![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative. As the development of highway construction, improvement of technical level of asphalt pavement, application of new materials and new structures and accumulation of engineering experience, partial content of JTG D50-2006 Specifications for Design of Highway Asphalt Pavement (hereinafter referred to as "the former specification") needs to be revised and perfected. According to the requirements of the document JIAOGONGLUFA [2011] No.115 issued by the Ministry of Transport - Notice on Issuing the Development and Revision Project Plan of Highway Engineering Standards in 2011, CCCC Road and Bridge Consultants Co., Ltd. undertakes the revision work of the former specification. In this specification, the traffic and climate parameters, design parameters, design indexes and relevant performance models in the former specification are revised relying on the domestic and overseas research achievements and engineering practice in recent years and according to the principle of combining inheritance and development. This specification comprises eight chapters and seven annexes, with the main contents covering: design standards, structural composition design, material property requirements and design parameters, checking calculation of pavement structure, renovation design and bridge deck pavement design. The following main changes have been made with respect to the former specification: 1. The investigation and analysis methods of axle load spectrum and traffic parameters are standardized. 2. The temperature adjustment coefficient and equivalent temperature are introduced. 3. Design parameters of pavement materials are changed, and corresponding test and evaluation methods are adjusted. 4. The design indexes for permanent deformation amount of asphalt mixture layer, vertical compressive strain on the top of subgrade and low temperature cracking index of pavement are added, the fatigue cracking prediction model for asphalt mixture layer and inorganic binder stabilized layer is improved, and the design index for pavement surface deflection is cancelled. 5. The arrangement of chapters and sections is sorted to highlight the requirements of structural composition design, and the terms and symbols are standardized. The drafters of this specification are as follows: Chapters 1, 2 and 3: Liu Boying; Chapter 4: Meng Shutao; Chapter 5: Niu Kaimin; Chapter 6 and Annex B: Bai Qifeng; Chapter 7: Cao Rongji; Chapter 8 and Annexes D and E: Wang Lin; Annex A: Zhao Yanqing; Annex C: Yang Xueliang; Annex F: Sun Lijun; Annex G: Tan Zhiming; provisions on pavement deflection analysis: Tang Boming; provisions on pavement low temperature cracking analysis: Feng Decheng; provisions on mechanical parameters of asphalt binder materials and fatigue analysis of asphalt mixture layer: Yu Jiangmiao; Zhao Duijia participates in preparation of partial provisions in Chapter 5 and Tai Diancang participates in the preparation of partial provisions in Annex C. During the process of implementing this specification, all parties concerned are kindly requested to send the problems found and opinions by correspondence to the routine management group of this specification (contact person: Liu Boying; address: Beijing Jiangsu Plaza, No.D88, Andingmenwai Street, Dongcheng District, Beijing, 100011, China; Tel: 010-82016573; Fax: 010-82016573; email: goodpave@163.com; website: www.goodpave.com; WeChat Official Account: goodpave) for reference in the next revision. Contents 1 General Provisions 1 2 Terms and Symbols 2 2.1 Terms 2 2.2 Symblos 3 3 Design Standards 4 4 Structural Composition Design 7 4.1 General Requirements 7 4.2 Pavement Structure Composition 7 4.3 Subgrade 8 4.4 Base and Subbase 8 4.5 Surface Course 10 4.6 Functional Layers 11 4.7 Shoulder 12 4.8 Pavement Drainage 12 5 Material Property Requirements and Design Parameters 14 5.1 General Requirements 14 5.2 Subgrade 14 5.3 Granular Materials 14 5.4 Inorganic Binder Stabilized Materials 16 5.5 Asphalt Binder Materials 18 5.6 Poisson's Ratio 24 6 Checking Calculation of Pavement Structure 25 6.1 General Requirements 25 6.2 Design Indexes 25 6.3 Traffic, Material and Environment Parameters 26 6.4 Checking Calculation Process of Pavement Structure 27 7 Renovation Design 30 7.1 General Requirements 30 7.2 Investigation and Analysis of Existing Pavement 30 7.3 Renovation Scheme 31 7.4 Checking Calculation for Renovated Pavement Structure 32 8 Bridge Deck Pavement Design 37 8.1 General Requirements 37 8.2 Cement Concrete Bridge Deck Pavement 37 8.3 Steel Bridge Deck Pavement 38 Annex A Analysis of Traffic Load Parameters 39 Annex B Method