![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative. This standard is drafted in accordance with the rules given in GB/T 1.1-2009. This standard has been redrafted and modified adoption of International Standard ISO 4126-7:2013 Safety Devices for Protection against Excessive Pressure — Part 7: Common Data. The technical deviations between this standard and the International Standard ISO 4126-7:2013, together with their justifications, is given below: — adjustment on technical differences had been made in Scope of this standard so that the technical conditions and standard structure in China are met; the adjustment situations embodied a concentrated reflection in Clause 1 “Scope”, and the specific adjustments are as follows: ● the scope of Clause 1 of ISO 4126-7:2013 is changed to "This standard specifies common data for performance parameters related to safety valve protection devices." ; ● in the scope of Clause 1 of ISO 4126-7:2013, " it is not recommended to use the ideal gas formula presented in 6.3 when the relieving temperature is greater than 90% of the thermodynamic critical temperature and the relieving pressure is greater than 50% of the thermodynamic critical pressure. In addition, the method specified in 6.3 is not applicable in the case of gas condensation” is adjusted to 6.3 of this standard. — the adjustments of technical deviations are made for the normative references in this standard so as to adapt to the technical conditions of China. The adjustments are mainly reflected in Clause 2 "Normative References", which are shown in the following: ● ISO 4126-1 is replaced by GB/T 12241, which is modified in relation to the international standard; ● IEC 4126-4 is replaced by GB/T 28778 which is modified in relation to the international standard (see Clause 3); ● ISO 4126-2 and ISO 4126-3 are deleted; — Some terms in Clause 3 of ISO 4126-7:2013 have been deleted. Because these terms have been specified in GB/T 12241 and GB/T 28778, and their meanings are basically the same. — The symbol content in Table 1 of Clause 4 of ISO 4126-7:2013 is adjusted as follows: ● the symbol PS is deleted. Because the symbol is not covered by this standard; ● the symbol Q ̇_m is changed to Qm, because the international standard is not unified; ● for the purpose of consistent with other standards, the symbol μ0 is changed to μ. — some formula numbers of ISO 4126-7:2013 are deleted. The formulas in ISO 4126-7:2013 explaining data sources are numbered, and such numbers have been deleted in accordance with Chinese practice. — Table 2 of ISO 4126-7:2013 is divided into Tables 2 to 6 of this standard. The steam pressure coefficients under different conditions are listed in the same table in