![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative. This standard is developed in accordance with the rules given in GB/T 1.1-2009. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. The issuing body of this document shall not be held responsible for identifying any or all such patent rights. This standard was proposed by and is under the jurisdiction of the Ministry of Industry and Information Technology of the People's Republic of China. Introduction For the purpose of this standard, only the most basic safety requirements for lithium ion cells and batteries are taken into account to provide protection for personal and property safety, while the performance and functional characteristics are not involved. Further development of technology and process will certainly require further revision of this standard. The hazards caused by the lithium ion cells and batteries within the scope of this standard refer to: ——Leakage, which may directly pose chemical corrosion hazard to human bodies, or lead to failures of insulations inside the electronic equipment powered by cells, indirectly causing hazards such as electric shock and fire; ——Fire, which directly burns human bodies, or causes ignition hazard to electronic equipment powered by cells; ——Explosion, which directly endangers human bodies or damages equipment; ——Overheating, which directly causes burns to human body, or leads to degradation of insulation grade and performance of safety elements and components, or ignites combustible liquids; ——Electric shock, which causes injuries (such as burns, muscle spasm and ventricular fibrillation) by currents flowing through human body. Batteries whose output voltage exceed the safe voltage limit (DC 60 V) may directly cause the electric shock hazard, while the battery that can exceed the safe voltage limit (DC 60 V or 42.4 V (AC peak)) after being inverted may also cause the electric shock hazard. Priority in determining the design scheme for cells or batteries: ——First, priority shall be given to materials with high safety, if possible; ——Second, protective devices shall be designed (such as adding protective devices) to reduce or eliminate the possibility of hazards if the above-mentioned principles cannot be implemented; ——Finally, the residual hazards that cannot be completely avoided shall be identified and described. The above-mentioned principles are not intended to replace the detailed requirements of this standard, but only to inform the designer of the principles on which these requirements are based. The safety of lithium ion cells and batteries is related to material selection, design, production process, transport and service conditions. Thereof, service conditions include normal service conditions, foreseeable misuse conditions, and foreseeable fault conditions, as well as environmental conditions that affect its safety, such as temperature and altitude The safety requirements for lithium ion cells and batteries cover the hazards to personnel caused by all the factors mentioned above. Personnel refer to maintenance personnel and users. Maintenance personnel