of Checking Calculation of Pavement Structure 47 Annex C Asphalt Pavement Structure Scheme 60 Annex D Test Method of Rebound Modulus of Granular Material 62 Annex E Test Method for Uniaxial Compression Modulus of Inorganic Binder Stabilized Materials 69 Annex F Uniaxial Penetration Strength Test Method of Asphalt Mixture 74 Annex G Temperature Adjustment Coefficient and Equivalent Temperature 79 Explanation of Wording in This Specification 87 1 General Provisions 1.0.1 This specification is formulated with view to being adapt to the needs of highway industry development and highway construction, improving the design quality and service performance of asphalt pavement and ensuring the safety, reliability and economic rationality of engineering. 1.0.2 This specification is applicable to the asphalt pavement design in highway construction and renovation engineering of all classes. 1.0.3 Structural composition design, material design and thickness design shall be carried out according to the highway class, pavement service performance requirements and the traffic load required to be borne and in combination with local climatic, hydrological, geological, material, construction and curing conditions, the engineering practice experience, environmental protection requirements, etc., and then the design scheme shall be selected through techno-economic analysis. 1.0.4 The subgrade shall meet the minimum rebound modulus requirement, and appropriate dry and wet types shall be available. Comprehensive design of subgrade and pavement shall be carried out on the basis of investigating and mastering the soil quality and dry/wet type of subgrade along the line. 1.0.5 New technology, structure, material and process shall be selected positively and reliably in combination with local conditions and engineering experience. 1.0.6 In addition to complying with the relevant requirements of this specification, the pavement design in such special areas as desert, expansive soil and saline soil shall also take regional particularity into consideration and include corresponding technical measures in combination with local experience and achievements. 1.0.7 In addition to those specified in this specification, the design of asphalt pavement shall also meet the requirements of current relevant national and professional standards. 2 Terms and Symbols 2.1 Terms 2.1.1 asphalt pavement pavement with asphalt surface course 2.1.2 reliability probability of pavement structure completing intended function within the specified period and under the specified conditions. The reliability that the design structure is required to reach is called target reliability 2.1.3 reliability index value index used for measuring the reliability of pavement structure. The reliability index used as the design basis of pavement structure according to this specification is called target reliability index 2.1.4 design working/service life of pavement intended working/service life of pavement free from structural repair under normal design, construction, service and maintenance conditions 2.1.5 design axle load calculated axle load adopted in design of pavement structure 2.1.6 equivalent single axle loads design equivalent single axle loads converted from different single axle loads according to equivalent damage principle 2.1.7 cumulative equivalent single axle loads sum of equivalent single axle loads on design lane within the design working/service life 2.1.8 seal coat functional layer used for preventing water from infiltrating in pavement structure 2.1.9 tack coat functional layer playing the role of binding in pavement structure 2.1.10 prime coat functional layer applied on nonasphaltic material layer and being capable of penetrating into certain depth in the surface to enhance the integrity of nonasphaltic material layer and asphalt mixture layer 2.1.11 drainage layer functional layer used for discharging internal water of pavement structure 2.1.12 frost protection layer functional layer paved in pavement structure according to frost protection requirements 2.1.13 subgrade equilibrium moisture subgrade moisture in a stable equilibrium state with the surrounding environment 2.1.14 low temperature cracking index index representing the low temperature shrinkage cracking degree of asphalt surface course 2.2 Symblos CI——the low temperature cracking index; E——the modulus; G*——the complex dynamic shear modulus of asphalt; h——the thickness; l——the deflection value; N——the single axle loads; P——the axle load; R——the strength; Ra——the permanent deformation amount of asphalt mixture layer; St——the stiffness modulus of asphalt; s——the standard deviation; T——the temperature; ε——the strain; σ——the stress; β——the target reliability index. 