ISO 4126-7:2013. The steam pressure coefficients under different conditions are listed separately in this standard for the convenience of searching and in line with Chinese practice. — the first paragraph in 6.3 of ISO 4126-7:2013 is adjusted to 6.3.1 of this standard to meet the requirements of China's standard structure. — different gas parameters in 7.6 of ISO 4126-7:2013 are deleted, because such gas parameters are standard parameters. — the technical requirements of different springs in Clauses 8 and 9 of ISO 4126-7:2013 are deleted, because China has corresponding national standards for springs and the technical requirements are basically the same. For the purposes of this standard, the following editorial changes have also been made: — US units and formulas in ISO 4126-7:2013 are converted to metric units and formulas. — Example 2 in A.1 of Annex A of ISO 4126-7:2018 is deleted. Because Example 2 also an example to illustrate the capacity calculation of gas medium under critical flow. This standard was proposed by the China Machinery Industry Federation. This standard is under the jurisdiction of National Technical Committee 503 on Pressure Relief Devices of Standardization Administration of China (SAC/TC 503). Safety Devices for Protection against Excessive Pressure — Common Data 1 Scope This standard specifies common data for performance parameters related to safety valve protection devices. This standard is applicable to non-flashing liquids or non-gas/liquid two-phase mixtures 2 Normative References The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. GB/T 12241 Safety Valves — General Requirements (GB/T 12241-2005, ISO 4126-1: 1991, MOD) GB/T 28778 Pilot-operated Safety Valves (GB/T 28778-2012, ISO 4126-4:2004, MOD) 3 Terms and Definitions For the purposes of this document, the terms and definitions given in GB/T 12241, GB/T 28778 and the following apply. 3.1 safety valve valve which automatically, without the assistance of any energy other than that of the fluid concerned, discharges a quantity of the fluid so as to prevent a predetermined safe pressure being exceeded, and which is designed to re-close and prevent further flow of fluid after normal pressure conditions of service have been restored 3.2 set pressure predetermined pressure at which a safety valve under operating conditions commences to open Note: It is the gauge pressure measured at the valve inlet at which the pressure forces tending to open the valve for the specific service conditions are in equilibrium with the forces retaining the valve disc on its seat. 3.3 overpressure pressure increase over set pressure, usually expressed as a percentage of the set pressure 3.4 relieving pressure the sum of