refer to those who maintain electronic equipment and its cells, and can use professional skills to avoid possible injuries in case of obvious hazards. However, they shall be protected against unexpected hazards, such as using signs or warning instructions to remind them of residual hazards. Users refer to all personnel other than maintenance personnel. The safety and protection requirements are put forward on the assumption that users have not been trained in how to identify hazards, but will not deliberately create hazardous situations. Lithium ion cells and batteries used in stationary electronic equipment - Safety technical specification 1 Scope This standard specifies the safety requirements and test methods for lithium ion cells and batteries used in stationary electronic equipment. This standard is applicable to lithium ion cells and batteries used in stationary electronic equipment (hereinafter referred to as “cells and batteries”), where the stationary electronic equipment includes: a) Stationary information technology equipment (IT equipment); b) Stationary audio and video equipment (AV equipment) and similar equipment; c) Stationary communication technology equipment (CT equipment); d) Stationary measurement control equipment, electronic equipment for laboratories and similar equipment. Note: The stationary electronic equipment listed above does not include all the equipment, so the equipment not listed may also be covered in this standard. This standard is also applicable to lithium ion cells and batteries for uninterruptible power supply (UPS) and emergency power supply (EPS). 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. GB/T 2423.5 Environmental testing - Part 2: Test methods - Test Ea and guidance: Shock GB/T 2423.10 Environmental testing - Part 2: Tests methods - Test Fc: Vibration (sinusoidal) GB/T 2423.21 Environmental testing - Part 2: Test methods - Test M: Low air pressure GB/T 2423.22 Environmental testing - Part 2: Tests methods - Test N: Change of temperature GB 4943.1-2011 Information technology equipment - Safety - Part 1: General requirements GB/T 17626.2 Electromagnetic compatibility - Testing and measurement techniques - Electrostatic discharge immunity test 3 Terms and definitions For the purposes of this document, the following terms and definitions apply. 3.1 (lithium ion) cell device that relies on the movement of lithium ions between the positive and negative electrodes to realize the mutual conversion of chemical energy and electrical energy, and is designed to be rechargeable Note: The device usually includes electrodes, diaphragms, electrolytes, containers and terminals. 3.2 large lithium ion cell lithium ion cell with total mass exceeding 500 g Note: This term is simply referred to as “large cell” in this standard. 