3 Design Standards 3.0.1 The target reliability and target reliability index of pavement structure shall not be less than those specified in Table 3.0.1. Table 3.0.1 Target Reliability and Target Reliability Index Highway class Expressway Class I highway Class II highway Class III highway Class IV highway Target reliability (%) 95 90 85 80 70 Target reliability index β 1.65 1.28 1.04 0.84 0.52 3.0.2 The design working/service life of constructed asphalt pavement structure shall not be less than those specified in Table 3.0.2 and shall be comprehensively determined according to factors such as highway class, economy and traffic load class. For the design of renovated pavement, appropriate design working/service life may be selected according to the actual engineering conditions. Table 3.0.2 Design Working/Service Life of Pavement Structure (Years) Highway class Design working/ service life Highway class Design working/ service life Expressway and Class I highway 15 Class III highway 10 Class II highway 12 Class IV highway 8 3.0.3 In pavement design, the single-axle-dual-wheel-set axle load with axle weight of 100kN shall be adopted as the design axle load, and the calculation parameters shall be determined according to Table 3.0.3. The cumulative equivalent single axle loads shall be determined according to Annex A herein based on the design working/service life of pavement structure. Table 3.0.3 Parameters of Design Axle Load Design axle load (kN) Tyre ground pressure (MPa) Diameter of equivalent single-wheel ground circle (mm) Center distance of two wheels (mm) 100 0.70 213.0 319.5 3.0.4 The traffic load borne by pavement structure shall be classified according to Table 3.0.4. Table 3.0.4 The Design Traffic Load Class Design traffic load class Extremely heavy Extra heavy Heavy Medium Light Accumulative traffic volume of large passenger cars and trucks on design lane within the design working/service life (×106, vehicles) ≥50.0 50.0~19.0 19.0~8.0 8.0~4.0 <4.0 Note: Large passenger car and truck are Categories 2~11 vehicles listed in Table A.1.2 in Annex A. 3.0.5 In the design of asphalt pavement, the fatigue cracking damage of asphalt mixture layer, fatigue cracking damage of inorganic binder stabilized layer, permanent deformation amount of asphalt mixture layer, vertical compressive strain on the top of subgrade, and low temperature cracking of pavement in seasonally frozen ground area shall be well controlled. 3.0.6 The design index for service performance of pavement shall meet the following requirements: 1 The fatigue cracking life of both asphalt mixture layer and inorganic binder stabilized layer calculated according to B.1 and B.2 in Annex B shall not be less than the cumulative equivalent single axle loads within design working/service life determined according to Annex A. 2 The permanent deformation amount of asphalt mixture layer calculated according to B.3 of Annex B shall not be larger than the permissible permanent deformation amount listed in Table 3.0.6-1. Table 3.0.6-1 Permissible Permanent Deformation Amount of Asphalt Mixture Layer (mm) Base type Permissible permanent deformation amount of asphalt mixture layer Expressway and Class I highway Classes II and III highways Inorganic binder stabilized base, cement concrete base, and asphalt mixture base with inorganic binder stabilized subbase 15 20 Other bases 10 15 3 The vertical compressive strain on the top of subgrade shall not be larger than the permissible value calculated according to B.4 in Annex B. 4 The low temperature cracking index of asphalt surface course in seasonally frozen ground area calculated according to B.5 in Annex B should not be larger than the value listed in Table 3.0.6-2. Table 3.0.6-2 Requirements for Low Temperature Cracking Index Highway class Expressway and Class I highway Class II highway Classes III and IV highways Low temperature cracking index CI, ≤ 3 5 7 Note: The low temperature cracking index CI - during completion acceptance, as for the number of transverse cracks in a 100m survey unit, the crack running through the full width is counted as 1 crack, the one not running through the length but exceeding the width of one lane is counted as 0.5 crack and the one not exceeding the width of one lane is excluded. 