set pressure plus overpressure 3.5 built-up back pressure pressure existing at the outlet of a safety valve caused by flow through the valve and the discharge system 3.6 superimposed back pressure pressure existing at the outlet of a safety valve at the time when the device is required to operate, it is the result of pressure in the discharge system from other sources 3.7 flow area minimum cross-sectional flow area (but not the smallest area between the disc and seat) between inlet and seat which is used to calculate the theoretical flow capacity, with no deduction for any obstruction 3.8 theoretical discharge capacity calculated capacity expressed in mass or volumetric units of a theoretically perfect nozzle having a cross-sectional flow area equal to the flow area of a safety valve 3.9 coefficient of discharge value of actual discharge capacity divided by the theoretical discharge capacity 3.10 certified discharge capacity that portion of the measured capacity permitted to be used as a basis for the application of a safety valve. It can be calculated by one of the following: a) measured capacity times the de-rating factor (0.9); b) theoretical capacity times the coefficient of discharge times the de-rating factor (0.9); c) theoretical capacity times the certified de-rated coefficient of discharge. 3.11 dryness fraction steam quality mass percentage of dry saturated steam per kilogram of wet saturated steam 4 Symbols and Units For the purposes of this document, the symbols and their descriptions and units listed in Table 1 apply. Table 1 Symbols, descriptions and units Symbol Description Unit A Flow area of a safety valve (smallest area between the disc and seat) mm2 C Function of the isentropic exponent, k 1 Kb Theoretical capacity correction factor for subcritical flow 1 Kd Coefficient of discharge a 1 Kdr Certified de-rated coefficient of discharge (Kd × 0.9)a 1 Kv Viscosity correction factor 1 k Isentropic exponent 1 M Molar mass g/mol n Number of tests 1 p0 Relieving pressure MPa (absolute) pb Back pressure MPa (absolute) pe Critical pressure MPa (absolute) pr Reduced pressure 1 Qm Mass flow rate kg/ kg/h qm Theoretical specific discharge capacity kg/(h·mm2) q′m Specific discharge capacity determined by tests kg/(h·mm2) R Universal gas constant 1 Re Reynolds number 1 T0 Relieving temperature K Tc Thermodynamic critical temperature K Tr Reduced temperature 1 m Dynamic viscosity Pa·s v0 Specific volume at relieving pressure and temperature m3/kg x0 Dryness fraction of wet steam at the valve inlet at relieving pressure and temperature b 1 ks Steam pressure coefficient h·mm2·MPa (absolute)/kg Z Compressibility factor 1 a Kd and Kdr are expressed as 0.xxx. b x0 is expressed as 0.xx. 5 Determination of Safety Valve Performance 5.1 Determination of coefficient of discharge The coefficient of discharge, Kd, is calculated from Formula (1): (1) Kd shall be calculated up to three significant decimal places. 