![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative. Additional Explanation: This standard was proposed by National Technical Committee on Nuclear Energy of Standardization Administration of China. This standard was developed by Beijing Institute of Nuclear Engineering (BINE). This standard is formulated by reference to American National Standard ANSI/ANS 57.7-1988. Safety Design Guidelines for Away-from-reactor Storage Pool Used for Spent Fuel 1 Subject Content and Application Scope This standard specifies mandatory criteria and basic requirements for ensuring the nuclear safety during the design of away-from-reactor storage pool used for spent fuel (hereinafter referred to as away-from-reactor pool). This standard is applicable to the safety design of away-from-reactor storage pool used for UO2 spent fuel unloaded from light water reactor and cooled for more than five years. This standard is not applicable to the safety design of pool at reactor. 2 Normative References GB 8703 Regulations for Radiation Protection GB 15146.8 Nuclear Criticality Safety for Fissile Materials Outside Reactors - Part 8: Criticality Safety Criteria for the Handling Storage and Transportation of LWR Fuel Outside Reactors GBJ 204 Code for Construction and Acceptance of Reinforced Concrete Engineering GBJ 205 Code for Construction and Acceptance of Steel Structure Engineering EJ 724 Criteria for Fire Protection of Nuclear Fuel Reprocessing Plant EJ 849 Design Rules for Radiation Safety of Nuclear Fuel Reprocessing Plant 3 Terms 3.1 away-from-reactor storage pool (hereinafter referred to as away-from-reactor pool) spent fuel storage pool set beyond the boundary of reactor plant area, generally used for receiving and storing spent fuels from several reactors 3.2 fuel unit object treated as single article during operation, storage or transport; it may be single fuel element, fuel assembly, spent fuel in tank or a batch of fuel elements that are packed together 3.3 storage basket metal member with opening used for transferring and storing one or more spent fuel units 3.4 storage cell metal member set in pool and used for supporting and maintaining fuel unit so that the fuel unit is in sub-critical state during storage 3.5 basket bracket metal member set on pool bottom or wall and used for supporting storage basket and enabling the storage basket to keep the fuel in it in sub-critical state under any circumstances 3.6 design basis accident those accident conditions of away-from-reactor pool for which corresponding measures are taken in design according to the determined design criteria Examples: a. nuclear criticality accident; b. loss of pool water-cooling function; c. container falling; d. design basis earthquake occurring. 