![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative. This standard is developed in accordance with the rules given in GB/T 1.1-2009. This standard replaces "Expansion and undercut building anchors for use in concrete” (JG 160-2004) and "self-undercut & post-undercut mechanical anchors and undercut drill bit for use in concrete” (JG/T 367-2012). In addition to a number of editorial changes, the following changes have been made with respect to JG 160-2004 and JG/T 367-2012 (the previous editions). - The “Terminologies and Symbols” is modified; - The product classification is modified, with the anchor classification based on application conditions added; - The anti-corrosion requirements are modified; - The anchorage performance requirements are improved, with different anchorage performance requirements proposed for different types of anchors and ultimate installation torque performance requirements added, which are detailed in Table 2, and with long duration load performance requirements deleted and seismic performance requirements modified, which are detailed in Table 3; - The concrete cone failure bearing capacity coefficient is modified, see Table 2; the requirements for classification according to the performance index are added, see 6.1; - The ultimate installation torque performance test method is added, see 7.1.3.3; the long duration load performance test method is deleted; the special test method for seismic performance is modified, see Appendix I; - The items and rules of end-of-manufacturing inspection and type inspection are modified. This standard was proposed by the Research Institute of Standards and Norms (RISN) of Ministry of Housing and Urban-Rural Development. This standard is under the jurisdiction of the Technical Committee on Building Products and Accessories of Standardization Administration of the Ministry of Housing and Urban-Rural Development. Drafting organizations of this standard: China Academy of Building Research and Beijing Xiongjie Fangye Building Technology Development Co., Ltd. Participating drafting organizations of this standard: Dalian Wanda Commercial Management Group Co., Ltd., China Architecture Design & Research Group, Hilti (Shanghai) Co., Ltd., Fisher (Taicang) Construction Anchor Co., Ltd., Shanghai Xiangrui Fastener Co., Ltd., Fasten Group - MANKATA Technology (Beijing) Co., Ltd., Shanghai Kalz Construction Technology Co., Ltd., Chengdu Hui Bao Building Material Co., Ltd. JIANYANKEGONG (Beijing) Science and Technology Co., Ltd., Beijing Rail Transit Design and Research Institute and Guangdong KIN LONG Hardware Products Co. Ltd. Chief drafters of this standard: Yang Zhi, Liu Jieping, Yang Bo, Luo Hongbo, Li Fang, Xu Fuquan, Xiong Zhaohui, Liu Bing, You Tianzhi, Zhang Jinfeng, Zhang Dongguang, Wang Jingtao, Yang Weirui, Wang Wenzheng, Liu Pingyuan, Chen Wei, Liu Zheng, Feng Zhigang, Zhang Ke, Zhong Zhaoming, Mei Qi, Du Wanming, Li Yujie, Yao Songkai, Zhu Feng, Wu Mingya and Liu Yonggang. The previous editions of this standard are as follows: - JG 160-2004; - JG/T 367-2012. Mechanical anchors for use in concrete 混凝土用机械锚栓 1 Scope This