parts: ——Part 1: general requirements; ——Part 2: Materials; ——Part 3: Design; ——Part 4: Fabrication, Inspection and Testing, and Acceptance. This Part is Part 1 of GB 150: General Requirements. This part is drafted according to the rules provided by GB/T 1.1 - 2009 " Directives for Standardization ". This part replaces parts of GB 150-1998 "Steel Pressure Vessels" (Chapter 1 ~ Chapter 3, Appendix B and Appendix C) Compared with GB 150-1998, this standard has the following major technical changes: a) Expanded the applicable scope of the Standard. ——By means of reference standards, it is applicable to pressure vessels made of metal materials; ——Under the premise of meeting the design guidelines of this Standard, it specifies design methods to deal with circumstances exceeding standard scopes; ——It specifies the basis Standards for all kinds of structure vessels. b) Amended the requirements on the qualifications and responsibilities of the vessel construction participants. ——Specifies the storing period for the design documents; ——Added the responsibilities of the user or design-trustor in providing the written design conditions at the design stage; ——Specifies the responsibilities of the inspectors from inspection institution on the report confirmation and testimony of the confirmatory burst test. c) Amended the safety factors for determining allowable stress. ——Adjusted the safety factor of tensile strength from 3.0 to 2.7; ——Adjusted the safety factor of yield strength of carbon steels and low-alloy steels from 1.6 to 1.5; ——For austenitic stainless steel, one can use Rp1.0 to determine the allowable stress. d) Added conformity declarations to meet the basic safety requirements prescribed in the safety technical regulations for special equipment. e) Added implementation details of the design methods in addition to adoptive standards and regulations. f) Added the requirements of the risk evaluation at the design stage for pressure vessels and its implementation details. g) Added Appendix A: conformity declarations and revisions of this standard. This Part is proposed and under the jurisdiction of National Technical Committee on Boilers and Pressure Vessels of Standardization Administration of China (SAC/TC 262). Drafting organizations of this Part: China Special Equipment Inspection and Research Institute, Bureau of Safety Supervision of Special Equipment (SESA) of AQSIQ, Zhejiang University, Hefei General Machinery Research Institute, Sinopec Engineering Incorporation, East China University of Science and Technology, Lanpec Technologies Limited. Chief drafting staffs of this Part: Shou Binan, Chen Gang, Zheng Jinyang, Chen Xuedong, Yang Guoyi, Xie Tiejun, Li Shiyu, Xu Feng, Wang Xiaolei, Li Jun, Qiu Qingyu, Zhang Yanfeng, Wu Quanlong. The previous editions of the standards replaced by this part are as: ——GB 150-1989, GB 150-1998. Introduction This standard is one of the large general technical standards of pressure vessels developed by and under the jurisdiction of the National Technical Committee on Boilers and Pressure Vessels of Standardization Administration of China (hereinafter referred to as "Committee"), to specify the technical requirements related to the design, fabrication, inspection and testing, and acceptance of the pressure vessels constructed or used in domain of China. The technical clauses of this standard include the compulsory requirements, special forbidding requirements and recommendatory clauses that shall be followed during the construction process of pressure vessels (namely, design, fabrication, inspection and testing, and