4 General Safety Criteria 4.1 Main safety objective Main safety objective is ensure the irradiation borne by working personnel, the public and environment in all operation states and accident conditions does not exceed the limit value specified by the nation, and implement the principle "as low as reasonably achievable" in design. 4.2 Safely principle Comply with the principle "safety first". In-depth defense shall be reflected and multilevel protection shall be provided in design so as to ensure the normal operation of away-from-reactor pool, prevent accident and limit accident development and consequence. 4.3 Overall basis of safety design Safety design of away-from-reactor pool must comply with those specified in relevant laws, regulations and standards of the nation as well as this standard. 4.4 Quality assurance As for buildings/structures, systems and components which are important for the safety of the away-from-reactor pool, they shall be graded by safety function, and matched quality assurance requirements for them realizing safety function importance must be proposed. 4.5 Protection against site feature and natural events 4.5.1 The mutual influence between the away-from-reactor pool and the environmental factors of its plant site (e.g., population, meteorology, hydrology, geology, earthquake and other relevant facilities) must be considered. 4.5.2 As for buildings/structures, systems and components which are important for the safety of the away-from-reactor pool, that they still maintain safety function in possible natural events related to the plant site (e.g., earthquake, tornado, lightning, hurricane, flood, tsunami, lake surge, debris flow, etc.) must be taken into consideration in design. The strength of various natural events possibly occurred shall be determined so as to determine the design basis of item important to safety. Because the data sources of most serious natural event are uncertain and the time period for accumulating the data is limited, proper margin shall be remained for the design when taking into account the most serious natural event in plant site and its surrounding area. 4.6 Fire and explosion protection As for buildings/structures, systems and components important for safety, their design must ensure that they still maintain safety function in fire and explosion accidents. 4.7 System safety design Systems for handling, transferring and storing spent fuel must be designed together with their auxiliary systems so that they are able to carry out the following actions in operation state or accident conditions: a. Preventing accidental nuclear criticality accident from occurring; b. Preventing personnel from suffering overdose irradiation; c. Preventing uncontrolled release of radioactive substance from exceeding permissible limit; d. Preventing stored fuel and item important to safety from being seriously damaged. 