3.3 cell block configuration in which multiple cells are connected in parallel and for which protective devices (such as fuses or positive temperature coefficient thermistors (PTC)) and monitoring circuits may or may not be provided Note: It cannot be used because it has not been provided with a housing, terminal device and electronic control device. [IEC 62619:2017, definition 3.8] 3.4 module configuration in which multiple cells are connected in series or in parallel and for which protective devices (such as fuses or positive temperature coefficient thermistors (PTC)) and monitoring circuits may or may not be provided [IEC 62619:2017, definition 3.9] 3.5 battery/battery pack energy storage device electrically coupled by one or more cells or modules Notes: 1 It can include protection and monitoring devices that provide information (such as cell voltage) to the battery system. 2 It can contain a protective cover provided by a terminal or other interconnection device. 3 It is revised from IEC 62619:2017, definition 3.10. 3.6 battery system system consisting of one or more cells, modules or batteries Notes: 1 It has a battery management system which will act if overcharge, overcurrent, overdischarge and overheating occur. 2 The over-discharge cut-off is not mandatory if an agreement is made between the battery manufacturer and the user. 3 It can include cooling or heating devices, and some even include charging and discharging modules and inverter modules. 4 In this standard, the requirements for the battery system are equivalent to those for batteries. 5 It is revised from IEC 62619: 2017, definition 3.11. 3.7 large lithium ion battery lithium ion battery with total mass exceeding 12 kg Note: This term is simply referred to as “large battery” in this standard. 3.8 battery management system; BMS electronic system which is connected with the battery, capable of cutting off the circuit under overcharge, overcurrent, overdischarge and overheating, and used to monitor and/or manage the state of the battery, calculate secondary data, report data and/or control the environment to influence the safety, performance and/or service life of the battery; the functions of BMS may be assigned to the battery or equipment using the battery Notes: 1 The over-discharge cut-off is not mandatory if an agreement is made between the battery manufacturer and the user. 2 The functions of BMS may be available on the battery or on the equipment using the battery. 3 The BMS may be separated, possibly with a part in the battery and a part at the application end, as shown in Figure 1. 4 Sometimes BMS is also called BMU (battery management unit). [IEC 62619:2017, definition 3.12] a) Battery containing all functions of BMS b) Battery and equipment containing some functions of BMS c) Combination of equipment with BMS and modules d) Equipment containing all functions BMS and batteries Figure 1 Example for location of BMS and composition of battery system 3.9 stationary electronic equipment electronic equipment that is not intended to be frequently carried by the user Notes: 1 It includes non-portable electronic equipment, and mobile electronic equipment weighing more than 18 kg. 2 Within the scope of this standard, electronic equipment that does not belong to the "portable electronic equipment" specified in GB 31241-2014 is defined as stationary electronic equipment, as shown in Figure 2. 