acceptance); the recommendatory clauses thereof are not compulsory parts. As it is unnecessary and impossible for this standard to include all the technical details during the construction process of pressure vessels within the application scope, under the premise of meeting the basic safety requirements specified in the laws and regulations, the technical contents not specially mentioned in this standard shall not be prohibited. This standard cannot be used as the technical manual for the specific pressure vessels construction, or replace the training, engineering experience and engineering evaluation. Engineering evaluation is the specific-product-oriented technology evaluation made by the knowledgeable and experienced technical personnel. However, the engineering evaluation shall meet the relevant technical requirements in this standard and shall not violate the compulsory requirements and forbidding requirements in this standard. This standard does not restrict the state-of-the-art technical methods adopted during the actual engineering design and construction process, but the engineering technical personnel shall make the reliable judgment when adopting the state-of-the-art technical methods to ensure that they meet the requirements of this standard, especially the compulsory design requirements (such as strength or stability design formula). The technical methods and technical requirements specified in this standard are not involved with any patent. Please note that the engineering applications of this standard may involve specific patents; the issuance organization of this standard shall not undertake the responsibility of identifying these patents. This standard does not specify nor prohibit the designing personnel by using the computer programs to realize the analysis or design of the pressure vessels; if the computer programs are adopted for the analysis or design, not only the requirements of this standard shall be met but also the following items shall be confirmed: 1) Rationality of the technology assumption in the programs adopted; 2) Adaptability of the programs adopted to the design contents; 3) Correctness of the input parameters and output results of the programs adopted to the engineering design. Inquiry for the technical clauses of the standard shall be submitted to the committee secretariat in written form, so shall the necessary information. All the inquiries which are not related to standard clauses directly or which cannot be understood are deemed as technical consultation. As a result, the committee is entitled to refuse the inquiries. The Committee shall not undertake the responsibility of the understanding ambiguity and any consequence caused by the standard promotion implementation or explanation made by other organizations not authorized or approved by the Committee in written form. Pressure Vessels- Part 1: General Requirements 1 Scope 1.1 This standard specifies the construction requirements of metal pressure vessels (hereinafter referred to as "Vessels"). This standard specifies the general requirements for the materials, design, fabrication, inspection and testing, and acceptance of metal pressure vessels (hereinafter referred to as “Vessels”). 1.2 Applicable design pressure of this Standard 1.2.1 For steel vessels, the design pressure shall not exceed 35MPa; 1.2.2 For vessels made of other metal materials, the applicable design pressure shall be determined according to the corresponding reference standards. 1.3 Applicable design temperature range of this Standard 1.3.1 Design temperature range: -269℃~900℃. 