5.2 Critical and subcritical flow The theoretical flow of a gas or vapour through an orifice, such as the flow area of a safety valve, increases as the downstream pressure is decreased to the critical pressure, until critical flow is achieved. Further decrease in downstream pressure will not result in any further increase in flow. Critical flow occurs when meet the requirements of Formula (2): (2) Subcritical flow occurs when meet the requirements of Formula (3): (3) 5.3 Discharge capacity at critical flow 5.3.1 Discharge capacity for steam is calculated from Formula (4): (4) Formula (4) allows the use of steam tables to obtain the specific volume of steam at various pressures and temperatures. The user is cautioned that the direct use of this equation can lead to an error of more than 20% as the temperature approaches the saturated or supercritical condition. An error of less than 1% can only be achieved at a steam temperature at least higher than 30°C above saturation condition, it can be calculated from Formula (5): (5) where, ks is the steam pressure coefficient, it can be calculated from Formula (6): (6) Where, Values for the steam pressure coefficient, ks, can be obtained in Tables 2 to 6. See 6.3.1 for background on the development of Tables 2 to 6. Formulas (4) and (5) are applicable to dry saturated and superheated steam. Dry saturated steam in this context refers to steam with a minimum dryness fraction of 98% where C is a function of the isentropic exponent at the relieving conditions, it can be calculated from Formula (7): (7) Where, The value of k used to determine C shall be based on the actual flowing conditions at the pressure relief device inlet and shall be determined from Table 7. 5.3.2 Discharge capacity for any gas under critical flow conditions is calculated from Formula (8): (8) See Figure 1 for values of Z. Foreword II 1 Scope 2 Normative References 3 Terms and Definitions 4 Symbols and Units 5 Determination of Safety Valve Performance 5.1 Determination of coefficient of discharge 5.2 Critical and subcritical flow 5.3 Discharge capacity at critical flow 5.4 Discharge capacity for any gas at subcritical flow 5.5 Discharge capacity in the turbulent zone where the Reynolds number Re is ≥ 80 6 Calculation of Rated Discharge and Determination of Flow Area 6.1 General 6.2 Valves for gas or vapour relief 6.3 Calculation of capacity 6.3.1 Description of capacity calculation 6.3.2 Capacity calculation for steam at critical flow 6.3.3 Capacity