3 See 3.3 of GB 31241-2014 for the definition of portable electronic equipment. Figure 2 Scope of stationary electronic equipment specified in this standard 3.10 rated capacity C cell or battery capacity indicated by the manufacturer Note: It is expressed in ampere-hour (A·h) or milliampere-hour (mA·h). 3.11 upper limited charging voltage Uup maximum safe charging voltage that the cell or battery can withstand, as specified by the manufacturer 3.12 discharge cut off voltage Udo minimum load voltage specified by the manufacturer for safe discharge of the cell or battery 3.13 end of discharge voltage Ude load voltage specified by the manufacturer at which the discharge behavior of the cell or battery in cycle use is terminated 3.14 recommendation charging current Icr constant-current charging current recommended by the manufacturer 3.15 maximum continual charging current Icm maximum constant-current charging current specified by the manufacturer 3.16 recommendation continual discharging current Idr continual discharging current recommended by the manufacturer 3.17 maximum discharging current Idm maximum continual discharging current specified by the manufacturer 3.18 upper limited charging temperature Tcm maximum ambient temperature specified by the manufacturer for charging the cell or battery Note: It refers to the ambient temperature, not the surface temperature of the cell or battery. 3.19 upper limited discharging temperature Tdm maximum ambient temperature specified by the manufacturer for the discharge of the cell or battery Note: It refers to the ambient temperature, not the surface temperature of the cell or battery. 3.20 lower limited charging temperature Tcl minimum ambient temperature specified by the manufacturer for charging the cell or battery Note: It refers to the ambient temperature, not the surface temperature of the cell or battery. 3.21 leakage visible leakage of liquid electrolyte [GB/T 28164-2011, definition 1.3.9] 3.22 rupture mechanical damage to the cell case or battery case due to internal or external factors, resulting in exposure or spillage, rather than ejection, of internal material [GB/T 28164-2011, definition 1.3.11] 3.23 explosion violent rupture of cell case or battery case, resulting in the ejection of the main component [GB/T 28164-2011, definition 1.3.12] 3.24 fire visible flame in the cell, module, battery or battery system Note: It is revised from IEC 62619: 2017, 3.17. 3.25 type test test on a representative sample of the equipment to determine if the equipment, as designed and manufactured, can meet the requirements of this standard [GB 31241-2014, definition 3.27] Note: Unless otherwise specified, all the tests specified in this standard refer to type tests. 