3.0.7 During handover acceptance of expressway and Class I highway as well as the Classes II and II highways in heavy-hilly area, the technical index of their anti-sliding performance shall meet the technical requirements specified in Table 3.0.7. Table 3.0.7 Technical Requirements for Anti-sliding Performance Mean annual precipitation (mm) Handover test index value Sideway force coefficient, SFC60a Texture depth, TDb (mm) >1,000 ≥54 ≥0.55 500~1,000 ≥50 ≥0.50 250~500 ≥45 ≥0.45 Notes: a The sideway force coefficient SFC60 - it is determined with sideway force coefficient test vehicle in a speed of 60km/h±1km/h. b The texture depth TD - it is determined with sand patch method. 4 Structural Composition Design 4.1 General Requirements 4.1.1 The pavement structure composition design shall be carried out in allusion to the mechanical properties, functional characteristics, long-term performance decay rules and damage characteristics of various pavement structure compositions, follow the concept of comprehensive design of subgrade and pavement and ensure the safety, durability, and economic rationality in entire life cycle of the pavement structure. 4.1.2 The pavement structure may consist of surface course, base, subbase and necessary functional layers. The surface course may be paved in layers with different materials and may be divided into upper surface course, middle surface course and lower surface course. 4.1.3 Within the design working/service life, the pavement shall be free from any structural damage due to fatigue, and the surface course may be subject to surface function recovery. 4.1.4 Tack coat shall be applied between asphalt binder material layers; seal coat shall be applied between asphalt binder material layer and other material layer, and prime coat should also be applied. 4.11.5 Waterproofing and drainage measures shall be taken for pavement structure to prevent rainfall from infiltrating into the pavement structural layer. 4.2 Pavement Structure Composition 4.2.1 The pavement structure type shall be selected according to factors such as traffic load class and subgrade condition and in combination with the material and structural characteristics of pavement. 4.2.2 The pavement structure may be classified into four types, i.e., asphalt pavement with inorganic binder stabilized base, asphalt pavement with granular base, asphalt pavement with asphalt binder base and asphalt pavement with cement concrete base. 4.2.3 The selection of pavement structure should meet the following requirements: 1 Asphalt pavement with inorganic binder stabilized base is applicable to various traffic load classes. 2 Asphalt pavement with granular base is applicable to "Heavy" or below traffic load classes. 3 Asphalt pavement with asphalt binder base is applicable to various traffic load classes. 4 Asphalt pavement with cement concrete base is applicable to "Heavy" or above traffic load classes. 4.2.4 When the subgrade moisture state is medium wet or wet, granular subbase should be adopted or granular subgrade improvement layer should be applied. 4.2.5 In rainy areas, appropriate measures shall be taken for asphalt pavement with inorganic binder stabilized base and that with cement concrete base to control such water damages as pumping and cavity. 4.2.6 For inorganic binder stabilized base, the following one or several measures may be taken to reduce shrinkage crack of base and reflection crack of pavement: 1 Inorganic binder stabilized base with good crack resistance is selected. 2 The thickness of asphalt mixture layer is increased, or asphalt macadam layer or graded crushed stone layer is applied on inorganic binder stabilized base. 3 Modified asphalt stress-absorbing layer is applied or geosynthetic is paved on inorganic binder stabilized base. 4.2.7 With the structural composition selected, the thickness of each structural layer may be primarily selected according to traffic load class and by reference to Annex C herein. 4.3 Subgrade 4.3.1 Subgrade shall be stable, dense and uniform, and be with adequate bearing capacity. 4.3.2 For the road section with soil cutting or heavily weathered rock in rainy areas, the drainage design of the junctions between filling and excavation and the cutting sections shall be strengthened to improve the hydrological condition of subgrade. 4.3.3 Leveling layer shall be arranged on the top of rock subgrade or rockfill subgrade, of which the thickness should be 200~300mm. 4.3.4 The constructed highway roadbed shall be in dry or medium wet state and shall be provided with measures to avoid ingress of surface water or groundwater. 4.4 Base and Subbase 4.4.1 Base and subbase shall have adequate bearing capacity, anti-fatigue-cracking performance, adequate durability and water stability. The asphalt binder base and granular base also shall have adequate resistance to permanent deformation. 