standard specifies the classification and mark, requirements, test methods, inspection rules, marking, product instructions, packaging, transportation and storage of mechanical anchors with concrete as substrate. This standard is applicable to metal anchors anchored on cracked or non-cracked concrete with compressive strength of 25 MPa to 60 MPa. 2 Normative References The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. GB 175 Common Portland Cement GB/T 193 General Purpose Metric Screw Threads - General Plan GB/T 196 General Purpose Metric Screw Threads - Basic Dimensions GB/T 197 General Purpose Metric Screw Threads - Tolerances GB/T 699 Quality Carbon Structure Steels GB/T 700 Carbon Structural Steels GB/T 1220 Stainless Steel Bar GB/T 3077 Alloy Structure Steels GB/T 3098.1 Mechanical Properties of Fasteners - Bolts, Screws and Studs GB/T 3098.2 Mechanical Properties of Fasteners - Nuts GB/T 3098.6 Mechanical Properties of Fasteners - Stainless Steel Bolts, Screws and Studs GB/T 3098.15 Mechanical Properties of Fasteners - Stainless Steel Nuts GB/T 4237 Hot Rolled Stainless Steel Plate, Sheet and Strip GB/T 5267.1 Fasteners - Electroplated Coatings GB/T 5267.3 Fasteners - Hot Dip Galvanized Coatings GB/T 6335.1 Rotary and Rotary Impact Masonry Drill Bits with Hardmetal Tips Part1: Dimensions GB/T 9799 Metallic and Other Inorganic Coatings - Electroplated Coatings of Zinc with Supplementary Treatments on Iron or Steel GB/T 13912 Metallic Coatings - Hot Dip Galvanized Coatings on Fabricated Iron and Steel Articles - Specifications and Test Methods GB/T 14684 Sand for Construction GB/T 14685 Pebble and Crushed Stone for Construction GB/T 14975 Seamless Stainless Steel Tubes for Structure GB/T 19292.2 Corrosion of Metals and Alloys - Corrosivity of Atmospheres - Guiding Values for the Corrosivity Categories GB/T 19355.1 Zinc Coatings - Guidelines and Recommendations for the Protection Against Corrosion of Iron and Steel in Structures - Part 1: General Principles of Design and Corrosion Resistance GB/T 19355.2 Zinc Coatings - Guidelines and Recommendations for the Protection Against Corrosion of Iron and Steel in Structures - Part 2: Hot Dip Galvanizing GB/T 19355.3 Zinc Coatings - Guidelines and Recommendations for the Protection Against Corrosion of Iron and Steel in Structures - Part 3: Sherardizing GB/T 25672 Hammer Drills and Shell Hammer Drills GB/T 31303 Austenitic-Ferritic Duplex Stainless Steel Bars JB/T 5067 Sherardizing of Iron and Steel Articles 3 Terminologies, Definitions and Symbols For the purposes of this document, the following terminologies, definitions and symbols apply. 3.1 Terminologies 3.1.1 Mechanical anchors Component that is anchored on a concrete substrate by virtue of friction or locking effect between the anchor and the borehole, with the main stressed members consisting of fasteners (screw, nut, gasket), conical heads and expansion parts (expansion bushing or expansion sheet) that are made of metallic material. 3.1.2 Expansion anchors Anchors with friction, which is generated when expansion part is applied with torque or tapped and therefore squeezes the hole wall, as the main anchorage force. See Appendix A, Figure A.1. 