4 Test conditions 4.1 Applicability of the tests The tests specified in this standard shall only be performed where safety is concerned. If it is specified in the standard that the test of a certain type of cell or battery is not applicable due to the restriction of the design, structure and function of the product, the test may not be carried out. If a test is necessary, and the cell or battery cannot be tested due to the restriction of product design, structure or function, the electronic equipment that uses the cell or battery and the charger or parts and components of the electronic equipment may be tested together with the cell or battery. Note: The stationary electronic equipment and the charger or parts and components of it shall be provided by the manufacturer of the cell or battery or the manufacturer of the electronic equipment, together with their operating instructions. Unless otherwise specified, samples are not required to be functional after the tests. 4.2 Ambient conditions of the tests Unless otherwise specified, the tests are generally conducted under the following conditions: a) Temperature: 20℃±5℃; b) Relative humidity: ≤75%; c) Air pressure: 86 kPa~106 kPa. 4.3 Parameters measurement tolerances The accuracy of all control or measured values, as compared to the specified or actual values, shall be within the following tolerances: a) Voltage: ±1%; b) Current: ±1%; c) Temperature: ±2℃; d) Time: ±0.1%; e) Capacity: ±1%; f) Height: ±1%; g) Mass: ±1%. The above tolerances have taken into account the accuracy of the measuring instruments used, the test methods employed, and all other errors introduced during the test. 4.4 Measuring method of temperature The surface temperature of the sample is measured by the thermocouple method. For the temperature measuring point, the point with the maximum temperature shall be used as the basis for determining the test. 4.5 Charging and discharging procedures for testing 4.5.1 Charging procedure for testing The sample shall be charged according to the method specified by the manufacturer. Note: Before charging, the sample shall be discharged to the end of discharge voltage according to the method specified by the manufacturer. 4.5.2 Discharging procedure for testing The sample shall be subjected to constant-current discharge at the current specified by the manufacturer till the end of discharge voltage is reached. 4.6 Type test 4.6.1 Sample requirements Unless otherwise specified, the tested sample shall be a representative sample of the product to be accepted by the customer, including samples trial-produced on a small batch basis or a product ready for delivery to the customer. If the test requires the introduction of wires for testing or connection, the resulting total resistance shall be less than 20 mΩ. 4.6.2 Sample quantity Unless otherwise specified, each item shall be tested with 3 cell samples and 1 battery sample. 4.6.3 Capacity test of cell sample The actual capacity of the cell sample shall be greater than or equal to its rated capacity, otherwise it cannot be used as a typical sample for type test. Fully charge the cell according to the charging procedure specified in 4.5.1, let it stand for 10 min, and then discharge it according to the discharging procedure specified in 4.5.2. The capacity provided during discharge is the actual capacity of the cell. In case of any disagreement with the result of the capacity test, the test may be performed again at the ambient temperature of 23℃±2℃ for arbitration. 