1.3.2 For steel vessels, the design temperature shall not exceed the allowable operating temperature range of the materials listed in GB 150.2 1.3.3 For vessels made of other metal materials, the design temperature shall be determined according to the allowable operating temperature of the materials listed in the corresponding reference standards of this Part. 1.4 Applicable structure forms of this Standard 1.4.1 The structure forms of the steel vessels to which this Standard is applicable shall be in accordance with the corresponding provisions of this Part and GB 150.2 ~ GB 150.4. 1.4.2 As for the vessels with specific structures and the vessels made of aluminum, titanium, copper, nickel and nickel alloy, as well as zirconium to which this Standard is applicable, the structure forms and applicable scope shall meet the corresponding requirements of the following standards: a) GB 151 Tubular Heat Exchangers; b) GB 12337 Steel Spherical Tanks; c) JB/T 4731 Steel Horizontal Vessels on Saddle Support; d) JB/T 4710 Steel Vertical Vessels Supported by Skirt; e) JB/T 4734 Aluminim Welded Vessels; f) JB/T 4745 Titanium Welded Vessels; g) JB/T 4755 Copper Pressure Vessels; h) JB/T 4756 Nickel and Nickel Alloy Pressure Vessels; i) NB/T 47011 Zirconium Pressure Vessels. 1.5 The following vessels are not within the applicable scope of this Standard: a) Vessels with design pressure lower than 0.1MPa and vacuum degree lower than 0.02MPa; b) Vessels under "Supervision Regulation on Safety Technology for Transportable Pressure Vessel"; c) Among equipment, the pressure chambers (such as pump casing, outer casing of compressors, outer casing of turbines, hydraulic cylinders etc.) which can be its own system or as components in swiveling or reciprocating movement machinery; d) Vessels subject to the neutron radiation damage failure risk in nuclear power plants. e) Vessels heated by direct flame; f) Vessels with inner diameter (for non-circular sections, refers to the maximum geometric dimensions of the inner boundaries of the sections, such as: diagonals of rectangles and major axes of ellipses) less than 150mm; g) Enamelled vessels and the vessels with other national standards or professional standards in the refrigeration and air conditioning industry. 1.6 Vessels scope 1.6.1 Connection between the vessel and the external pipe: a) The groove end face of the first pass of girth joints with welded connection; b) The first threaded connector end surface of screwed joint; c) The sealing surface of the first flange with flanged connection; d) The first sealing surface of special connecting piece or pipe fittings connection. 1.6.2 Bearing headers, flat covers and their fasteners of connection pipe, manhole and handhole, etc. 1.6.3 Attachment welds between non-pressure components and pressure components. 1.6.4 Non-pressure components such as support and skirt directly connected to the vessels. 1.6.5 Excessive pressure relief device of vessel (see Appendix B). 2 Normative References The following documents are indispensable for the application of this standard. For dated references, only the dated edition is applicable to this document. For undated references, the latest editions of the normative documents (including all the amendments) are applicable to this document. GB 150.2 Pressure vessels - Part 2: materials GB 150.3-2011 Pressure vessels - Part 3: design GB 150.4 Pressure vessels-Part 4: Fabrication, inspection and testing, and acceptance GB 151 Tubular Heat Exchangers GB 567 (All the parts) bursting disc safety device GB/T 12241 Safety valves-General requirements GB 12337 Steel