3.1.3 Undercut anchors Anchors with mechanical engaging force, which is generated by locking wedge formed by expansion part which is embedded into the hole expanded by special die bit or hard blade on the anchor expansion part at certain depth of the straight hole when applied with torque or tapped, as the main anchorage force. 3.1.3.1 Pre-drilled undercut anchors Undercut anchors which is installed after hole expansion is carried out with special die bit. See Appendix A, Figure A.2. 3.1.3.2 Self-cutting undercut anchors Undercut anchors with its expansion part having hard blade through which hole expansion and expansion part embedding are completed during anchor installation. See Appendix A, Figures A.3 and A.4. 3.1.3.3 Double-wedge anchors Anchor bolts with upper and lower anchorage points, among which the latter is the undercut locking wedge and main anchorage point, and the former is locking wedge or expansion point and auxiliary anchorage point. See Appendix A, Figure A.5. 3.1.4 Screw anchors Anchor bolts, when are screwed into the drilled hole, cut and embed into the embedding hole wall through self-contained hard threads. See Appendix A, Figure A.6. 3.1.5 Installation torque Tighten torque required to install anchors. 3.1.6 Installation displacement Displacement required to install anchors through tapping. 3.1.7 Torque control Anchor installation method by which torque is applied on anchor screws, nuts or bushings. 3.1.8 Displacement control Anchor installation method by which anchor conical head or bushing is tapped. 3.1.9 Anchorage zone Zone in the concrete within which the anchor transmits external load. 3.1.10 Concrete cone failure Cone failure of concrete formed with anchor as the axis in the anchorage zone under the action of tension. See Appendix A, Figure A.7. 3.1.11 Anchor pull-out failure Failure of concrete formed due to anchor, under the action of tension, slides towards the concrete surface and finally is pulled out, all or partially, from the concrete, or causes failure at shallow position on the concrete that is similar as the concrete cone failure. See Appendix A, Figure A.8. 3.1.12 Anchor steel failure Failure of the metal component of the anchor under the action of tension or shear. See Appendix A, Figure A.9. 3.1.13 Concrete splitting failure Failure of concrete in the form of crack along the vertical line of a single anchor axis or along the common vertical line of multiple anchor axes under the action of tension. See Appendix A, Figure A.10. 3.1.14 Concrete edge failure Semi-conical fracture formed at concrete edge under the action of tension or that formed at the concrete edge in the shear direction under the action of shearing force. See Appendix A, Figure A.10. 3.1.15 Reference test Mechanical property test conducted by drilling holes on the dry concrete with specified strength by using drill with diameter of dm, edge distance and interval of holes not less than 2hef and 4hef respectively, and anchor installed according to the requirements of the product instructions. The test data is usually used as a reference for other tests for comparison. 