4.8 Human error Human factors engineering shall be considered, especially operation control and limit of systems and components important for safety. Necessary measures shall be taken to improve automatic response to operation, prevent manual misoperation as well as automatically correct and compensate after manual misoperation. 4.9 Maintenance Minimum maintenance principle shall be implemented. As for items that must be maintained, necessary measures shall be provided so that it is convenient for maintenance personnel to approach, and it is ensured that irradiation suffered and radioactive substance ingested by the maintenance personnel comply with the principle "as low as reasonably achievable". 4.10 Emergency capability Emergency measures, withdrawal routes and communication with existing emergency organization and agency outside the plant (e.g., hospital, fire protection organization,public security organization, etc.) shall be considered. 4.11 Decommissioning Convenient decontamination and safe decommissioning of all systems of away-from-reactor pool must be considered in design. 5 Basic Requirements of Safety design 5.1 Basic function of facility Basic function of facility is the safe and intermediate storage and management of spent fuel, and the specific functions are as follows: a. Safely receiving and long unloading of spent fuel between transport container and vehicle; b. Preparation before unloading the spent fuel from transport container; c. Underwater unloading of spent fuel transport container; d. Safe storage of unloaded spent fuel in pool; e. Fill the stored spent fuel into container and transport it outward or directly transfer it to reprocessing plant for treatment, if necessary; 5.2 Sealing function of facility The integrity of primary barrier of stored spent fuel shall be ensured, and secondary barrier shall be provided to ensure the sealing function of facility and prevent radioactive substance from being released to surrounding environment in an uncontrolled way. 5.2.1 Primary barrier It refers to the spent fuel cladding. Measures for fuel acceptance inspection, filling the failed fuel into box, storage environment, safe transfer of container, decay heat outward conduction, pool water cooling and purification, etc. shall be taken to reduce cladding damage. And measures for sealing the failed spent fuel shall be taken. 5.2.2 Secondary barrier Multiple secondary barriers shall be arranged. 