Spherical Tanks GB/T 26929 Terminology for pressure vessels JB/T 4710 Steel Vertical Vessels Supported by Skirt JB/T 4731 Steel Horizontal Vessels on Saddle Support JB 4732-1995 Steel Pressure Vessels-Design by Analysis (Confirmed in 2005) JB/T 4734 Aluminim Welded Vessels JB/T 4745 Titanium Welded Vessels JB/T 4755 Copper Pressure Vessels JB/T 4756 Nickel and Nickel Alloy Pressure Vessels NB/T 47002 (All the parts) Explosion welded clad plate for pressure vessels NB/T 47011 Zirconium Pressure Vessels TSG R0004 Supervision Regulation on Safety Technology for Stationary Pressure Vessel 3 Terms and Symbols 3.1 Terms and Definitions For the purpose of this document, the terms and definitions specified in GB/T 26929 and the following ones apply. 3.1.1 Pressure It refers to the force vertically acting on the vessel per unit surface area. Unless specifically indicated, pressure shall be referred to as gauge pressure in this Standard. 3.1.2 Operating pressure Under normal operating conditions, the achievable maximum pressure at the top of vessels. 3.1.3 Design pressure The set maximum pressure at vessel top, together with the corresponding design temperature to be used as the basic design loading conditions of vessels, its value shall not be lower than the operating pressure. 3.1.4 Calculation pressure Under the corresponding design temperature, the pressure used to determine the thickness of the components, including additional loads such as fluid column hydrostatic pressure etc. 3.1.5 Test pressure When conducting pressure test or leak test, the pressure at the vessel top. 3.1.6 Maximum allowable working pressure (MAWP) It refers to the allowable maximum pressure at the top of the vessel at the corresponding designated temperature. This pressure is the minimum value of the calculation results according to the effective thickness of each pressure component of the vessel, in consideration of all the loads on the component. Note: when the design document of the pressure vessel do not specify the maximum allowable working pressure, the design pressure of this vessel may be regarded as the maximum allowable working pressure. 3.1.7 Design temperature When a vessel is under normal operating conditions, the set metal temperature of its components (the average temperature along the metal section of the components). The design temperature and design pressure are both used as the design load conditions. 3.1.8 Test temperature When conducting withstand voltage test or leak test, the metal temperature of the shell of the vessel. 3.1.9 Minimum design metal temperature In cases of design, the expected minimum value of the metal temperature of each component under any possible condition for the duration of the vessel operating process. 3.1.10 Required thickness The thickness calculated according to the corresponding formulae of this standard. When necessary, it shall include the thickness (see 4.3.2) required by other loads. As for the external pressure components, it refers to the minimum thickness required for meeting the stability. 3.1.11 Design thickness The sum of the calculated thickness and corrosion allowance. 3.1.12 Nominal thickness The design thickness is added by the negative deviation of material thickness, and the sum is rounded up to the thickness of standard material specifications. 3.1.13 Effective thickness It refers to the value of nominal thickness minus corrosion allowance and negative deviation of material thickness. 3.1.14 Minimum required fabrication thickness The minimum thickness of ensuring the design requirements, after the fabrication of the pressure components. 