3.1.16 Coefficient of radial force Ratio of the radial expansion force to the axial tensile force of the anchor under the action of tension. 3.2 Symbols As - the nominal sectional area of the anchor screw part with failure due to tension, mm2; Asv - the nominal sectional area of the anchor part under shearing force, mm2; Asv,b - the screw nominal sectional area at the anchor part under shearing force, mm2; Asv, s - the bushing nominal sectional area at the anchor part under shearing force, mm2; c - the coefficient (constant); dm - the medium diameter of the test drill bit, see Appendix B, mm; dmax - the maximum diameter of the drill bit for test, see Appendix B, mm; dmin - the minimum diameter of the drill bit for test, see Appendix B, mm; fcu - the measured value of compressive strength of concrete cube, MPa; hef - the effective anchorage depth, i.e., the distance from the concrete surface to the anchorage point, see A.1, mm; N - the tensile load, N; N1 - the slip load, N; NRk - the standard value of tensile capacity, N; NRu,m - the average of tensile capacity, N; NRu, s - the tensile capacity of anchor screw steel, N; Rm,min - the minimum tensile strength of anchor screw steel, MPa; Rm,s - the tensile strength of bushing steel, MPa; T - the measured value of the torque limit, N·m; Tinst - the anchor installation torque required in the product instructions, N·m; VRu, s - the shear capacity of anchor steel, N; γmin - the minimum value of the slip coefficient in the test sample; Δw - the crack width, mm; Δw1 - the upper limit of the relative crack width, mm; Δw2 - the lower limit of the relative crack width, mm; δm - the displacement of the anchor during the seismic performance special test cycle, mm; η - the radial force coefficient; vN - the coefficient of variation of tensile capacity; vV - the coefficient of variation of shear capacity; vβ - the coefficient of variation of tensile stiffness. 4 Classification and Mark 4.1 Classification 4.1.1 The anchor is classified according to the anchorage style into: a) Expansion anchors, with code of MP; b) Undercut anchors, with code of MK. The undercut anchors may be further classified by structure and the installation process into pre-drilled undercut anchors, self-cutting undercut anchors and double-wedge anchors; c) Screw anchors, with code of MZ. 4.1.2 The anchor is classified according to application conditions into (see Table 1): a) Anchor bolts used for non-cracked concrete, with code of N; b) Anchor bolts that can be used for both non-cracked concrete and cracked concrete, with code of C; c) Anchor bolts that can be used for both non-cracked concrete and cracked concrete and is capable of withstanding seismic action, with code of S. Table 1 Application Conditions of Anchor Application conditions Application condition category of anchor Type N anchor Type C anchor Type S anchor Non-cracked concrete √ √ √ Non-cracked concrete and cracked concrete — √ √ Non-cracked concrete and cracked concrete and withstanding seismic action — — √ Note: √ indicates the applicable application conditions for the anchors. 