calculations for wet steam 6.3.4 Capacity calculations for gaseous media 7 Thermodynamic Properties 7.1 Steam pressure coefficient, ks 7.2 Value of C as a function of k 7.3 Theoretical capacity correction factors for sub-critical flow (Kb) 7.4 Compressibility factor 7.5 Correction factor for viscosity, Kv Annex A (Informative) Examples of Capacity Calculations for Various Media Bibliography ICS 13.240 J 16 GB 中华人民共和国国家标准 GB/T 36588—2018 过压保护安全装置 通用数据 Safety devices for protection against excessive pressure—Common data (ISO 4126-7:2013,Safety devices for protection against excessive pressure— Part 7:Common data,MOD) 2018-09-17发布 2019-04-01实施 国家市场监督管理总局 中国国家标准化管理委员会 发布 前 言 本标准按照GB/T 1.1—2009给出的规则起草。 本标准使用重新起草法修改采用ISO 4126-7:2013《过压保护安全装置 第7部分:通用数据》。 本标准与ISO 4126-7:2013的技术性差异及其原因如下: ——关于范围,本标准做了具有技术性差异的调整,以适应我国的技术条件和标准结构的要求,调整情况反映在第1章“范围”中,具体调整如下: ● 将ISO 4126-7:2013第1章的范围修改为“本标准规定了安全阀保护装置相关性能参数的通用数据。”; ● 调整ISO 4126-7:2013第1章的范围中“当排放温度大于90%临界温度,排放压力大于50%临界压力时,不推荐使用6.3规定的公式计算排量。另外,6.3规定的方法不适用于气体发生凝结的情况”至本标准6.3。 ——关于规范性引用文件,本标准做了具有技术性差异的调整,以适应我国的技术条件,调整的情况集中反映在第2章“规范性引用文件”中,具体调整如下: ● 用修改采用国际标准的GB/T 12241代替了ISO 4126-1; ● 用修改采用国际标准的GB/T 28778代替了ISO 4126-4(见第3章); ● 删除了ISO 4126-2和ISO 4126-3。 ——删除了ISO 4126-7:2013第3章中的部分术语。因为这些术语在GB/T 12241、GB/T 28778中已有规定,且含义基本一致。 ——调整了ISO 4126-7:2013第4章表1中符号内容如下: ● 删除了符号PS。因为本标准不涉及该符号; ● 修改了符号Qm为Qm,因为国际标准未统一; ● 修改了符号μ0为μ,与其他采标标准保持一致。 ——删除了ISO 4126-7:2013中部分公式编号。ISO 4126-7:2013中解释数据来源的公式均进行编号,本标准按照我国习惯,删除了该类编号。 ——拆分了ISO 4126-7:2013中表2为本标准的表2~表6。ISO 4126-7:2013中将不同条件的蒸汽压力系数列在同一个表中,本标准为方便查找以及符合我国习惯将不同条件的蒸汽压力系数分别列出。 ——调整ISO 4126-7:2013的6.3中悬置段至本标准6.3.1,以适应我国标准结构的要求。 ——删除了ISO 4126-7:2013的7.6不同气体参数的内容,因为气体参数是标准的。 ——删除了ISO 4126-7:2013第8章和第9章中不同弹簧的技术要求,因为我国有相应的弹簧国家标准,且技术要求基本一致。 本标准还做了下列编辑性修改: ——转换ISO 4126-7:2013中的美制单位和计算公式为公制单位和计算公式。 ——删除了ISO 4126-7:2013附录A中A.1的例2。因为都是举例说明在临界流动下气体介质的排量计算。 本标准由中国机械工业联合会提出。 本标准由全国安全泄压装置标准化技术委员会(SAC/TC 503)归口。 过压保护安全装置 通用数据 1 范围 本标准规定了安全阀保护装置相关性能参数的通用数据。 本标准适用于非闪蒸液体和非气/液两相介质。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 12241 安全阀 一般要求(GB/T 12241—2005,ISO 4126-1:1991,MOD) GB/T 28778 先导式安全阀(GB/T 28778—2012,ISO 4126-4:2004,MOD) 3 术语和定义 GB/T 12241和GB/T 28778界定的以及下列术语和定义适用于本文件。 3.1 安全阀 safety valve 一种自动阀门,它不借助任何外力而利用介质本身的力来排出一额定数量的流体,以防止压力超过额定的安全值。当压力恢复正常后,阀门关闭并阻止介质继续流出。 3.2 整定压力 set pressure 安全阀在运行条件下开始开启的预定压力。 注:该压力是阀门进口处测量的表压,在该压力下,在规定的运行条件下由介质压力产生的使阀门开启的力同时使与阀瓣保持在阀座上的力相互平衡。 3.3 超过压力 overpressure 超过安全阀整定压力的压力增量,通常用整定压力的百分数表示。 3.4 排放压力 relieving pressure 整定压力与超过压力之和。 3.5 排放背压力 built-up back pressure 介质流经安全阀及排放系统在阀出口处形成的压力。 3.6 附加背压力 superimposed back pressure 安全阀即将动作前在其出口处存在的静压力,是由其他压力源在排放系统中引起的。 3.7 流道面积 flow area 阀门进口端至阀座密封面间流道的最小横截面积(不是阀座和阀瓣之间最小的面积),用来计算无任何阻力影响时的理论流量。 3.8 理论排量 theoretical discharge capacity 流道截面积与安全阀流道面积相等的理想喷管的计算排量,用质量流量或者容积流量表示。 