5.2.2.1 Spent fuel is stored in pool; in normal state, the water in the pool always maintains the level specified in design to ensure the radiation safety of the operation personnel. 5.2.2.2 The pool shall be designed into reinforced concrete integral structure with stainless steel cover. 5.2.2.3 The followings shall be arranged for the water in the pool: a. Pool water preparation and replenishment system with sufficient multiplicity; b. Pool water cooling system; c. Pool water purification system that can remove radioactive substances and other impurities in the pool water both in normal state and accident conditions; d. Collection and return system for leak pool water. 5.2.2.4 Radioactive waste collection and disposal: ensure that various radioactive wastes generated by facilities are released into environment in a controlled way. 5.2.2.5 The plant shall be of four-zone arrangement, and people flow and air flow in the plant and each zone shall be controlled. 5.2.2.6 General ventilation shall be arranged for plant, and different ventilation rate and negative pressure shall be arranged for each zone; the airborne radioactive substance shall be filtered through process waste gas purification system or vented exhaust and released into the environment in a controlled way. 5.3 Receiving and outgoing system of container 5.3.1 Plant layout It shall be meet the following requirements: a. It is capable of accommodating various transport containers and their transport vehicles to be received (or sent out); the received (or sent out) quantity every day matches with the design capacity of the facilities, and, where necessary, proper temporary storage zone of container shall be arranged. b. Air brake shall be arranged at the entrance of plant where transport vehicles enter into so that the air in the plant is prevented from diffusing outside the plant when transport vehicles enter into the plant. 5.3.2 Crane for transferring transport container It is one of the equipment of the facilities which is important for safety, of which the design requirements are as follows: a. It shall be so designed that it is of Grade 1 in nuclear safety function grade, Category I in seismic category and Grades A and B in quality assurance grade. b. Hoisting capacity: normally, it shall be adapt to the maximum load of the maximum transport container expected to be received (or sent out); it is able to stop at certain position without working but never causing heavy object-falling fault under all design loads (including design seismic load). c. Motion direction: it is able to move in four directions in the vertical plane. d. Motion range: within the range for transferring the transport container but not passing through over the spent fuel storage zone. e. Safety devices: safety devices that can resist damages