4.2 Mark Mechanical anchors shall be marked as follows: Example: Class I undercut anchors applicable to cracked concrete shall be marked as: MK/CI - Enterprise custom code - JG/T160-2017. Note: See 6.1 for the anchorage performance class of the anchors. 5 General Requirements 5.1 The main stressed members of anchors shall be made of carbon structural steel, quality carbon structural steel, structural alloy steel or stainless steel, with the chemical components and mechanical properties of raw materials meeting those specified in GB/T 699, GB/T 700, GB/T 3077, GB/T 1220, GB/T 4237, GB/T 14975 and GB/T 31303 and being in line with the product design drawings. 5.2 The minimum tensile load performance of the anchor screws and the contact load performance of the nuts shall meet those specified in GB/T 3098.1, GB/T 3098.2, GB/T 3098.6 and GB/T 3098.15, and the coefficient of variation of the tensile load shall not exceed 0.05. 5.3 The thread dimension and tolerance of the anchor screws and nuts shall meet those specified in GB/T 193, GB/T 196 and GB/T 197. The dimensions, geometric tolerance and roughness of other components shall be in line with the product design drawings. 5.4 The outer diameter of the anchor shall match with the bit nominal diameter which shall meet those specified in GB/T 6335.1 and GB/T 25672. 5.5 The surface of parts of carbon structural steel, quality carbon structural steel and structural alloy steel shall be subjected to anti-corrosive treatment according to the service environment, and the thickness of zinc coating shall be determined according to the corrosion grade of zinc coating specified in GB/T 19292.2 and GB/T 19355.1. Electrogalvanizing shall meet those specified in GB/T 5267.1 and GB/T 9799; hot dip galvanizing shall meet those specified in GB/T 5267.3, GB/T 13912 and GB/T 19355.2; sherardizing shall meet those specified in GB/T 19355.3 and JB /T 5067. 5.6 If the anchor is subjected to long-term repeated loading and the maximum axial load is not less than 50% of the pre-pressure borne by the object on which the anchor is anchored, fatigue test shall be carried out. See Appendix C for the test method. The displacement increment of the anchor shall tend to be 0 with the test progress; the average of the residual bearing capacity shall not be lower than 80% of the average of the bearing capacity measured through the tensile reference test on the non-cracked concrete with the same strength; vN shall be not more than 0.20 and γmin not less than 0.80. Foreword i 1 Scope 2 Normative References 3 Terminologies, Definitions and Symbols 4 Classification and Mark 5 General Requirements 6 Requirements 7 Test Methods 8 Inspection Rules 9 Marking and Product Instructions 10 Packaging, Transport and Storage Appendix A (Informative) Examples of Anchor Type and Mode of Anchorage Failure Appendix B (Normative) Bits and Drilled Holes Appendix C (Normative) Fatigue Test Appendix D (Informative) Boundary Parameter Test Appendix E (Normative) Methods and Requirements for Testing Sensitivity of Expansion Anchors and Undercut Anchors to Installation Processes Appendix F (Informative) Special Test and Requirements for Screw Anchors Appendix G (Normative) Concrete Test Pieces Appendix H (Normative) Test Apparatuses Appendix I (Normative) Special Test for Seismic Performance Appendix J (Normative) Test for Coefficient of Radial Force Appendix K (Normative) Test Data Processing 混凝土用机械锚栓 1范围 本标准规定了以混凝土为基材的机械锚栓的分类和标记、要求、试验方法、检验规则、标志、产品说明书、包装、运输及贮存。 