4.6.4 Sample pretreatment Perform two charge-discharge cycles on the cell or battery in accordance with the procedures specified in 4.5, and let it stand for 10 min (for the cell) or 30 min (for the battery) between the two procedures. Note: The cell samples may be tested for capacity at the same time. Foreword i Introduction ii 1 Scope 2 Normative references 3 Terms and definitions 4 Test conditions 4.1 Applicability of the tests 4.2 Ambient conditions of the tests 4.3 Parameters measurement tolerances 4.4 Measuring method of temperature 4.5 Charging and discharging procedures for testing 4.6 Type test 5 General safety requirements 5.1 General considerations on safety 5.2 Safe working parameters 5.3 Marking and warning instructions 5.4 Key safety components 6 Electrical safety of cells 6.1 External short circuit at high temperature 6.2 Overcharge 6.3 Forced discharge 7 Environmental safety of cells 7.1 Low pressure 7.2 Temperature cycling 7.3 Vibration 7.4 Acceleration shock 7.5 Drop 7.6 Impact/extrusion with weight 7.7 Thermal abuse 8 Environmental safety regarding batteries 8.1 Temperature cycle 8.2 Vibration 8.3 Acceleration shock 8.4 Drop 9 Functional safety of battery system 9.1 Requirements for battery management unit/battery management system 9.2 Requirements for test samples 9.3 Overvoltage charging control 9.4 Overcurrent charging control 9.5 Undervoltage discharge control 9.6 Overload control 9.7 Short circuit control 9.8 Reverse charging 9.9 Overheat control 9.10 Electrostatic discharge 10 System safety Annex A (Normative) Test sequence Bibliography 固定式电子设备用锂离子电池和 电池组 安全技术规范 1 范围 本标准规定了固定式电子设备用锂离子电池和电池组的安全要求,以及试验方法。 本标准适用于固定式电子设备用锂离子电池和电池组(以下简称为电池和电池组)。其中固定式电子设备包括: a) 固定式信息技术设备(IT设备); b) 固定式音视频设备(AV设备)及类似设备; c) 固定式通信技术设备(CT设备); d) 固定式测量控制和实验室电子设备及类似设备。 注:上述列举的固定式电子设备并未包括所有的设备,因此未列出的设备也可能包含在本标准的范围内。 本标准还适用于不间断电源(UPS)、应急电源(EPS)等用锂离子电池和电池组。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2423.5 环境试验 第2部分:试验方法 试验Ea和导则:冲击 GB/T 2423.10 环境试验 第2部分:试验方法 试验Fc:振动(正弦) GB/T 2423.21 电工电子产品环境试验 第2部分:试验方法 试验M:低气压 GB/T 2423.22 环境试验 第2部分:试验方法 试验N:温度变化 GB 4943.1—2011 信息技术设备 安全 第1部分:通用要求 GB/T 17626.2 电磁兼容 试验和测量技术 静电放电抗扰度试验 3 术语和定义 下列术语和定义适用于本文件。 3.1 [锂离子]电池 (lithium ion) cell 依靠锂离子在正极和负极之间移动实现化学能与电能相互转化的装置,并被设计成可充电。 注:该装置通常包括电极、隔膜、电解质、容器和端子等。 3.2 大型锂离子电池 large lithium ion cell 总质量超过500 g的锂离子电池。 注:该术语在本标准中简称为大型电池。 3.3 电池并联块 cell block 多个电池并联在一起的配置,可能有也可能没有保护装置[如熔断器或正温度系数热敏电阻(PTC)]和监控电路。 注:由于它尚未安装外壳、终端装置和电子控制装置,因而还不能使用。 [IEC 62619:2017,定义3.8] 3.4 模块 module 多个电池串联或并联在一起的配置,可能有也可能没有保护装置[如熔断器或正温度系数热敏电阻(PTC)]和监控电路。 [IEC 62619:2017,定义3.9] 3.5 电池组 battery/ battery pack 由一个或多个电池或模块电气联接的能量存储装置。 注1:它可以包括给电池组系统提供信息(如电池电压)的保护和监控装置。 注2:它可以包含由终端或其他互联装置提供的保护罩。 注3:改写IEC 62619:2017,定义3.10。 3.6 电池组系统 battery system 由一个或多个电池,模块或电池组组成的系统。 注1:它有电池组管理系统,如果发生过充、过流、过放和过热,电池管理系统会动作。 注2:如果电池制造商和用户达成协议,过放切断并不是强制性的。 注3:它可以包含冷却或加热装置,有的甚至包含了充放电模块和逆变模块。 注4:在本标准中电池组系统的要求等同于电池组。 注5:改写IEC 62619:2017,定义3.11. 3.7 大型锂离子电池组 large lithium ion battery 总质量超过12kg的锂离子电池组。 注:该术语在本标准中简称为大型电池组。 3.8 电池管理系统 battery management system; BMS 与电池组相连的,在过充、过流、过放以及过热下能够切断电路的电子系统,用来监控和(或)管理电池组的状态,计算二次数据、报告数据和(或)控制环境以影响电池组的安全、性能和(或)使用寿命。BMS的功能可能分配给电池组或使用电池组的设备。 