3.1.15 Low-temperature pressure vessel The low-temperature pressure vessel defined in this Standard refers to the carbon steel, low-alloy steel, duplex stainless steel and ferritic stainless steel vessels with design temperature lower than -20℃ as well as the austenitic stainless steel vessels with design temperature lower than -196℃. 3.2 Symbols C——Additional thickness, mm; C1——Negative deviation of the material thickness, according to 4.3.6.1, mm; C2——Corrosion allowance, according to 4.3.6.2, mm; Di——the inner diameter of a cylinder or a sphere shell, mm; Et——Elastic modulus of material at design temperature, MPa; p——the Design pressure, MPa; pT——the minimum value of test pressure, MPa; Ro——Outer radius of cylinder, mm; Rm——the lower limit of the standard tensile strength of materials, MPa; ReL(Rp0.2, Rp1.0)——the yield strength of materials under standard room temperature (or 0.2% and 1.0% non-proportional extension strength), MPa; , ——the yield strength of materials under design temperature (or 0.2% and 1.0% non-proportional extension strength), MPa; ——The average rupture life of material cracked after 0.1 million hours at design temperature, MPa; ——The average creep limit of material with 1% creep rate after 0.1 million hours at design temperature, MPa; σT——The stress of pressure components under the test pressure, MPa; [σ]——Allowable stress of the vessel component materials under the withstand voltage test temperature, MPa; [σ]t——Allowable stress of the vessel component materials under the design temperature, MPa; ——Allowable stress of base material at design temperature, MPa; ——Allowable stress of clad material at design temperature, MPa; ——Allowable axial compressive stress of cylinder at design temperature, MPa; δ1——Nominal thickness of base material, mm; δ2——Thickness of clad material, shall not be counted in corrosion allowance, mm; δe——Effective thickness of the cylinder or spherical shell, mm; φ——Welded joint coefficient. 4 General Requirements 4.1 General rules 4.1.1 The design, fabrication, inspection and acceptance of steel vessels, apart from meeting the provisions of all Parts of this Standard, also shall comply with the State issued relevant laws, regulations and safety technical codes. 4.1.2 As for the vessels of specific structures, and aluminum, titanium, copper, nickel and nickel alloy and zirconium vessels, the design, fabrication, inspection and testing, and acceptance of them shall not only meet the requirements of 4.1.1 but also meet the corresponding requirements of the following standards: a) GB 151 Tubular Heat Exchangers; b) GB 12337 Steel Spherical Tanks; c) JB/T 4731 Steel Horizontal Vessels on Saddle Support; d) JB/T 4710 Steel Vertical Vessels Supported by Skirt; e) JB/T 4734 Aluminim Welded Vessels; f) JB/T 4745 Titanium Welded Vessels; g) JB/T 4755 Copper Pressure Vessels; h) JB/T 4756 Nickel and Nickel Alloy Pressure Vessels; i) NB/T 47011 Zirconium Pressure Vessels 4.1.3 The vessel design and fabrication organizations shall establish a sound quality management system and ensure its effective implementation. 4.1.4 The design and fabrication of pressure vessels which are within the jurisdiction of the “Supervision Regulation on Safety Technology for Stationary Pressure Vessel” shall accept supervisions from the safety supervision institution of special equipment. 4.1.5 Categories of vessels shall be determined according to the requirements of "Supervision Regulation on Safety Technology for Stationary Pressure Vessel". 