本标准适用于抗压强度25 MPa~60 MPa的开裂或者非开裂混凝土上锚固的金属锚栓。 2规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB 175通用硅酸盐水泥 GB/T 193普通螺纹 直径与螺距系列 GB/T 196普通螺纹 基本尺寸 GB/T 197普通螺纹 公差 GB/T 699优质碳素结构钢 GB/T 700碳素结构钢 GB/T 1220不锈钢棒 GB/T 3077合金结构钢 GB/T 3098.1紧固件机械性能 螺栓、螺钉和螺柱 GB/T 3098.2紧固件机械性能 螺母 GB/T 3098.6 紧固件机械性能 不锈钢螺栓、螺钉和螺柱 GB/T 3098.15 紧固件机械性能 不锈钢螺母 GB/T 4237不锈钢热轧钢板和钢带 GB/T 5267.1紧固件 电镀层 GB/T 5267.3紧固件 热浸镀锌层 GB/T 6335.1旋转和旋转冲击式硬质合金建工钻 第1部分:尺寸 GB/T 9799金属及其他无机覆盖层 钢铁上经过处理的锌电镀层 GB/T 13912金属覆盖层 钢铁制件热浸镀锌层技术要求及试验方法 GB/T 14684建设用砂 GB/T 14685建设用卵石、碎石 GB/T 14975结构用不锈钢无缝钢管 GB/T 19292.2金属和合金的腐蚀 大气腐蚀性 腐蚀等级的指导值 GB/T 19355.1锌覆盖层 钢铁结构防腐蚀的指南和建议 第1部分:设计与防腐蚀的基本原则 GB/T 19355.2锌覆盖层 钢铁结构防腐蚀的指南和建议 第2部分:热浸镀锌 GB/T 19355.3锌覆盖层 钢铁结构防腐蚀的指南和建议 第3部分:粉末渗锌 GB/T 25672电锤钻和套式电锤钻 GB/T 31303奥氏体-铁素体型双相不锈钢棒 JB/T 5067钢铁制件粉末渗锌 3术语、定义和符号 下列术语、定义和符号适用于本文件。 3.1 术语 3.1.1 机械锚栓 mechanical anchors 利用锚栓与钻孔之间的摩擦作用或锁键作用锚固在混凝土基材上的组件,主要受力部件由金属材料制造的紧固件(螺杆、螺母、垫片)、锥头、扩张件(扩张套管或扩张片)等组成。 3.1.2 膨胀锚栓expansion anchors 施加扭矩或施加敲击力使扩张件胀开挤压孔壁产生摩擦效应,以摩擦力为主要锚固力的锚栓。参见附录A图A.1。 3.1.3 扩底锚栓 undercut anchors 使用专用模具钻头或锚栓扩张件上的硬质刀刃,在直孔的一定深度进行扩孔,施加扭矩或施加敲击力使扩张件嵌入扩孔中形成锁键,以机械啮合力为主要锚固力的锚栓。 3.1.3.1 模扩底锚栓pre-drilled undercut anchors 用专用模具钻头预先扩孔再安装的扩底锚栓。参见附录A图A.2。 3.1.3.2 自扩底锚栓self-cutting undercut anchors 锚栓扩张件上带有硬质刀刃,安装锚栓的同时完成扩孔和扩张件嵌入的扩底锚栓。参见附录A图A.3、网A.4。 3.1.3.3 双锁键锚栓double-wedge anchors 有上下两个锚固作用点的锚栓。下锚固点是扩底锁键,为主要锚固点;上锚固点可以是锁键也可以是膨胀作用点,为辅助锚固点。参见附录A图A.5。 3.1.4 自攻锚栓screw anchors 在拧入钻孔过程中通过自带硬质螺纹切削嵌入孔壁的锚栓。参见附录A图A.6。 3.1.5 安装扭矩installation torque 安装锚栓所需的拧紧扭矩。 3.1.6 安装位移installation displacement 安装锚栓所需的敲击位移。 3.1.7 扭矩控制torque control 对锚栓螺杆、螺母或套管施加扭矩的锚栓安装方式。 3.1.8 位移控制displacement control 对锚栓锥头或套管施加敲击力的锚栓安装方式。 3.1.9 锚固作用区anchorage zone 在混凝土中由锚栓传递外部荷载的作用区域。 3.1.10 混凝土锥体破坏concrete cone failure 在拉力作用下,锚固作用区内形成以锚栓为轴心的混凝土锥形的破坏形式。参见附录A图A.7。 3.1.11 拔出破坏anchor pull-out failure 在拉力作用下,锚栓向混凝土表面滑移,最终锚栓整体或部分拔出,或在较浅的位置形成类似混凝土锥形的破坏形式。参见附录A图A.8。 3.1.12 锚栓钢材破坏anchor steel failure 在拉力或剪力作用下,锚栓金属组件断裂的破坏形式。参见附录A图A.9。 3.1.13 混凝土劈裂破坏concrete splitting failure 在拉力作用下,混凝土沿单个锚栓轴线垂线或多个锚栓轴线公垂线裂开的破坏形式。参见附录A图A.10。 3.1.14 混凝土边缘破坏concrete edge failure 在拉力作用下,混凝土边缘形成半锥形的破坏形式;或在剪力作用下,混凝土边缘沿剪力方向形成半锥形的破坏形式。参见附录A图A.10。 3.1.15 基准试验reference test 在规定强度的干燥混凝土上使用直径dn钻头钻孔,钻孔的边距不小于2hef,间距不小于4ef,并按照产品说明书的要求安装锚栓进行的力学性能试验。其试验数据通常作为其他试验的比较基准。 3.1.16 径向力系数coefficient of radial force 在拉力作用下,锚栓径向胀力与轴向拉力之比。 3.2符号 As——锚栓螺杆受拉破坏部位公称截面积,单位为平方毫米(mm2); Asv——锚栓受剪部位公称截面积,单位为平方毫米(mm2); Asv,b——锚栓受剪部位螺杆公称截面积,单位为平方毫米(mm2); Asv,s——锚栓受剪部位套管公称截面积,单位为平方毫米(mm2); c——系数(常数); dm——试验用钻头中等直径,见附录B,单位为毫米(mm); dmax——试验用钻头最大直径,见附录B,单位为毫米(mm); dmin——试验用钻头最小直径,见附录B,单位为毫米(mm); fcu——混凝土立方体抗压强度实测值,单位为兆帕(MPa); hef——有效锚固深度,即混凝土表面到锚固作用点距离,参见附录A.1,单位为毫米(mm); N——拉伸荷载,单位为牛(N); N1——滑移荷载,单位为牛(N); NRk——抗拉承载力标准值,单位为牛(N); NRu,m——抗拉承载力平均值,单位为牛(N); NRu,s——锚栓螺杆钢材抗拉承载力,单位为牛(N); Rm,min——锚栓螺杆钢材的最小抗拉强度,单位为兆帕(MPa); Rm,s——套管钢材抗拉强度,单位为兆帕(MPa); T——扭矩极限实测值,单位为牛米(N·m); Tinst——产品说明书要求的锚栓安装扭矩,单位为牛米(N·m); VRu,s——锚栓钢材抗剪承载力,单位为牛(N); γmin——试验样品中滑移系数的最小值; Δw——裂缝宽度,单位为毫米(mm); Δw1——相对裂缝宽度上限,单位为毫米(mm); Δw2——相对裂缝宽度下限,单位为毫米(mm); δm——抗震性能专项试验循环过程中锚栓位移,单位为毫米(mm); η——径向力系数; vN——抗拉承载力变异系数; vV——抗剪承载力变异系数; vβ——抗拉刚度变异系数。 