注1:如果电池制造商与用户达成协议,过放切断并不是强制性的。 注2:BMS的功能可在电池组上,也可在使用电池组的设备上。 注3:BMS可以被分开,有可能一部分在电池组内,一部分位于应用端,见图1。 注4:有时BMS也被称为BMU(电池管理单元,battery management unit)。 [IEC 62619:2017,定义3.12] a) BMS的所有功能在电池组内 设备 电池组系统 电池组 模块(一个或多个) 电池(一个或多个) b) 电池组和设备均含BMS的部分功能 信号输出 设备 电池组系统 电池组 模块(一个或多个) 电池(一个或多个) c) 设备与BMS和模块组合 设备 电池组系统 模块(一个或多个) 电池(一个或多个) d) 设备包括了所有BMS功能和电池 设备 电池组系统 电池(一个或多个) 图1 BMS位置举例和电池组系统的组成 3.9 固定式电子设备 stationary electronic equipment 固定式电子产品 预定不可由使用人员经常携带的电子设备。 注1:包括了不可携带使用的电子设备以及超过18 kg的移动式电子设备。 注2:在本标准范围内,不属于GB 31241—2014规定的“便携式电子产品”的电子设备都被定义为固定式电子设备,见图2。 注3:便携式电子产品的定义参见GB 31241—2014的3.3。 固定式电子设备 GB 31241规定的“便携式电子产品”的电子设备 移动式电子产品/设备 不可携带使用的电子设备 图2 本标准规定的固定式电子设备范围 3.10 额定容量 rated capacity C 制造商标明的电池或电池组容量, 注:单位为安时(A·h)或毫安时(mA·h)。 3.11 充电上限电压 upper limited charging voltage Uap 制造商规定的电池或电池组能承受的最高安全充电电压。 3.12 放电截止电压 discharge cut off voltage Udc 制造商规定的电池或电池组安全放电的最低负载电压。 3.13 放电终止电压 end of discharge voltage Ude 制造商规定的电池或电池组循环使用中终止放电行为的负载电压。 3.14 推荐充电电流 recommendation charging current Ier 制造商推荐的恒流充电电流。 3.15 最大持续充电电流 maximum continual charging current Iam 制造商规定的最大的恒流充电电流。 3.16 推荐持续放电电流 recommendation continual discharging current Idr 制造商推荐的持续放电电流。 3.17 最大放电电流 maximum discharging current Idm 制造商规定的最大持续放电电流。 3.18 上限充电温度 upper limited charging temperature Tcm 制造商规定的电池或电池组充电时的最高环境温度。 注:该温度为环境温度,不是电池或电池组的表面温度。 3.19 上限放电温度 upper limited discharging temperature Tdtn 制造商规定的电池或电池组放电时的最高环境温度。 注:该温度为环境温度,不是电池或电池组的表面温度。 3.20 下限充电温度 lower limited charging temperature Tcl 制造商规定的电池或电池组充电时的最低环境温度。 注:该温度为环境温度,不是电池或电池组的表面温度。 3.21 漏液 leakage 可见的液体电解质的漏出。 [GB/T 28164—2011,定义1.3.9] 3.22 破裂 rupture 由于内部或外部因素引起电池外壳或电池组壳体的机械损伤,导致内部物质暴露或溢出,但没有喷出。 [GB/T 28164—2011,定义1.3.11] 3.23 爆炸 explosion 电池或电池组的外壳剧烈破裂导致主要成分抛射出来。 [GB/T 28164—2011,定义1.3.12] 3.24 起火 fire 电池、模块、电池组或电池组系统有可见火焰。 注:改写IEC 62619:2017,定义3.17。 3.25 型式试验 type test 对有代表性的样品所进行的试验,其日的是确定其设计和制造是否能符合本标准的要求。 [GB 31241—2014,定义3.27] 注:除非另有说明,本标准规定的试验均为型式试验。 4 试验条件 4.1 试验的适用性 只有涉及安全性时才进行本标准规定的试验。 在标准内容约定某一类电池或电池组因为产品的设计、结构、功能上的制约而明确对该产品的试验不适用时,可不进行该试验。如因受产品设计、构造或功能上的制约而无法对电池或电池组进行试验,而这种试验又必须实施时,可连同使用该电池或电池组的电子设备、该电子设备附属的充电器或构成该电子设备一部分的零部件,与电池或电池组一起进行相关试验。 注:固定式电子设备及其附带的充电器或者构成其一部分的零部件来自该电池或电池组的制造商或者电子设备的制造商,并由该制造商提供操作说明。 除非另有规定,测试完成后的样品不要求还能正常使用。 4.2 试验的环境条件 除非另有规定,试验一般在下列条件下进行: a) 温度:20℃±5℃; b) 相对湿度:不大于75%; c) 气压:86 kPa~106 kPa。 4.3 参数测量公差 相对于规定值或实际值,所有控制值或测量值的准确度应限定在下述公差范围内: a) 电压:±1%; b) 电流:±1%; c) 温度:±2℃; d) 时间:±0.1%; e) 容量:±1%; f) 高度:±1%; g) 质量:±1%。 上述公差包含了所用测量仪器的准确度、所采用的测试方法以及测试过程中引入的所有其他误差。 4.4 温度测量方法 采用热电偶法测量样品的表面温度。温度测试点选取温度最高点作为试验判定依据。 4.5 测试用充放电程序 4.5.1 测试用充电程序 样品按照制造商规定的方法进行充电。 注:在充电前样品先按照制造商规定的方法放电至放电终止电压。 4.5.2 测试用放电程序 样品依照制造商规定的电流进行恒流放电至放电终止电压。 4.6 型式试验 4.6.1 样品的要求 除非另有规定,被测试样品应是客户将要接受的产品的代表性样品,包括小批量试产样品或是准备向客户交货的产品。 若试验需要引入导线测试或连接时,引入导线测试或连接产生的总电阻应小于20mΩ。 4.6.2 样品的数量 除特殊说明外,每个试验项目的电池样品为3个,电池组样品为1个。 4.6.3 电池样品容量测试 电池样品的实际容量应大于或等于其额定容量,否则不能作为型式试验的典型样品。 电池先按照4.5.1规定的充电程序充满电,搁置10 min,再按照4.5.2规定的放电程序放电,放电时所提供的容量即为电池的实际容量。 当对容量测试结果有异议时,可依据23℃±2℃的环境温度作为仲裁条件重新测试。 4.6.4 样品的预处理 电池或电池组按照4.5规定的充放电程序进行两个充放电循环,充放电程序之间电池搁置10 min,电池组搁置30 min。 注:对于电池样品可同时进行容量测试。 4.6.5 试验项目 表1为电池的型式试验项目。 