3.9 排量系数 coefficient of discharge 实际排量与理论排量的比值。 3.10 额定排量 certified discharge capacity 实际排量中允许作为安全阀使用基准的那一部分,可按下列三者之一计算: a)实际排量×减低系数(取0.9); b)理论排量×排量系数×减低系数(取0.9); c)理论排量×额定排量系数。 3.11 蒸汽干度 dryness fraction steam quality 每千克湿饱和蒸汽中含有干饱和蒸汽的质量百分数。 4 符号和单位 表1的符号含义和单位适用于本文件。 表1 符号含义和单位 符号 说明 单位 A 流道面积(阀座与阀瓣间最小面积) mm2 C 绝热指数k的函数 1 Kb 亚临界流动下的理论排量修正系数 1 Kd 排量系数a 1 Kdr 额定排量系数(Kd×0.9)a 1 Kv 黏度修正系数 1 k 绝热指数 1 M 摩尔质量 g/mol n 试验次数 1 p0 排放压力 MPa(绝对压力) pb 背压力 MPa(绝对压力) pc 临界压力 MPa(绝对压力) pr 对比压力 1 Qm 质量流量 kg/h qm 单位面积下理论排量 kg/(h·mm2) q′m 单位面积下实际排量 kg/(h·mm2) R 通用气体常数 1 Re 雷诺数 1 T0 排放温度 K Tc 实际临界温度 K Tr 对比温度 1 动力黏度 Pa·s v0 实际排放压力和温度下的比容 m3/kg x0 实际排放压力和温度下阀门进口端的湿蒸汽干度系数b 1 ks 燕汽压力系数 h·mm2·MPa(绝对压力)/kg Z 压缩系数 1 a Kd和Kdr值取小数点后三位。 b x0值取小数点后二位。 5 安全阀性能的确定 5.1 排量系数的确定 排量系数Kd可按式(1)计算: (1) Kd计算结果应保留到小数点后第3位。 5.2 临界和亚临界流动 在达到临界流动之前,气体或蒸汽通过一个孔口(如安全阀的流道)的流量是随着下游压力的减小而增加的,一旦达到临界流动,下游压力的进一步减小将不会引起流量的进一步增加。 满足式(2)的流动为临界流动: (2) 满足式(3)的流动为亚临界流动: (3) 5.3 临界流动下的理论比排量 5.3.1 蒸汽排量按式(4)计算: (4) 式(4)允许用蒸汽数据表格来确定不同温度和压力下蒸汽的比体积,但式(4)在蒸汽温度达到饱和或超临界状态时,其计算误差将超过20%。当蒸汽温度超过饱和温度30℃,若将计算误差控制在1%以内,可按式(5)计算: (5) 蒸汽压力系数ks按式(6)计算: (6) 式中: 蒸汽压力系数ks的值可以根据表2~表6选用,表2~表6中数据的计算依据见6.3.2。 式(4)和式(5)适用于干饱和蒸汽和过热蒸汽。干饱和蒸汽是指干度不小于98%的蒸汽,其中C是在排放条件下的绝热指数k的函数,按式(7)计算: (7) 式中: 应以安全阀进口处的实际流量为基准来确定C的k值,与k对应的C值参见表7。 5.3.2 任意气体在临界流动条件下的排量按式(8)计算: (8) 压缩系数Z值见图1。 5.4 亚临界流动下的理论比排量 亚临界流动下的排量按式(9)、式(10)计算: (9) (10) 理论排量修正系数Kb的值见表8。 5.5 紊流区的雷诺数Re不小于80000时的排量 试验介质为非闪蒸液体,紊流区的雷诺数Re不小于80000时的排量按式(11)计算: (11) 式中: 6 额定排量的计算和流道面积的确定 6.1 总则 额定排量系数Kdr应不大于试验测定的排量系数Kd的0.9倍,按式(12)计算: Kdr≤0.9Kd (12) 当超过压力小于排量试验时的超过压力时,不准许用下列排量计算公式。只有当超过压力不小于排量试验时的超过压力时,才可以用下列公式来计算排量。 阀门在试验背压力下达到临界流动时所确定的额定排量系数可能不同于在较高背压力下的排量系数。 6.2 用于排放气体或蒸汽用的阀门 一般对气体和蒸汽并没有区分,术语“气体”是气体和蒸汽两者的统称。计算任一气体的排量,应先假定排放系数和流道面积为常量,然后用第5章的公式。 6.3 排量的计算 6.3.1 排量计算的说明 当排放温度大于90%临界温度,排放压力大于50%临界压力时,不推荐使用6.3.2~6.3.4规定的公式计算排量。另外,6.3.2~6.3.4规定的方法不适用于气体发生凝结的情况。 注:排量计算示例参见附录A。 6.3.2 临界流动下蒸汽的排量计算 临界流动下(饱和、过热或超临界)蒸汽的排量按式(13)计算: (13) 式(13)允许用蒸汽数据表格来确定不同温度和压力下蒸汽的比体积,但式(13)在蒸汽温度达到饱和或超临界状态时,其计算误差将超过20%。当蒸汽温度超过饱和温度30℃及以上时,若将计算误差控制在1%以内,可按式(14)计算: (14) 蒸汽压力系数ks的数值可根据表2选用。表2的数据是基于下列程序根据喷管流动迭代计算得出: a)根据喷管进口压力给定几个喷管喉部压力来计算等熵膨胀效率; b)根据给定的喷管喉部压力,来计算特定喷管喉部面积的质量流量; c)参考IAPWS-IF97来选择给定喷管喉部压力下的蒸汽热力学性能; d)迭代计算出最大质量流量值时,根据该最大值计算蒸汽压力系数ks的值。 6.3.3 湿蒸汽的排量计算 蒸汽干度不小于90%的单一湿蒸汽的排量按式(15)计算: (15) 湿蒸汽的排量也可以按式(16)计算: (16) 蒸汽压力系数ks的值可根据表2~表6选用。 6.3.4 气体的排量计算 6.3.4.1 在临界流动条件下的气体介质的排量按式(17)和式(18)计算: (17) (19) 6.3.4.2 在亚临界流动条件下的气体介质流量按式(19)计算: (19) 注:Kb的确定参见5.4中的公式和表8。 压缩系数Z见图1。 6.3.4.3 液体的排量按式(20)计算: (20) Kv值见图2。 7 热力学性能 7.1 蒸汽压力系数ks 蒸汽压力系数ks的数值见表2~表6。 7.2 绝热指数k的函数C C是绝热指数的函数,其数值见表7。 7.3 亚临界流动下的理论排量修正系数Kb 亚临界流动下理论排量修正系数Kb的数值见表8。 表2 蒸汽压力系数ks 压力:大气压~0.2MPa(绝对压力),温度:饱和~750℃ 压力值MPa(绝对压力) 饱和蒸汽温度℃ 饱和蒸汽压力系数值 105 110 120 130 150 200 250 300 350 400 500 600 700 750 注1:使用线性插值法确定中间温度和压力的蒸汽压力系数值。 