4分类和标记 4.1分类 4.1.1按锚固方式分为: a)膨胀锚栓,代号MP; b) 扩底锚栓,代号MK。扩底锚栓按构造和安装工艺又可分为模扩底锚栓、自扩底锚栓和双锁键锚栓; c) 自攻锚栓,代号MZ。 4.1.2按适用条件分为(见表1): a)用于非开裂混凝土的锚栓,代号N; b) 既可用于非开裂混凝土,也可用于开裂混凝土的锚栓,代号C; c) 既可用于非开裂混凝土,也可用于开裂混凝土,并可承受地震作用的锚栓,代号S。 表1锚栓适用条件 适用条件 锚栓适用条件类别 N类锚栓 C类锚栓 S类锚栓 非开裂混凝土 √ √ √ 非开裂混凝土和开裂混凝土 — √ √ 非开裂混凝土和开裂混凝土并承受地震作用 — — √ 注:√表示锚栓适合的应用条件。 4.2标记 机械锚栓应按以下方式标记: 本标准代号 企业自定代号 等级代号 适用条件代号 锚固方式代号 示例:适用于开裂混凝土的I级扩底锚栓,标记为:MK/CI—企业自定代号—JG/T160—2017。 注:锚栓的锚固性能等级见6.1。 5一般要求 5.1锚栓主要受力部件应由碳素结构钢、优质碳素结构钢、合金结构钢或不锈钢制造,原材料的化学成分和力学性能应符合GB/T 699、GB/T 700、GB/T 3077、GB/T 1220、GB/T 4237、GB/T 14975和GB/T 31303的规定,并与产品设计图纸相符。 5.2锚栓螺杆的最小拉力载荷性能和螺母的保证载荷性能应符合GB/T 3098.1、GB/T 3098.2、GB/T 3098.6、GB/T 3098.15的规定,且拉力载荷变异系数不大于0.05。 5.3锚栓螺杆、螺母的螺纹尺寸、公差应符合GB/T 193、GB/T 196和GB/T 197的规定,其他部件的尺寸、形位公差及粗糙度应与产品设计图纸相符。 5.4锚栓外径应与钻头公称直径相匹配,钻头公称直径应符合GB/T 6335.1和GB/T 25672的规定。 5.5 碳素钢结构、优质碳素钢结构、合金结构钢零件表面应根据使用环境进行防腐处理,按GB/T 19292.2和GB/T 19355.1规定的锌覆盖层腐蚀等级确定锌覆盖层厚度。电镀锌应符合GB/T 5267.1、GB/T 9799的规定;热浸镀锌应符合GB/T 5267.3、GB/T 13912和GB/T 19355.2的规定;粉末渗锌应符合GB/T 19355.3和JB/T 5067的规定。 5.6当锚栓受长期反复荷载作用,且最大轴向荷载不小于被锚固物所受预压力的50%时,应进行疲劳性能试验,试验方法见附录C。锚栓位移增量应随试验进程趋于0;剩余承载力平均值不应低于同强度非开裂混凝土上拉伸基准试验测得的承载力平均值的80%;vN不大于0.20;γmin不小于0.80。 5.7当工程有要求时应对生产企业提供的拉伸劈裂边距、最小边距和最小间距三个锚栓边界参数进行验证;当生产企业无法提供是,可试验确定,试验方法参见附录D。 5.8当工程有要求时应试验确定锚栓对安装工艺偏差的敏感程度,膨胀锚栓、扩底锚栓应按附录E执行。 5.9 自攻锚栓锚固性能应满足表2的各项要求,其他要求参见附录F。 6要求 6.1锚固性能 不同类别的锚栓应满足不同锚固性能项目,按性能指标可分为I级和Ⅱ级二个等级,见表2。 表2锚固性能要求 序号 锚固性能项目 破坏形式 性能指标 适用 锚栓类别 I级 Ⅱ级 1 非开裂混凝土上 拉伸基准试验性能 钢材破坏 NRu,s≥AsRm,min vN≤0.05 γmin≥0.80 N、C、S 其他破坏形式 NRu,m≥13.1fcu0.5hef1.5 NRk≥10.1fcu0.5hef1.5 vN≤0.15 vβ≤0.30 γmin≥0.80 NRu,m≥10.5fcu0.5hef1.5 NRk≥8.1fcu0.5hef1.5 vN≤0.15 vβ≤0.30 γmin≥0.80 2 非开裂混凝土上 剪切基准试验性能 钢材破坏 VRu,s≥0.6AsvRm,min vV≤0.15 N、C、S 3 0.3 mm开裂混凝土上拉伸性能 钢材破坏 NRu,s≥AsRm,min vN≤0.15 γmin≥0.70 C、S 其他破坏形式 NRu,m≥9.2fcu0.5hef1.5 NRk≥7.1fcu0.5hef1.5 vN≤0.15 vβ≤0.40 γmin≥0.70 NRu,m≥7.4fcu0.5hef1.5 NRk≥5.7fcu0.5hef1.5 vN≤0.15 vβ≤0.40 γmin≥0.70 4 0.3 mm开裂混凝土上剪切性能 钢材破坏 VRu,s≥0.6AsvRm,min vV≤0.15 C、S 5 混凝土强度适应性 钢材破坏 NRu,s≥AsRm,min vN≤0.05 N类:γmin≥0.80;C、S类:γmin≥0.70 N、C、S 其他破坏形式 NRu,m≥10.5fcu0.5hef1.5 NRk≥8.1fcu0.5hef1.5 vN≤0.20 vβ≤0.40 γmin≥0.80 NRu,m≥8.4fcu0.5hef1.5 NRk≥6.5fcu0.5hef1.5 vN≤0.20 vβ≤0.40 γmin≥0.80 N NRu,m≥7.3fcu0.5hef1.5 NRk≥5.7fcu0.5hef1.5 vN≤0.20 vβ≤0.40 γmin≥0.70 NRu,m≥5.9fcu0.5hef1.5 NRk≥4.5fcu0.5hef1.5 vN≤0.20 vβ≤0.40 γmin≥0.70 C、S 6 极限安装扭矩性能 — T≥1.3Tinst 蝶杆不屈服,螺母可正常拧松 N、C、S 表2(续) 序号 锚固性能项目 破坏形式 性能指标 适用 锚栓类别 I级 Ⅱ级 7 裂缝往复开合拉伸性能 钢材破坏 NRu,s≥AsRm,min vN≤0.05 γmin≥0.70 锚栓位移:第20次循环不大于2.0 mm,且第1 000次循环不大于3.0 mm C、S 其他破坏形式 NRu,m≥8.3fcu0.5hef1.5 NRk≥6.4fcu0.5hef1.5 vN≤0.20 vβ≤0.40 γmin≥0.70 锚栓位移:第20次循环不大于2.0 mm,且第1 000次循环不大于3.0 mm 8 0.8 mm开裂混凝土上拉伸性能 钢材破坏 NRu,s≥AsRm,min vN≤0.05 γmin≥0.70 S 其他破坏形式 NRu,m≥5.9fcu0.5hef1.5 vN≤0.20 vβ≤0.40 γmin≥0.70 NRu,m≥4.7fcu0.5hef1.5 vN≤0.20 vβ≤0.40 γmin≥0.70 9 0.8 mm开裂混凝土上 剪切性能 钢材破坏 VRu,s≥0.48AsvRm,min vV≤0.05 S 10 变幅脉动 拉伸荷载性能 钢材破坏 NRu,s≥AsRm,min vN≤0.05 γmin≥0.70 δm≤7.0 mm S 其他破坏形式 NRu,m≥5.3fcu0.5hef1.5 vN≤0.20 vβ≤0.40 γmin≥0.70 δm≤7.0 mm 11 变幅往复剪切荷载性能 钢材破坏 VRu,s≥0.46AsvRm,min vV≤0.05 δm≤7.0 mm S 12 裂缝变幅往复开合拉伸性能 钢材破坏 NRu,s≥AsRm,min vN≤0.05 γmin≥0.70 δm≤7.0 mm S 表2(续) 序号 锚固性能项目 破坏形式 性能指标 适用 锚栓类别 I级 Ⅱ级 12 裂缝变幅往复开合 拉伸性能 其他破坏形式 NRu,m≥5.3fcu0.5hef1.5 vN≤0.20 vβ≤0.40 γmin≥0.70 δm≤7.0 mm S 注1:As取值:当锚栓破坏位置为螺纹时,按GB/T 3098.1取值,其他部位应由生产企业提供或测量确定。