表1 电池的型式试验 项目 章条号 试验内容 样品编号b,c,d 试验条件 4.6.3 电池样品容量测试 全部 4.6.4 样品的预处理 全部 一般安全要求a 5.2 安全工作参数 — 5.3.1 标识要求 电池电安全试验 6.1 高温外部短路 1~3 6.2 过充电 4~6 6.3 强制放电 7~9 电池环境安全试验 7.1 低气压 1~3 7.2 温度循环 1~3 7.3 振动 1~3 7.4 加速度冲击 1~3 7.5 跌落 10~12 7.6 重物冲击/挤压 13~15 电池环境安全试验 7.7 热滥用 16~18 a 对厂商提供的标签、说明书、材料等进行检查和试验。 b 样品优先使用电池,也可使用电池并联块或模块代替电池,试验详见具体条款。 c 当使用电池并联块或模块代苔电池进行试验,电池并联块或模块所含电池数量多于3个时,使用1个电池并联块或模块进行试验。 d 当有争议时,以使用电池进行试验的结果为准。 表2为电池组/电池组系统的型式试验项目。 表2 电池组/电池组系统的型式试验 项目 章条号 试验内容 样品编号b 试验条件 4.6.4 样品的预处理 全部 一般安全要求a 5.2 安全工作参数 — 5.3.1 标识要求 5.3.2 警示说明 5.3.3 耐久性 电池组环境试验 8.1 温度循环 1 8.2 振动 1 8.3 加速度冲击 1 8.4 跌落 2 电池组系统功能性安全要求 9.3 过压充电 3 9.4 过流充电 4 9.5 欠压放电 5 9.6 过载 6 9.7 短路 7 9.8 反向充电 8 9.9 过热 9 9.10 静电放电 10 如果电池组系统可拆分为小的单元,单元可代替电池组系统进行试验。制造商可对单元添加最终电池组系统具有的功能。制造商应明确声明每一项测试的测试单元。 a 对厂商提供的标签、说明书、材料等进行检查和试验。 b 样品是电池组或电池组系统二者之一。 系统安全试验见第10章。 4.6.6 试验顺序 电池和电池组试验顺序见附录A。 4.6.7 试验判据 某项试验的受试样品全部测试合格,判定该项试验合格。 5 一般安全要求 5.1 一般安全性的考虑 电池和电池组的安全性从下列两种应用条件加以考虑: a) 预期使用; b) 合理可预见误用或滥用以及故障条件。 5.2 安全工作参数 为确保电池和电池组在不同条件下的使用安全,应规定其安全工作条件,包括温度范围、电压范围和电流范围等参数。由于电池材料体系和结构的差异,其安全工作参数值可能不同。 制造商应在相应规格书中至少标明表3中的信息。 表3 规格书中至少标明的信息 安全工作参数 符号 充电上限电压 Uup 放电终止电压 Ude 放电截止电压 Udo 推荐充电电流 Ict 最大持续充电电流 Icm 推荐持续放电电流 Idr 最大放电电流 Itim 上限充电温度 Tcrn 上限放电温度 Tdm 下限充电温度 Tcl 5.3 标识和警示说明 5.3.1 标识要求 应使用中文至少标明以下标识: ——产品名称、型号; ——额定容量、标称电压、充电限制电压; ——正负极性,使用“正、负”字样或“+、-”符号表示; ——制造商或商标。 对于电池组,以上标识均应在本体上标明。 对于电池,额定容量、型号和正负极性应在本体上标明,其余标识允许在包装或说明书上标明。 目测检查被测电池和电池组的标识,应符合以上要求。 5.3.2 警示说明 电池组的本体上应有中文警示说明,例如: 禁止拆解、撞击、挤压或投入火中 若出现严重鼓胀,切勿继续使用 切勿置于高温环境中 目测检查被测电池组的警示说明,应符合以上要求。 5.3.3 耐久性 电池组本体上的标识和警示说明应清晰可辨。 本标准所要求的任何标识和警示说明应是耐久的和醒目的。在考虑其耐久性时,应把正常使用时对其影响考虑进去。 通过检查、擦拭标识和警示说明来检验其是否合格。擦拭标识和警示说明时,应使用一块蘸有水的棉布用手擦拭15 s,然后再用一块蘸有75%(体积比)的医用酒精的棉布用手擦拭15 s,试验后,标识和警示说明仍应清晰,铭牌不应轻易被揭掉,而且不得出现卷边。 5.4 安全关键元器件 5.4.1 基本要求 在涉及安全的情况下,电池、电池模块及电池组系统中的元器件,如正温度系数热敏电阻器(PTC)、热熔断休等,应符合本标准的要求,或者符合有关元器件的国家标准、行业标准或其他规范中与安全有关的要求。 注:只有当某一元器件明确属于基于预定用途的某一元器件国家标准、行业标准或其他的适用范围内时,才能认为该标准是有关的。 5.4.2 元器件的评定和试验 元器件的评定和试验应按下列规定进行: a) 当元器件已被证实符合与有关的元器件国家标准、行业标准或其他规范相协调的某一标准时,应检查该元器件是否按其额定值正确应用和使用。该元器件还应作为设备的一个组成部分承受本标准规定的有关试验,但不承受有关的元器件国家标准、行业标准或其他规范中规定的那部分试验。 b) 当元器件未如上所述证实其是否符合有关标准时,应检查该元器件是否按规定的额定值正确应用和使用。该元器件还应作为设备的一个组成部分承受本标准规定的有关试验,而且还要按设备中实际存在的条件,承受该元器件标准规定的有关试验。 注:为了检验元器件是否符合某个元器件的标准,通常单独对元器件进行有关试验。 c) 如果某元器件没有对应的国家标准、行业标准或其他规范,或元器件在电路中不按它们规定的额定值使用,则该元器件应按设备中实际存在的条件进行试验。试验所需要的样品数量通常与等效标准所要求的数量相同。 6 电池电安全 6.1 高温外部短路 将电池按照4.5.1规定的试验方法充满电后,放置在55℃±5℃的环境中,待电池达到55℃±5℃后,再放置30min。然后用导线连接电池正负极端,并确保全部外部电阻不高于30mΩ。试验过程中监测电池温度变化,当出现以下两种情形之一时,试验终止: a) 电池温度下降值达到峰值温升50%; b) 短接时间达到24 h。 电池应不起火、不爆炸。 当对高温外部短路结果有异议时,可依据制造商提供的电阻值(但不高于30mΩ)作为仲裁条件重新测试。 注:导线的电阻率温度系数小于5×10-3℃-1,如康铜线等。 6.2 过充电 将电池按照4.5.1规定的试验方法充满电后,用制造商规定的最大持续充电电流充电至1.2倍的充电上限电压或5V(取两者较大值)。对于标称电压小于3V的电池,用制造商规定的最大持续充电电流充电至1.5倍的充电上限电压。 试验过程中监测电池温度变化,当出现以下两种情形之一时,试验终止: a)充电至规定电压后持续充电时间达到1h; b)电池温度下降值达到峰值温升50%。 当有争议时,a)和b)选较严者。 电池应不起火、不爆炸。 注:如果使用电池并联块或模块代替电池进行此试验,试验参数根据电池并联块或模块中电池串并联关系加倍,串联增压,并联增流。 |
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 |
服务热线:400-001-5431 | 电话:010-8572 5110 | 传真:010-8581 9515 | Email: bz@bzfyw.com | |
版权所有: 北京悦尔信息技术有限公司 2008-2020 京ICP备17065875号-1 51La |
本页关键词: |
GB 40165-2021, GB/T 40165-2021, GBT 40165-2021, GB40165-2021, GB 40165, GB40165, GB/T40165-2021, GB/T 40165, GB/T40165, GBT40165-2021, GBT 40165, GBT40165 |