from such external events as overload, overspeed, overtravel, fault of mechanical components and parts and electrical elements, manual misoperation and earthquake as well as corresponding fault alarm devices shall be equipped, and they shall be designed according to the principle of single fault. f. Manipulation and control: crane may be operated manually or remotely. Synchronous monitoring device for main hook position and load, hoist spool and its motor as well as motor/limit switch of cross beam lifting appliance and force-limiting device shall be arranged. Gantry and trolley of crane cannot move together with the lifting mechanism. g. Where necessary, microcomputer control systems for crane automatic positioning, automatic operating and automatic lifting may be arranged. h. Safety-related crane structure and its support system shall be so designed that falling accident will not occur when they are bearing various loads and in the condition of power failure due to accident. Means indicating whether the lifting appliance is in lifting state as well as overload interlocking device shall be provided for the crane so that it can lock by itself in case of overload. i. Necessary maintenance inspection facility shall be provided in design; lifting appliance shall be so designed that it facilitates decontamination and inspection. 1 Subject Content and Application Scope 2 Normative References 3 Terms 4 General Safety Criteria 5 Basic Requirements of Safety design Annex A (Informative) Schematic Diagram for the Technology Process of the Away-from-reactor Storage Pool Used for Spent Fuel Annex B (Informative) Recommended Physical-Chemical Properties of the Pool Water Annex C (Informative) Conservative Rate of Generation for Decay Heat of Pressurized Water Reactor Spent Fuel Annex D (Informative) Typical Dose Rate F 49 EJ 878—1994 乏燃料离堆贮存水池安全设计准则 1994-10-24发布 1995-01-01实施 中国核工业总公司发布 附加说明: 本标准由全国核能标准化技术委员会提出。 本标准由核工业第二研究设计院负责起草。 本标准主要起草人:易著贵、张志诚、李光鸿。 本标准参照采用了美国国家标准ANSI/ANS 57.7—1988。 1 主题内容与适用范围 本标准规定了乏燃料离堆贮存水池(简称离堆水池)设计中为确保核安全所必须遵循的准则和基本要求。 本标准适用于从轻水堆卸出,经五年以上冷却的UO2乏燃料的离堆贮存水池安全设计。 本标准不适用于在堆水池安全设计。 2 引用标准 GB 8703 辐射防护规定 GB 15146.8 操作、贮存、运输轻水堆核燃料单元的核临界安全准则 GBJ 204 钢筋混凝土工程施工及验收规范 GBJ 205 钢结构工程施工及验收规范 EJ 724 核燃料后处理厂防火准则 EJ 849 核燃料后处理厂辐射安全设计规定 3 术语 3.1 离堆贮存水池(简称离堆水池) 设在反应堆厂区边界之外的乏燃料贮存水池,通常用来接收和贮存由几个反应堆来的乏燃料。 3.2 燃料单元 操作、贮存或运输时,作为单个物件对待的物体。它可以是单根燃料元件、燃料组件、装在罐内的乏燃料或密集在一起的一批燃料元件。 3.3 贮存吊篮 供转运和贮存一个或多个乏燃料单元的开口金属构件。 3.4 贮存格架 设在水池内供支撑并保持燃料单元,使其在贮存期间处于次临界状态的金属构件。 3.5 吊篮支架 设在水池底或壁上的金属构件,供支承贮存吊篮,并使其在任何情况下,保证吊篮内燃料处于次临界状态。 3.6 设计基准事故 离堆水池按确定的设计准则在设计中采取了针对性措施的那些事故工况。 例如: a.核临界事故; b.池水冷却功能丧失; c.容器跌落; d.发生设计基准地震。 4 总的安全准则 4.1 安全的主要目标 安全的主要目标是保障工作人员,公众和环境在所有运行状态和事故工况下所受到的辐照不超过国家规定限值,并在设计中贯彻合理可行尽量低的原则。 4.2 安全原则 遵循安全第一的原则。