4.1.6 As for the vessels or pressure components, for which the structure dimension cannot be determined according to GB 150.3, the following design methods may be adopted: a) Replication experiment analysis (such as experimental stress analysis and replication hydraulic test); see Appendix C for the specific requirements; b) Comparison empirical design by such comparable structures that have been in service, see Appendix D for the specific requirements; c) Adoption of stress analysis calculation and evaluation including the finite element method; see Appendix E for the specific requirements; 4.2 Qualifications and responsibilities 4.2.1 Qualifications a) The design organization of pressure vessels which are within the jurisdiction of the “Supervision Regulation on Safety Technology for Stationary Pressure Vessel” shall hold the corresponding special equipment designing license; b) The fabrication organization of pressure vessels which are within the jurisdiction of the “Supervision Regulation on Safety Technology for Stationary Pressure Vessel” shall hold the corresponding special equipment manufacturing license. 4.2.2 Responsibilities 4.2.2.1 The responsibilities of the user or the design-trustor The design-trustor or the vessel user shall submit the design specifications (UDS – User's Design Specification) of the vessels to the design organization in formal writing; the following contents should be included in the design specification: a) The main standards and regulations which the vessel design is based on; b) Operating parameters (including the operating pressure, operating temperature range, liquid level and the load of the connection pipes, etc.); c) The operation location and the natural conditions of the location of the pressure vessels (including the environment temperature, seismic fortification intensity, wind load and snow load etc.); d) Components and characteristics of the medium; e) Expected service life; f) The geometric parameters and nozzle position; g) Other necessary conditions required by the design. 4.2.2.2 The responsibilities of the design organization a) The design organization shall be responsible for the correctness and integrity of the design documentation; Foreword i Introduction iii 1 Scope 2 Normative References 3 Terms and Symbols 4 General Requirements Appendix A (Normative) Conformity Declarations and Revisions Appendix B (Normative) Excessive Pressure Relief Device Appendix C (Normative) Determination of Vessel Design Pressure by Confirmatory Burst Test Appendix D (Normative) Comparative Empirical Design Method Appendix E (Normative) Local Structure Stress Analysis and Evaluation Appendix F (Normative) Risk Assessment Report 压力容器 第1部分:通用要求 1 范围 1.1 本标准规定了金属制压力容器(以下简称容器)的建造要求。本部分规定了金属制压力容器(以下简称容器)材料、设计、制造、检验和验收的通用要求。 1.2 本标准适用的设计压力 1.2.1 钢制容器不大于35MPa。 1.2.2 其他金属材料制容器按相应引用标准确定。 1.3 本标准适用的设计温度范围 1.3.1 设计温度范围:—269℃~900℃。 1.3.2 钢制容器不得超过按GB 150.2中列入材料的允许使用温度范围。 1.3.3 其他金属材料制容器按本部分相应引用标准中列入的材料允许使用温度确定。 1.4 本标准适用的结构形式 1.4.1 本标准适用钢制容器的结构形式按本部分以及GB 150.2~150.4的相应规定。 1.4.2 本标准适用范围内的特定结构容器以及铝、钛、铜、镍及镍合金、锆制容器,其结构形式和适用范围还应满足下述标准的相应要求: a) GB 151《管壳式换热器》; b) GB 12337《钢制球形储罐》; c) JB/T 4731《卧式容器》; d) JB/T 4710《塔式容器》; e) JB/T 4734《铝制焊接容器》; f) JB/T 4745《钛制焊接容器》; g) JB/T 4755《铜制焊接容器》; h) JB/T 4756《镍及镍合金焊接容器》; i) NB/T 47011《锆制压力容器》。 1.5 下列容器不在本标准的适用范围内: a) 设计压力低于0.1MPa且真空度低于0.02MPa的容器; b) 《移动式压力容器安全监察规程》管辖的容器; c) 旋转或往复运动机械设备中自成整体或作为部件的受压器室(如泵壳、压缩机外壳、涡轮机外壳、液压缸等); d) 核能装置中存在中子辐射损伤失效风险的容器; e) 直接火焰加热的容器; f) 内直径(对非圆形截面,指截面内边界的最大几何尺寸,如:矩形为对角线,椭圆为长轴)小于150mm的容器; g) 搪玻璃容器和制冷空调行业中另有国家标准或行业标准的容器。 1.6 容器界定范围 1.6.1 容器与外部管道连接: a) 焊接连接的第一道环向接头坡口端面; b) 螺纹连接的第一个螺纹接头端面; c) 法兰连接的第一个法兰密封面; d) 专用连接件或管件连接的第一个密封面。 1.6.2 接管、人孔、手孔等的承压封头、平盖及其紧固件。 