Rm,min按GB/T 3098.1取值。 注2:“其他破坏形式”包括混凝土锥体破坏和拔出破坏。 注3:剪切性能测试时,如果剪切截面包含锚栓外套管,则公式中AsvRm,min改为Asv,bRm,min+Asv,sRm,s,套管公称截面积和套管钢材抗拉强度由生产企业提供或测量确定。 6.2径向力系数 扩底锚栓径向力系数η应不大于0.8。 7试验方法 7.1锚固性能试验 7.1.1 试验准备 7.1.1.1 混凝土试件 锚固性能试验用混凝土试件抗压强度和制作要求应符合附录G的规定。 7.1.1.2钻头和钻孔 试验用钻头和钻孔应符合附录B的规定。 7.1.1.3试验用仪器设备 试验用仪器设备应符合附录H的规定。 7.1.1.4锚栓安装 锚栓安装应符合下列规定: a)锚栓应安装在平整的混凝土试件表面上; b) 锚栓距试件边缘应不小于2hef,相邻锚栓间距应不小于4hef; c) 按产品说明书规定的安装工具和安装要求清孔、安装锚栓; d)按产品说明书规定的Tinst拧紧锚栓,约10 min后卸除扭矩,再施加0.5Tinst; e) 在开裂混凝土试件上试验时,应在裂缝闭合的情况下在裂缝平面内钻孔安装锚栓,裂缝应贯通整个钻孔。 7.1.2试验项目、试验程序 7.1.2.1试验项目和试验条件 锚固性能试验项目和试验条件应符合表3的要求,且所有项目试验样品数应不少于5只。 表3锚固性能试验项目和试验条件 序号 试验项目 混凝土强度/MPa 钻头直径 裂缝宽度/mm 适用锚栓类别 试验方法 1 非开裂混凝土上拉伸基准试验 30 dm 0 N、C、S 7.1.3.1 60 dm 0 N、C、S 2 非开裂混凝土上剪切基准试验 30 dm 0 N、C、S 7.1.3.2 3 0.3 mm开裂混凝土上拉伸性能试验 30 dm 0.3 C、S 7.1.3.1 60 dm 0.3 C、S 4 0.3 mm开裂混凝土上剪切性能试验 30 dm 0.3 C、S 7.1.3.2 5 混凝土强度适应性试验a 30 dmax 0 N 7.1.3.1 60 dmin 0 N 30 dmax 0.5 C、S 60 dmin 0.5 C、S 6 极限安装扭矩性能试验 60 dm 0 N、C、S 7.1.3.3 7 裂缝往复开合拉伸性能试验 30 dmax 0.1~0.3 C、S 7.1.3.4 8 0.8 mm开裂混凝土上拉伸性能试验 30 dm 0.8 S 7.1.3.1 60 dm 0.8 S 9 0.8 mm开裂混凝土上剪切性能试验 30 dm 0.8 S 7.1.3.2 10 变幅脉动拉伸荷载性能试验 30 dm 0.5~0.8 S 7.1.3.5 11 变幅往复剪切荷载性能试验 30 dm 0.8 S 7.1.3.5 12 裂缝变幅往复开合拉伸性能试验 30 dm 0.1~0.8 S 7.1.3.5 注1:裂缝宽度0表示在非开裂混凝土试件上进行试验。 注2:表中第10到12试验项目是抗震性能专项试验。 a 扩底锚栓如果钻孔钻头与扩孔钻头是不同钻头时,两种钻头均选用dmax或dmin。 7.1.2.2试验程序 各类别锚栓应按下列程序进行试验: a)N类锚栓进行序号1、2、5、6项试验,根据试验结果判定为N I级、NⅡ级或不合格,试验结束; b)C类锚栓先执行步骤a),如果试验结果满足N I级或NⅡ级要求,则进行序号3、4、5、7项试验,根据试验结果判定为C I级或CⅡ级,如果不符合C类锚栓要求则判定为N类锚栓,试验结束; c)S类锚栓先执行步骤a)、b),如果试验结果满足C I级或CⅡ级要求,则进行序号8、9、10、11、12项试验,根据试验结果判定为S I级或SⅡ级,如果不符合S类锚栓要求则判定为C类锚栓,试验结束; d)试验程序各步骤应连续进行,不应间隔过长时间且不应改变试验环境和条件。 7.1.3试验方法 7.1.3.1拉伸性能试验 表3中序号1、3、5、8项试验应按下列要求进行: a)试验中应避免混凝土试件边缘破坏和劈裂破坏。在开裂混凝土试件上进行试验时,在裂缝闭合状态下安装锚栓然后扩展裂缝到要求的宽度,裂缝的测量和控制应符合附录G的规定。 b)锚栓与加载设备支撑点净距应不小于2hef,荷载方向与锚栓保持同轴,加载应连续平稳,从开始加载经1 min~3 min荷载到达最大值直至破坏。 c) 测量锚栓沿荷载方向上的位移,测量参考点与锚栓净距应不小于1.5hef,应消除锚栓倾斜和附加位移的影响。绘制荷载-位移曲线,记录裂缝宽度、破坏形式。 d) 当荷载-位移曲线上出现大于最大荷载下位移10%的水平段时,或出现大于最大荷载5%的短暂荷载下降段时,如果没有其他干扰影响可判断锚栓出现滑移,记录水平段对应的荷载或短暂荷载下降前最大荷载为N1。 e)试验过程中,锚栓有较明显拔出现象且承载力小于非开裂混凝土上基准拉伸性能试验锥体破坏计算值,可判为拔出破坏。 7.1.3.2剪切性能试验 表3中序号2、4、9项试验应按下列要求进行: a)试验中应避免混凝土试件边缘破坏和裂开。在开裂混凝土试件上进行试验时,在裂缝闭合状态下安装锚栓然后扩展裂缝到要求的宽度,裂缝的测量和控制应符合附录G的规定; b)荷载与混凝土表而保持平行,在开裂混凝土试件上试验时荷载沿裂缝方向施加,连续平稳加载1 min~3 min荷载到达最大值直至破坏; c)测量锚栓沿荷载轴线上的位移,应消除附加位移的影响。绘制荷载-位移曲线,记录裂缝宽度、破坏形式。 7.1.3.3极限安装扭矩性能试验 表3中序号6项试验应按下列要求进行: a)试验示意图见图1。轴力测量仪和球铰作为被锚固物穿入锚栓,被锚固物孔径应符合附录H表H.1要求。 b)用扭矩扳手均匀施加扭矩直到不小于1.3Tinst,记录扭矩和螺杆拉力的关系曲线。 |
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 |
服务热线:400-001-5431 | 电话:010-8572 5110 | 传真:010-8581 9515 | Email: bz@bzfyw.com | |
版权所有: 北京悦尔信息技术有限公司 2008-2020 京ICP备17065875号-1 |
本页关键词: |
JG/T 160-2017, JG 160-2017, JGT 160-2017, JG/T160-2017, JG/T 160, JG/T160, JG160-2017, JG 160, JG160, JGT160-2017, JGT 160, JGT160 |