注2:表格中温度增量的选择是为了将线性插值法的最大误差控制在1%以内。 表3 蒸汽压力系数ks 压力:0.2MPa~4.0MPa(绝对压力),温度:饱和~280℃ 压力值MPa(绝对压力) 饱和蒸汽温度℃ 饱和蒸汽压力系数值 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 注1:使用线性插值法确定中间温度和压力的蒸汽压力系数值。 注2:表格中温度增量的选择是为了将线性插值法的最大误差控制在1%以内。 表4 蒸汽压力系数注ks 压力:0.2MPa~4.0MPa(大气压力),绝对:280℃~750℃ 压力温MPa(大气压力) 280 290 300 310 320 340 360 380 400 450 500 550 600 650 700 750 注1:使用线性插值法确定中间温度和压力的蒸汽压力系数值。 注2:表格中温度增量的选择是为了将线性插值法的最大误差控制在1%以内。 表5 蒸汽压力系数ks 压力:4.0MPa~22.0MPa(绝对压力),温度:饱和~420℃ 压力值MPa(绝对压力) 饱和蒸汽温度℃ 饱和蒸汽压力系数值 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 蒸1:使用线性插值法确定中间温度和压力的蒸汽压力系数值。 蒸2:表格中温度增量的选择是为了将线性插值法的最大误差控制在1%以内。 表6 蒸汽压力系数ks 压力:4.0MPa~42.0MPa(绝对压力),温度:380℃~750℃ 压力值MPa(绝对压力) 380 390 400 410 420 440 460 480 500 520 550 600 650 700 750 蒸1:使用线性插值法确定中间温度和压力的蒸汽压力系数值。 蒸2:表格中温度增量的选择是为了将线性插值法的最大误差控制在1%以内。 表7 绝热指数的函数C 表8 亚临界流动下的理论排量修正系数Kb 7.4 压缩系数 根据对比压力确定的压缩系数Z见图1。 对比压力pr和对比温度Tr分别按式(21)和式(22)计算: (21) (22) pr对比压力 图1 压缩系数Z 7.5 黏度修正系数Kv 7.5.1 黏度修正系数Kv见图2。 7.5.2 可用式(23)计算Kv,图2是根据式(23)确定的曲线,用户应核查根据图2中曲线确定的数据。 不能用式(23)类推计算超过图2曲线范围的数据。 (23) 7.5.3 雷诺数可以根据式(24)计算: (24) 图2 黏度修正系数Kv 附录A (资料性附录) 不同介质中的排量计算示例 A.1 在临界流动下气体介质的排量计算(见6.3.4.1) 例1:用一根导管通入压力为1.0MPa的氮气,来计算安全阀的流道面积。 已知参数:安全阀额定排量系数[Kdr]:0.87,超过压力为10%; 摩尔质量[M]:28.02; 绝热指数[k]:1.40; 排放温度:20℃; 流量:18000kg/h; 整定压力:1.0MPa; 背压力:1个大气压。 T0=20+273=293K p0=[(1.0×1.1)+0.1]MPa=1.2MPa 因为 ,所以为临界流动。 流道面积按式(A.1)计算: (A.1) 压缩系数可以从图1中查到。 计算过程如下所示: 对比压力按式(A.2)计算: (A.2) 式中: pc——临界压力,值为3.394MPa(该值来自热力学手册)。 对比温度按式(A.3)计算: (A.3) 式中: Tc——临界温度,值为126.05K(该值来自热力学手册)。 pr=1.2/3.394=0.35 Tr=293/126.05=2.32 Z=1.000(该值来自图1) mm2 A.2 在亚临界流动下气体介质的排量计算(见6.3.4.2) 例2:如果背压从一个大气压增加到3.6MPa(表压)和额定排量系数为0.8的情况下,用一根导管通入最高允许压力为5.5MPa的氮气,计算安全阀的流道面积。其余参数同A.1中例1。 因为 ,所以为亚临界流动。 注: 流道面积按式(A.4)计算: (A.4) (A.5) Kb可以通过式(A.5)计算获得,也可以通过表4查到。 mm2 A.3 液体排量计算(见6.3.4.3) 例3:在给定排放介质为油的条件下,计算阀门流道面积。 已知参数:安全阀额定排量系数[Kdr]=0.65,超过压力为10%; 超过压力为10%的油介质的质量流量[Qm]=45000kg/h; 比容积[v]=0.00107527m3/kg=1/密度; 动力黏度[μ]=0.5Pa·s; 整定压力:3.0MPa(表压); 背压力:0.3MPa(表压)。 应用式(A.6)计算: (A.6) 假设是无黏度的介质(即忽略黏度),按式(A.7)计算流道面积: Kv=l (A.7) p0-pb=[3.0×1.1+0.1]-(0.3+0.1)=3MPa mm2 1)选一个次大的孔口A′,这种情况下A′=380mm2,按式(A.8)求黏度修正系数的最小值: (A.8) 最小值: 2)按式(A.9)计算在给定排量和选定的孔口下的雷诺数Re: (A.9) 从图2中查得: Kv=0.92>0.68 3)正如上例计算所示,如果最小值Kvm≤Kv,选定的面积能够满足给定排放流量。要是结果相反,重复步骤1)、2)。 参考文献 [1] IAPWS-IF97 国际水和水蒸气性质学会对工业用1997年IF公式水和水蒸气热力学性质 的制定(IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam) |
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 |
服务热线:400-001-5431 | 电话:010-8572 5110 | 传真:010-8581 9515 | Email: bz@bzfyw.com | |
版权所有: 北京悦尔信息技术有限公司 2008-2020 京ICP备17065875号-1 |
本页关键词: |
GB/T 36588-2018, GB 36588-2018, GBT 36588-2018, GB/T36588-2018, GB/T 36588, GB/T36588, GB36588-2018, GB 36588, GB36588, GBT36588-2018, GBT 36588, GBT36588 |