1.6.3 非受压元件与受压元件的连接焊缝。 1.6.4 直接连接在容器上的非受压元件如支座、裙座等。 1.6.5 容器的超压泄放装置(见附录B)。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB 150.2 压力容器 第2部分:材料 GB 150.3—2011 压力容器 第3部分:设计 GB 150.4 压力容器 第4部分:制造、检验和验收 GB 151 管壳式换热器 GB 567 (所有部分) 爆破片安全装置 GB/T 12241 安全阀 一般要求 GB 12337 钢制球形储罐 GB/T 26929 压力容器术语 JB/T 4710 钢制塔式容器 JB/T 4731 钢制卧式容器 JB 4732—1995 钢制压力容器——分析设计标准(2005年确认) JB/T 4734 铝制焊接容器 JB/T 4745 钛制焊接容器 JB/T 4755 铜制压力容器 JB/T 4756 镍及镍合金制压力容器 NB/T 47002 (所有部分) 压力容器用爆炸焊接复合板 NB/T 47011 锆制压力容器 TSG R0004 固定式压力容器安全技术监察规程 3 术语与符号 3.1 术语和定义 GB/T 26929中界定的以及下列术语和定义适用于本文件。 3.1.1 压力 pressure 垂直作用在容器单位表面积上的力。在本标准中,除注明者外,压力均指表压力。 3.1.2 工作压力 operating pressure 在正常工作情况下,容器顶部可能达到的最高压力。 3.1.3 设计压力 design pressure 设定的容器顶部的最高压力,与相应的设计温度一起作为容器的基本设计载荷条件,其值不低于工作压力。 3.1.4 计算压力 calculation pressure 在相应设计温度下,用以确定元件厚度的压力,包括液柱静压力等附加载荷。 3.1.5 试验压力 test pressure 进行耐压试验或泄漏试验时,容器顶部的压力。 3.1.6 最高允许工作压力 maximum allowable working pressure(MAWP) 在指定的相应温度下,容器顶部所允许承受的最大压力。该压力是根据容器各受压元件的有效厚度,考虑了该元件承受的所有载荷而计算得到的,且取最小值。 注:当压力容器的设计文件没有给出最高允许工作压力时,则可以认为该容器的设计压力即是最高允许工作压力。 3.1.7 设计温度 design temperature 容器在正常工作情况下,设定的元件的金属温度(沿元件金属截面的温度平均值)。设计温度与设计压力一起作为设计载荷条件。 3.1.8 试验温度 test temperature 进行耐压试验或泄漏试验时,容器壳体的金属温度。 3.1.9 最低设计金属温度 minimum design metal temperature 设计时,容器在运行过程中预期的各种可能条件下各元件金属温度的最低值。 3.1.10 计算厚度 required thickness 按本标准相应公式计算得到的厚度。需要时,尚应计入其他载荷(见4.3.2)所需厚度。对于外压元件,系指满足稳定性要求的最小厚度。 3.1.11 设计厚度 design thickness 计算厚度与腐蚀裕量之和。 3.1.12 名义厚度 nominal thickness 设计厚度加上材料厚度负偏差后向上圆整至材料标准规格的厚度。 3.1.13 有效厚度 effective thickness 名义厚度减去腐蚀裕量和材料厚度负偏差。 3.1.14 最小成形厚度 minimum required fabrication thickness 受压元件成形后保证设计要求的最小厚度。 3.1.15 低温容器 low-temperature pressure vessel 设计温度低于—20℃的碳素钢、低合金钢、双相不锈钢和铁素体不锈钢制容器,以及设计温度低于—196℃的奥氏体不锈钢制容器。 3.2 符号 C——厚度附加量,mm; C1——材料厚度负偏差,按4.3.6.1,mm; C2——腐蚀裕量,按4.3.6.2,mm; Di——圆筒或球壳的内直径,mm; Et——材料在设计温度下的弹性模量,MPa; p——设计压力,MPa; pT——试验压力最低值,MPa; Ro——圆筒的外半径,mm; Rm——材料标准抗拉强度下限值,MPa; ReL(Rp0.2、Rp1.0)——材料标准室温屈服强度(或0.2%、1.0%非比例延伸强度),MPa; 、 ——材料在设计温度下的屈服强度(或0.2%、1.0%非比例延伸强度),MPa; ——材料在设计温度下经10万小时断裂的持久强度的平均值,MPa; ——材料在设计温度下经10万小时蠕变率为1%的蠕变极限平均值,MPa; σT——试验压力下受压元件的应力,MPa; [σ]——容器元件材料在耐压试验温度下的许用应力,MPa; [σ]t——容器元件材料在设计温度下的许用应力,MPa; ——设计温度下基层材料的许用应力,MPa; ——设计温度下覆层材料的许用应力,MPa; ——设计温度下圆筒许用轴向压缩应力,MPa; δ1——基层材料的名义厚度,mm; δ2——覆层材料的厚度,不计入腐蚀裕量,mm; δe——圆筒或球壳的有效厚度,mm; φ——焊接接头系数。 4 通用要求 4.1 通则 4.1.1 钢制容器的设计、制造、检验和验收除应符合本标准所有部分的规定外,还应遵守国家颁布的有关法律、法规和安全技术规范。 4.1.2 特定结构容器以及铝、钛、铜、镍及镍合金、锆制容器,其设计、制造、检验和验收除应符合4.1.1的规定外,还应满足下述标准的相应要求: a) GB 151《管壳式换热器》; b) GB 12337《钢制球形储罐》; c) JB/T 4731《卧式容器》; d) JB/T 4710《塔式容器》; e) JB/T 4734《铝制焊接容器》; f) JB/T 4745《钛制焊接容器》; g) JB/T 4755《铜制焊接容器》; h) JB/T 4756《镍及镍合金焊接容器》; i) NB/T 47011《锆制压力容器》。 4.1.3 容器的设计、制造单位应建立健全的质量管理体系并有效运行。 4.1.4 《固定式压力容器安全技术监察规程》管辖范围内的压力容器设计和制造应接受特种设备安全监察机构的监察。 4.1.5 容器类别按《固定式压力容器安全技术监察规程》的规定确定。 4.1.6 对不能按GB 150.3确定结构尺寸的容器或受压元件,可以采用以下方法进行设计: a) 验证性实验分析,如实验应力分析、验证性液压试验,具体要求按附录C的规定; b) 利用可比的已投入使用的结构进行对比经验设计,具体要求按附录D的规定; c) 采用包括有限元法在内的应力分析计算和评定,具体要求按附录E的规定。 4.2 资格与职责 4.2.1 资格 a) 《固定式压力容器安全技术监察规程》管辖范围内压力容器的设计单位应持有相应的特种设备设计许可证; b) 《固定式压力容器安全技术监察规程》管辖范围内压力容器的制造单位应持有相应的特种设备制造许可证。 4.2.2 职责 4.2.2.1 用户或设计委托方的职责 容器的用户或设计委托方应当以正式书面形式向设计单位提出容器设计条件(UDS—User’s Design Specification),其中至少包含以下内容: a) 容器设计所依据的主要标准和规范; b) 操作参数(包括工作压力、工作温度范围、液位高度、接管载荷等); c) 压力容器使用地及其自然条件(包括环境温度、抗震设防烈度、风和雪载荷等); d) 介质组分与特性; e) 预期使用年限; f) 几何参数和管口方位; g) 设计需要的其他必要条件。 4.2.2.2 设计单位的职责 a) 设计单位应对设计文件的正确性和完整性负责; b) 容器的设计文件至少应包括强度计算书、设计图样、制造技术条件、风险评估报告(相关法规或设计委托方要求时),必要时还应当包括安装与使用维修说明; c) 《固定式压力容器安全技术监察规程》管辖范围内压力容器的设计总图应盖有特种设备设计许可印章; d) 设计单位向容器用户出具的风险评估报告应符合附录F的要求; e) 设计单位应在容器设计使用年限内保存全部容器设计文件。 