设计中体现纵深防御,提供多层次的保护,来保证离堆水池正常运行,预防事故的发生,限制事故的发展及后果。 4.3 安全设计总依据 离堆水池安全设计必须遵照国家有关法规和标准,以及本标准。 4.4 质量保证 离堆水池的安全重要的建(构)筑物、系统和部件必须按安全功能进行分级,并必须提出与其完成安全功能重要性相匹配的质保要求。 4.5 厂址特征和自然事件的防护 4.5.1 必须考虑离堆水池与其厂址环境因素(如人口、气象、水文、地质、地震及其它有关设施等)之间的相互影响。 4.5.2 离堆水池安全重要建(构)筑物、系统和部件的设计必须考虑可能发生的厂址有关自然事件(如地震、龙卷风、闪电、飓风、洪水、海啸、湖涌及泥石流等)下,仍保持安全功能。应确定可能发生的各种自然事件的强度,以确定安全重要物项的设计基准。还应考虑由于存在着有关最严重自然事件资料来源不确定和该资料积累时间周期的局限性等因素,在考虑厂址及其周围区域最严重的自然事件时,设计应留有适当裕度。 4.6 防火、防爆 安全重要的建(构)筑物、系统和部件的设计必须确保在可信火灾和爆炸事故下仍保持其安全功能。 4.7 系统安全设计 乏燃料装卸、转运和贮存等系统必须与其辅助系统一起设计,以便在运行状态和事故工况下均能: a.防止意外核临界事故发生; b.防止人员受到超剂量的照射; c.防止放射性物质超过允许限值的失控释放; d.防止对贮存的燃料及安全重要物项严重破坏。 4.8 人因差错 应考虑人因工程学,特别是对安全重要的系统和部件的操作控制与限制。应采取必要的措施,提高操作自动响应,防止人员误操作,以及人员误操作后自动校正和补偿。 4.9 维修 应贯彻最小维修原则。对必须维修项目,应提供必要措施,便于维修人员接近,并保证维修人员受到的辐照和摄入的放射性物质遵循合理可行尽量低的原则。 4.10 应急能力 应考虑应急措施、撤退路线以及与厂外已有应急组织和机构(如医院、消防、公安等)的通信联系。 4.11 退役 设计必须考虑离堆水池各系统便于去污和安全退役。 5 安全设计基本要求 5.1 设施的基本功能 设施的基本功能是乏燃料安全地中间贮存和管理。其具体功能如下: a.乏燃料运输容器与车辆安全接收长卸车; b.乏燃料运输容器卸料前准备; c.乏燃料运输容器水下卸料; d.卸出的乏燃料在水池中安全贮存; e.需要时,将贮存的乏燃料装容器外运或直接转运到后处理厂处理。 5.2 设施的封闭功能 应保证贮存的乏燃料初级屏障完整性,并提供次级屏障来保证设施的封闭功能,防止放射性物质向周围环境失控释放。 5.2.1 初级屏障 即乏燃料包壳。应提供燃料接收检查、破损燃料装盒、贮存环境、容器安全转运、衰变热导出、池水冷却及净化等措施来减少包壳损坏。并提供封闭破损乏燃料的措施。 5.2.2 次级屏障 设置多道次级屏障。 5.2.2.1 乏燃料在水池中贮存,正常状态下水池水位始终保持设计规定水位,以确保操作人员的辐射安全。 5.2.2.2 水池设计成带不锈钢覆面的钢筋砼整体结构。 5.2.2.3 对水池的池水应设有: a.带足够多重性的池水制备及补给系统; b.池水冷却系统; c.正常状态及事故工况下,均能去除池水中放射性物质及其它杂质的池水净化系统。 d.池水泄漏收集及返回系统。 5.2.2.4 放射性废物收集与处置:保证设施产生的各种放射性废物有控制地向环境释放。 5.2.2.5 厂房按四区分区布置,并控制厂房和各区的人流及气流。 5.2.2.6 厂房设全面通风,各区设不同换气次数和负压,并且控制气载放射性物质通过工艺废气净化系统或通风排气净化系统过滤处理,有控制地向环境释放。 5.3 容器接收与外发系统 5.3.1 厂房布置 应满足下列要求: a.能容纳拟接收(或外发)各种运输容器及其运输车辆,每天接收(或外发)量与设施设计能力相匹配,必要时应设适当容器临时贮存区。 b.运输车辆进入厂房入口处应设气闸,防止运输车辆进入厂房时,厂房内空气扩散到厂房外。 5.3.2 运输容器转运吊车 它是本设施安全重要设备之一,其设计要求: a.应按核安全功能等级1级、抗震类别Ⅰ类和质保等级A级和B级设计。 b.起吊能力:正常应适应预计接收(或外发)最大运输容器的最大荷载;并且能在所有设计荷载下(包括设计地震荷载下),可停在某一位置不工作,但决不引起重物跌落故障。 c.运动方向:可在垂直平面内四个方向运动。 d.运动范围:在要求运输容器转运范围内,但不得通过乏燃料贮存区上方。 e.安全装置:应设防超载、防超速、防超行程、防机械零部件及电气元件故障失效、防人因误操作和防地震等外部事件破坏的安全装置及相应故障报警装置,并且按单一故障原则设计。 f.操纵与控制:吊车可就地手动或遥控操作。应设主钩位置与负载和吊车卷筒与其电动机同步监测装置,以及横梁吊具的电机、限位开关和力的限定装置。吊车的大、小车与起升机构不能同时运动。 g.必要时,可设吊车自动定位、自动运行及自动提升等微机控制系统。 h.安全相关的吊车结构及其支持系统均应设计成在承受各种载荷下,以及事故断电下,不会发生跌落事故。吊车应设有指示吊具是否处于吊住状态的手段以及过载的联锁装置,一旦赶载就可自锁。 i.设计应提供必要的维修检查设施,吊具设计应便于去污和检查。 5.3.3 容器外罩与运输车辆冲洗 设置容器外罩及运输车辆冲洗系统,包括应力水冲洗装置,冲洗水放射性污染监测及废水收集与转送设施。 5.3.4 容器与运输车辆维修 仅设置供对容器和运输车辆进行常规维护和小型修理措施。 5.3.5 容器检查 应提供措施,以监测容器下列参数;容器表面温度和放射性污染水平以及容器密封完整性。 5.4 容器装卸料准备系统 5.4.1 容器卸料准备坑 应专设“容器卸料准备坑”供容器在浸入装卸料水池之前,进行容器外表面冲洗和容器内排气及冷却。 5.4.2 容器外表冲洗 应设置高压水喷洗、监测冲洗水放射性浓度、废水收集及转送等措施。 5.4.3 容器排气及冷却 要求如下: a.应设有监测容器一次冷却剂的温度和压力,以确定容器内乏燃料和冷却剂状态。并设置从一次冷却剂取样和监测装置,以确定其β/γ总放射性。 b.应设置容器冷却系统和容器排气系统。 5.4.4 容器去污 要求如下: a.应专设“容器去污装置”供容器卸料后或装料前,另入其内进行容器内、外表面清洗去污。清洗去污采用高压水、加热去污液喷洗或其它物理/化学去污。还应设干燥容器措施。 b.应设置监测去污废水放射性浓度、废水收集与转送措施。 5.5 容器装卸料系统 5.5.1 装卸料水池 5.5.1.1 应专设“装卸料水池”供容器水下装卸料。装卸料水池应能接受拟接收的各种容器。 5.5.1.2 装卸料水池应为内衬不锈钢覆面钢筋混凝土结构,设有能量吸收垫,以保证在发生容器从操作可能高处跌入水池事故时,厂房主体结构仍保持完整。 5.5.1.3 每个装卸料水池的空间应能容纳: a.一个拟接收的最大容器及其吊具; b.放置该容器盖的搁架; c.数个空贮存吊篮及其支架或放置卸出的燃料单元支架; d.转运贮存吊篮或卸出的燃料单元装置; e.防止容器直接跌落到贮存吊篮上结构物; f.水下照明、观察电视摄像及真空抽吸水中杂物等辅助设施。 5.5.1.4 装卸料水池最小水深不小于最高容器高度、相应燃料单元高度与辐射防护屏蔽要求最小水深之和。 5.5.1.5 装卸料水池池水补给及池水处理(冷却、过滤、净化)与贮存水池池水的补给及水处理系统共用,亦可单设。 5.5.1.6 装卸料水池与其相邻水池之间应设双重水下密封门。以保证某一水池倒空时不影响相邻水池的水位;或某一水池发生事故时,尽可能减少污染的水扩散到其它池中去。 5.5.2 燃料检查 监测燃料元件燃耗装置、监测燃料单元破损装置及破损燃料单元装盒装置可设在卸料水池,亦可设在单独处理水池中。 5.6 乏燃料贮存系统 5.6.1 贮存方式 乏燃料单元在贮存水池内贮存,可采取贮存格架方式或贮存吊篮方式水下贮存。 5.6.2 贮存水池 它是本设计安全重要物项之一,其设计要求是: a.应按核安全功能等级1级,抗震类别Ⅰ类和质保等级A级及B级设计。 b.应为内衬不锈钢覆面钢筋混凝土结构,其四周壁板和底板均应设有检查和收集从覆面渗漏液措施。 c.水池单位面积贮存能力主要取决于贮存方式(格架贮存/吊篮贮存;常规贮存/密集贮存)。若采用贮存吊篮方式贮存,水池应留有足够空间,以便贮存吊篮无阻碍转运通行。 d.水池最低水位亦取决于贮存方式。但最低水位应保证燃料单元在其内转运时,燃料单元顶上安全要求最小屏蔽水层厚度。 e.水池最低水位以下部分,不得装有可使池水直接排空或产生虹吸倒空的管道。 f.贮存水池内主要设施: 贮存吊篮(或贮存格架)及其支架; 贮存吊篮/燃料单元抓取转运机; 水下照明与观察装置(包括照明灯更换装置); 水位、水温、放射性浓度等监测装置; 水面上排风管及进、排水管,池水顶面除浮装置及池底真空吸渣器。 g.贮存水池外部主要支持系统: 池水制备与补给系统; 池水过滤与净化系统; 池水冷却系统; 贮存档案和微机检索系统。 5.6.3 贮存吊篮/贮存格架 它是本设施安全重要部件之一,其设计要求: 5.6.3.1 按核安全功能级别1级、抗震等级Ⅰ类和质保等级A级及B级设计。设计上要充分考虑其次临界要求、热工水力、机械强度、抗震要求和操作安全等问题。 5.6.3.2 按拟贮存的乏燃料单元的最大反应性作为计算临界安全贮存间距的基准。经有关部门批准,也可采用燃耗信任制作为计算基准。 5.6.3.3 贮存吊篮/贮存格架的每个贮存位置应留有足够空间,并设有导向和支撑结构,以便燃料元件装入和取出(应考虑燃料单元弯曲余量),和防止燃料单元在转运和贮存过程受到轴向、纵向和弯曲方向的破坏。 5.6.3.4 与燃料单元接触的所有表面均要求无毛刺、尖角、凸边或焊珠等会损伤燃料单元表面的缺陷。 不允许螺纹端部或其它紧固件伸入贮存位置空间,影响燃料单元装入和取出。 5.6.3.5 所有制造材料应耐累集剂量为1E8Gyγ辐照和1E3Gy的热中子和快中子照射,并适应池水的化学性质。 5.6.3.6 可采用加入中子毒物(如硼、镉等)方法,将常规型贮存吊篮(或贮存格架)改为密集型,提高单位水池面积的乏燃料贮存量。 5.6.3.7 贮存吊篮/贮存格架应设计成不影响基中燃料单元在池中池水冷却自然对流。 5.6.3.8 每一贮存吊篮/贮存格架都应设永久性查对标志。 5.6.3.9 如采用固定式中子毒物密紧贮存格架(或贮存吊篮)就要求: 格架(或吊篮)使用前,应检查其中子吸收剂的物理-化学特性符合设计要求。并且能定期检查中子吸收剂的存在; 应提供定期检验格架(或吊篮)内中子毒物的物理-化学特性措施。 5.6.3.10 贮存格架/贮存吊篮应能水下吊除,而不影响其余贮存格架/贮存吊篮结构的完整性。 5.6.3.11 贮存格架支脚的设计要保证它们与水池覆面焊缝处维持适当距离,该距离应根据在设计地震条件下的最大滑动距离确定。 5.6.4 贮存吊篮/燃料单元转运设备 它是本设施安全重要设备之一,其设计要求: 5.6.4.1 应按核安全功能等级1级、坑震类别Ⅰ类和质保等级A级及B级设计。 5.6.4.2 起吊能力:正常应适应装满料的贮存吊篮/最大燃料单元的荷载,并且能在所有设计荷载下(包括设计地震荷载),可停在某一位置不工作,但决不引起失载故障。 5.6.4.3 运动方向:可在垂直平面内四个方向运动。 5.6.4.4 运动范围:在卸料水池-贮存水池规定范围内运动。 5.6.4.5 安全装置:应设防超载、防超速、防超行程、防机械零、部件及电气元件故障失效、防撞击、防人因误操作和防地震等外部事件破坏的安全装置(并按单一故障原则设计)特别应注意的是: 应保证在转运贮存吊篮/燃料单元过程中,不得发生核临界现象; 转运设备处于卸料水池上方时,转运设备不得与容器转运吊车同时工作; 应设有双重机械停止器及电气限位开关,以确保提升贮存吊篮/燃料单元不超过规定高度; 当水池水位低于规定最低水位时,转运设备不得转运燃料单元。 5.6.4.6 转运设备的附件和工具(如吊杆、抓具等)设计要求: 其结构材料应适应工作环境(如辐射场、池水物理化学特性); 应设有显示是否抓住燃料单元机构; 设备结构设计应尽量减少可能积累放射性污物的沟槽。如沟槽不可避免处,尽量作成可拆卸式以便去污; 浸入池水部分应开孔,以便浸入时充水,吊出时排水; 在断电或失去其它动力源时,应仍保持将燃料单元吊住。 5.6.5 池水制备与补给系统 满足下列要求: 5.6.5.1 提供合格的去离子水作为池水,以保证燃料单元包壳和结构材料在水池长期贮存基本不受池水侵蚀。推荐池水的物理-化学性质见附录B(参考件)。 5.6.5.2 正常补给水能力应大于水池池水蒸发损失与池水正常排出量之和。在水池低于规定最低水位时,应有应急补给水能力及自动补给措施。 5.6.5.3 在厂房布置上,本系统应与池水冷却和净化系统实体隔离,并且防止放射性污染的池水串入本系统。 5.6.5.4 应根据本设施设计基准事故(池水冷却功能丧失事故)分析确定事故应急供水系统(应急水池及相应泵、管道系统)。 