4.2.2.3 制造单位的职责 a) 制造单位应按照设计文件的要求进行制造,如需要对原设计进行修改,应当取得原设计单位同意修改的书面文件,并且对改动部位作出详细记载; b) 制造单位在容器制造前应制定完善的质量计划,其内容至少应包括容器或元件的制造工艺控制点、检验项目和合格指标; c) 制造单位的检查部门在容器制造过程中和完工后,应按本标准、图样规定和质量计划的规定对容器进行各项检验和试验,出具相应报告,并对报告的正确性和完整性负责; d) 制造单位在检验合格后,出具产品质量合格证; e) 制造单位对其制造的每台容器产品应在容器设计使用年限内至少保存下列技术文件备查: 1) 质量计划; 2) 制造工艺图或制造工艺卡; 3) 产品质量证明文件; 4) 容器的焊接工艺和热处理工艺文件; 5) 标准中允许制造厂选择的检验、试验项目记录; 6) 容器制造过程中及完工后的检查、检验、试验记录; 7) 容器的原设计图和竣工图。 4.3 设计一般规定 4.3.1 容器设计单位(设计人员)应严格依据用户或设计委托方所提供的容器设计条件进行容器设计,应考虑容器在使用中可能出现的所有失效模式,提出防止失效的措施。容器受压元件的强度、刚度和稳定性计算按GB 150.3或规范性引用文件的规定。 对于有成功使用经验的承受循环载荷的容器,经设计单位技术负责人批准,可按本标准进行设计,并按JB 4732附录C补充疲劳分析和评定,同时满足其相关制造要求。 4.3.2 载荷 设计时应考虑以下载荷: a) 内压、外压或最大压差; b) 液柱静压力,当液柱静压力小于设计压力的5%时,可忽略不计; 需要时,还应考虑下列载荷: c) 容器的自重(包括内件和填料等),以及正常工作条件下或耐压试验状态下内装介质的重力载荷; d) 附属设备及隔热材料、衬里、管道、扶梯、平台等的重力载荷; e) 风载荷、地震载荷、雪载荷; f) 支座、底座圈、支耳及其他型式支承件的反作用力; g) 连接管道和其他部件的作用力; h) 温度梯度或热膨胀量不同引起的作用力; i) 冲击载荷,包括压力急剧波动引起的冲击载荷、流体冲击引起的反力等; j) 运输或吊装时的作用力。 4.3.3 确定设计压力或计算压力时,应考虑: a) 容器上装有超压泄放装置时,应按附录B的规定确定设计压力; b) 对于盛装液化气体的容器,如果具有可靠的保冷设施,在规定的装量系数范围内,设计压力应根据工作条件下容器内介质可能达到的最高温度确定;否则按相关法规确定; c) 对于外压容器(例如真空容器、液下容器和埋地容器),确定计算压力时应考虑在正常工作情况下可能出现的最大内外压力差; d) 确定真空容器的壳体厚度时,设计压力按承受外压考虑;当装有安全控制装置(如真空泄放阀)时,设计压力取1.25倍最大内外压力差或0.1MPa两者中的低值;当无安全控制装置时,取0.1MPa: e) 由2个或2个以上压力室组成的容器,如夹套容器,应分别确定各压力室的设计压力;确定公用元件的计算压力时,应考虑相邻室之间的最大压力差。 4.3.4 设计温度的确定 a) 设计温度不得低于元件金属在工作状态可能达到的最高温度。对于0℃以下的金属温度,设计温度不得高于元件金属可能达到的最低温度。 b) 容器各部分在工作状态下的金属温度不同时,可分别设定每部分的设计温度。 c) 元件的金属温度通过以下方法确定: 1) 传热计算求得; 2) 在已使用的同类容器上测定; 3) 根据容器内部介质温度并结合外部条件确定。 d) 在确定最低设计金属温度时,应当充分考虑在运行过程中,大气环境低温条件对容器壳体金属温度的影响。大气环境低温条件系指历年来月平均最低气温(指当月各天的最低气温值之和除以当月天数)的最低值。 4.3.5 对有不同工况的容器,应按最苛刻的工况设计,必要时还需考虑不同工况的组合,并在图样或相应技术文件中注明各工况操作条件和设计条件下的压力和温度值。 4.3.6 厚度附加量 厚度附加量按式(1)确定: C=C1+C2 ………………………………(1) 4.3.6.1 材料厚度负偏差 板材或管材的厚度负偏差按材料标准的规定。 4.3.6.2 腐蚀裕量 为防止容器受压元件由于腐蚀、机械磨损而导致厚度削弱减薄,应考虑腐蚀裕量,具体规定如下: a) 对有均匀腐蚀或磨损的元件,应根据预期的容器设计使用年限和介质对金属材料的腐蚀速率(及磨蚀速率)确定腐蚀裕量; b) 容器各元件受到的腐蚀程度不同时,可采用不同的腐蚀裕量; c) 介质为压缩空气、水蒸气或水的碳素钢或低合金钢制容器,腐蚀裕量不小于1mm。 4.3.7 壳体加工成形后不包括腐蚀裕量的最小厚度: a) 碳素钢、低合金钢制容器,不小于3mm; b) 高合金钢制容器,一般应不小于2mm。 4.3.8 容器元件的名义厚度和最小成形厚度一般应标注在设计图样上。 4.4 许用应力 4.4.1 本标准中材料的许用应力按GB 150.2和相应引用标准选取。按表1的规定确定钢材(螺栓材料除外)许用应力,按表2的规定确定钢制螺栓材料许用应力。 表1 钢材(螺栓材料除外)许用应力的取值 材 料 许用应力/MPa 取下列各值中的最小值 碳素钢、低合金钢 高合金钢 钛及钛合金 镍及镍合金 铝及铝合金 铜及铜合金 注1:对奥氏体高合金钢制受压元件,当设计温度低于蠕变范围,且允许有微量的永久变形时,可适当提高许用应力至0.9 ,但不超过Rp0.2/1.5。此规定不适用于法兰或其他有微量永久变形就产生泄漏或故障的场合; 注2:如果引用标准规定了Rp1.0或 ,则可以选用该值计算其许用应力; 注3:根据设计使用年限选用1.0×105h、1.5×105h、2.0×105h等持久强度极限值。 表2 钢制螺栓材料许用应力的取值 材 料 螺栓直径/mm 热处理状态 许用应力/MPa 取下列各值中的最小值 碳素钢 ≤M22 热扎、正火 M24~M48 低合金钢、马氏体高合金钢 ≤M22 调质 M24~M48 ≥M52 奥氏体高合金钢 ≤M22 固溶 M24~M48 4.4.2 设计温度低于20℃时,取20℃时的许用应力。 4.4.3 复合钢板的许用应力 对于覆层与基层结合率达到NB/T 47002标准中B2级板以上的复合钢板,在设计计算中,如需计入覆层材料的强度时,其设计温度下的许用应力按式(2)确定: ………………………………(2) 4.4.4 当地震载荷或风载荷与4.3.2中其他载荷相组合时,允许元件的设计应力不超过许用应力的1.2倍,其组合要求按相应标准规定。 4.4.5 圆筒许用轴向压缩应力: a) 根据圆筒外半径Ro和有效厚度δe,按式(3)计算A值; A=0.094δe/Ro ………………………………(3) b) 按圆筒材料选用相应的外压应力系数曲线图(GB 150.3第4章),根据其温度线得到B值,在弹性范围内(图中的直线段或其左侧),可用式(4)计算B值; B=2AEt/3 ………………………………(4) c) 许用轴向压缩应力 取B值,且不得大于[σ]t。 4.5 焊接接头分类和焊接接头系数 4.5.1 焊接接头分类 4.5.1.1 容器受压元件之间的焊接接头分为A、B、C、D四类,如图1所示。 a) 圆筒部分(包括接管)和锥壳部分的纵向接头(多层包扎容器层板层纵向接头除外)、球形封头与圆筒连接的环向接头、各类凸形封头和平封头中的所有拼焊接头以及嵌入式的接管或凸缘与壳体对接连接的接头,均属A类焊接接头; b) 壳体部分的环向接头、锥形封头小端与接管连接的接头、长颈法兰与壳体或接管连接的接头、平盖或管板与圆筒对接连接的接头以及接管间的对接环向接头,均属B类焊接接头,但已规定为A类的焊接接头除外; c) 球冠形封头、平盖、管板与圆筒非对接连接的接头,法兰与壳体或接管连接的接头,内封头与圆筒的搭接接头以及多层包扎容器层板层纵向接头,均属C类焊接接头,但已规定为A、B类的焊接接头除外; d) 接管(包括入孔圆筒)、凸缘、补强圈等与壳体连接的接头.均属D类焊接接头,但已规定为A、B、C类的焊接接头除外。 4.5.1.2 非受压元件与受压元件的连接接头为E类焊接接头,如图1所示。 |
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 |
服务热线:400-001-5431 | 电话:010-8572 5110 | 传真:010-8581 9515 | Email: bz@bzfyw.com | |
版权所有: 北京悦尔信息技术有限公司 2008-2020 京ICP备17065875号-1 51La |
本页关键词: |
GB 150.1-2011, GB/T 150.1-2011, GBT 150.1-2011, GB150.1-2011, GB 150.1, GB150.1, GB/T150.1-2011, GB/T 150.1, GB/T150.1, GBT150.1-2011, GBT 150.1, GBT150.1 |