5.6.6 池水冷却系统 应满足下列要求: 5.6.6.1 冷却能力设计基准: 在正常状态下保持池水整体温度平均不大于40℃; 贮存的乏燃料单元衰变热及贮存量(衰变热参见附录C)(参考件)。 5.6.6.2 冷却系统可按乏燃料最大贮存量整体设计或按阶梯式递增设计(即按分期实际贮存量分段设计,但应保证每段冷却系统实体隔离,但可并联使用)。 5.6.6.3 冷却系统可按一回路或两回路冷却系统设计,但均要保证放射性污染池水不得泄漏到系统外。 若采用两回路冷却系统,二回路冷却介质与池水相容,其压力高于一回路池水压力。 5.6.6.4 冷却系统故障停止工作后,应在未超过设计限值以前,冷却系统要能从失冷状态恢复过来。 5.6.6.5 冷却系统应布置在有防护屏蔽工艺间内,尽量减少操作人员入内操作监测;其设备和管道布置应尽量减少放射性物质积累,便于清洗去污,快速维修。 5.6.7 池水净化系统 应满下列要求: 5.6.7.1 净化能力设计基准: 正常状态下,池水年平均放射性浓度不大于1.85E4Bq/L; 在贮存的乏燃料单元事故破损造成放射性释放时,能迅速降低池水放射性浓度,恢复到规定值; 池水透明度应能便于水下观察装置辨明燃料单元; 池水周转期不大于72h; 提供净化系数大于6的去除放射性核素净化能力,以保持池水规定的总放射性水平。 5.6.7.2 池水净化系统应独立两套并联设计,以便一套再生时,另一套投入正常工作。 5.6.7.3 池水净化系统应布置在有防护屏蔽的工艺间内(可与池水冷却系统合在一起也可分开布置),尽量减少操作人员入内操作监测,其设备和管道布置应尽量减少放射性物质积累,便于清洗去污,快速维修。并且能对过滤器和离子交换柱间接操作反冲洗或更换滤芯。 5.7 燃料转运系统 5.7.1 水上转运 乏燃料单元在本设施内水上转运必须用运输容器和运输容器转运吊车(其要求见5.3.2)。 5.7.2 水下转运 乏燃料单元在本设施内水下转运必须用燃料单元转运设备(其要求见5.6.4)。 5.7.3 水下转运到后处理厂 贮存的乏燃料单元水下直接转运到其它核设施(如后处理厂)转运系统要求: a.应考虑燃料单元鉴别装置,在转运前应对欲转运的乏燃料单元鉴别,严防误发料。 b.应保证各个与转运接口的核设施相对独立,避免相互影响。转运通道的水下部分应设双重水下密封闸门,地上部分设气闸。 c.乏燃料单元水下运输机及其附属部件的材料应耐1E8Gyγ-辐射照射和1E3Gy的热中子和快中子照射,并适应池水化学性质。 d.水下运输机应运行可靠,必须严防在运输过程中燃料单元脱落。 e.水下运输机控制系统,应按单一故障原则设计,由发送站与接收站双向控制,互为连锁,并且保证其工作或故障均不导致临界事故。 5.8 设施主体结构和建(构)筑物 5.8.1 建筑物布置 应满足下列要求: a.工作人员进入潜在放射性污染或辐照区的出入口控制; b.应保证容器周转路线和乏燃料单元转运路线最短; c.车辆、设备或人员进出本建筑物处的放射性封闭; d.容器转运吊车工作范围满足完成其规定工作功能要求,并且从建筑物布局保证该吊车不通过贮存水池上方; e.布置存放辅助设备和辅助设施场地; f.橙区内留有足够地方,以便用最短时间完成所需的操作、维修和试验; g.厂房布置按四区原则布置,分区原则见EJ 849—94第9.2条规定; h.应防止随便进入转运与贮存区,或未经批准取出燃料; i.贮存区不应是进入其它操作通行路线的一部分; j.所有燃料单元转运、贮存及需要工作人员接近处的厂房布置应遵循合理可行尽量低的原则; k.厂房布置应考虑防火分区、疏散路线及应急出口。 5.8.2 结构设计 5.8.2.1 乏燃料贮存水池上面结构设计要保证其主要结构构件在设计基准荷载(包括设计基准风荷载和设计基准地震荷载)条件下不倒塌。 5.8.2.2 由于规定不采用预应力混凝土和钢结构基础,故只规定钢筋混凝土和钢结构的荷载组合和设计限值。 5.8.2.3 结构设计应考虑下列荷载: a.正常运行荷载 正常运行荷载应包括正常状态时,所有永久的和瞬时的荷载,特别应考虑下列荷载: 静荷载(代号D):即结构及附件(包括设备和管道)的静荷载。该荷载应按最恶劣的荷载条件模拟,并按估计值加5%考虑。 动荷载(代号L):即包括雨、雪和由于设备运行造成的冲撞及振动引起的运行荷载。该荷载应按最 恶劣的荷载条件模拟,并按估计值的0~100%内选取。 热应力荷载(代号T):即运行期间由于结构本身限制造成的对结构物热应力荷载和由设备、管道及其附件的热应力对结构的荷载。 水池横向或纵向液体静压力(代号F):按最恶劣的荷载条件(即按水池盛满水)模拟。 横向土壤压力(代号H):按最恶劣的荷载条件模拟,应考虑可信土壤状况的全范围。 b.自然现象荷载 设计基准地震动荷载(代号E)要考虑两种级别的地震动,即运行安全地震动(简称S1)和极限安全地震动(简称S2)。 设计基准地震动荷载应按S2考虑,并且不论设施处于何处,其水平地面运动不小于0.1g(带适当响应谱)。 c.异常运行荷载 池水失冷荷载(代号Ta):即池水失冷时间过长,池水温度上升造成附加荷载。 容器跌落荷载(代号A):即容器转运过程中,从操作可能高处跌落产生的附加荷载。 5.8.2.4 混凝土结构设计应满足下列要求: a.材料和性质应按GBJ 204要求。 b.其裂缝应按抗拉配筋位置、分布和覆盖层以及裂缝控制的最低要求等因素考虑,并结合下面各无因子荷载组合情况来确定。 c.荷载组合:考虑各种荷载在数量和方向上可能变化,这些荷载要乘以荷载因子再组合,以模拟最恶劣荷载状况。混凝土结构抗设计荷载所要求截面强度(应力)(Uc)应考虑下列的荷载组合。 |
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 |
服务热线:400-001-5431 | 电话:010-8572 5110 | 传真:010-8581 9515 | Email: bz@bzfyw.com | |
版权所有: 北京悦尔信息技术有限公司 2008-2020 京ICP备17065875号-1 51La |
本页关键词: |
EJ 878-1994, EJ/T 878-1994, EJT 878-1994, EJ878-1994, EJ 878, EJ878, EJ/T878-1994, EJ/T 878, EJ/T878, EJT878-1994, EJT 878, EJT878 |