4.4.2 The material type of base and subbase may be selected by reference to Table 4.4.2. Table 4.4.2 Applicable Traffic Load Class and Layer Position of Base and Subbase Materials Type Material type Applicable traffic load class and layer position Inorganic binder stabilized type Cement stabilized graded crushed stone or gravel, cement and fly ash stabilized graded crushed stone or gravel, and lime and fly ash stabilized graded crushed stone or gravel Base and subbase of each traffic load class Cement stabilized unscreened crushed stone or gravel, lime and fly ash stabilized unscreened crushed stone or gravel, and lime stabilized unscreened crushed stone or gravel Base of "Light" traffic load class, and subbase of each traffic load class Cement stabilized soil, lime stabilized soil and lime and fly ash stabilized soil Base of "Light" traffic load class, and subbase of each traffic load class Granular type Graded crushed stone Base of "Heavy" or below traffic load classes, and subbase of each traffic load class Graded gravel, unscreened crushed stone, natural sand gravel and caulking crushed stone Base of "Medium" and "Light" traffic load classes, and subbase of each traffic load class Asphalt binder type Dense-graded asphalt macadam, half-open-graded asphalt macadam and open-graded asphalt macadam Base of "Extremely Heavy", "Extra Heavy" and "Heavy" traffic load classes Bituminous penetration macadam Base of "Heavy" or below traffic load classes Cement concrete type Cement concrete or lean concrete Base of "Extremely Heavy" and "Extra Heavy" traffic load classes 4.4.3 Recycled asphalt mixture and recycled inorganic binder stabilized material may be used for base and subbase of each traffic load class; plant-mixed hot-recycled asphalt mixture should be adopted for the base of "Extremely Heavy", "Extra Heavy" and "Heavy" traffic load classes. 4.4.4 Graded crushed stone layer or semi-open-graded or open-graded asphalt macadam layer may be applied between inorganic binder stabilized layer and asphalt binder material layer. 4.4.5 The thickness of base and subbase of different materials should meet those specified in Table 4.4.5. Table 4.4.5 Thickness of Base and Subbase Material type Nominal maximum particle size of aggregate (mm) Thickness (mm), ≥ Dense-graded asphalt macadam Half-open-graded asphalt macadam Open-graded asphalt macadam 19.0 50 26.5 80 31.5 100 37.5 120 Bituminous penetration macadam - 40 Lean concrete 31.5 120 Inorganic binder stabilized material 19.0, 26.5, 31.5, 37.5 150 53.0 180 Graded crushed stone Graded gravel Unscreened crushed stone and natural sand gravel 26.5, 31.5, 37.5 100 53.0 120 Caulking crushed stone 37.5 75 53.0 100 63.0 120 4.4.6 Cement concrete base of asphalt pavement shall meet the relevant requirements of current JTG D40 Specifications for Design of Highway Cement Concrete Pavement. 4.5 Surface Course 4.5.1 The surface course shall be event and resistant to rutting, fatigue cracking, low temperature cracking and water damage, the upper surface course mixture shall also be resistant to sliding and abrasion, and the dense graded asphalt mixture upper surface course shall be with low permeability. 4.5.2 The material type of surface course should be selected according to Table 4.5.2. 1 General Provisions 2 Terms and Symbols 2.1 Terms 2.2 Symblos 3 Design Standards 4 Structural Composition Design 4.1 General Requirements 4.2 Pavement Structure Composition 4.3 Subgrade 4.4 Base and Subbase 4.5 Surface Course 4.6 Functional Layers 4.7 Shoulder 4.8 Pavement Drainage 5 Material Property Requirements and Design Parameters 5.1 General Requirements 5.2 Subgrade 5.3 Granular Materials 5.4 Inorganic Binder Stabilized Materials 5.5 Asphalt Binder Materials 5.6 Poisson's Ratio 6 Checking Calculation of Pavement Structure 6.1 General Requirements 6.2 Design Indexes 6.3 Traffic, Material and Environment Parameters 6.4 Checking Calculation Process of Pavement Structure 7 Renovation Design 7.1 General Requirements 7.2 Investigation and Analysis of Existing Pavement 7.3 Renovation Scheme 7.4 Checking Calculation for Renovated Pavement Structure 8 Bridge Deck Pavement Design 8.1 General Requirements 8.2 Cement Concrete Bridge Deck Pavement 8.3 Steel Bridge Deck Pavement Annex A Analysis of Traffic Load Parameters Annex B Method of Checking Calculation of Pavement Structure Annex C Asphalt Pavement Structure Scheme Annex D Test Method of Rebound Modulus of Granular Material Annex E Test Method for Uniaxial Compression Modulus of Inorganic Binder Stabilized Materials Annex F Uniaxial Penetration Strength Test Method of Asphalt Mixture Annex G Temperature Adjustment Coefficient and Equivalent Temperature Explanation of Wording in This Specification 1 总则 1.0.1 为适应公路行业发展和公路建设的需要,提高沥青路面的设计质量和使用性能,保证工程安全可靠、经济合理,制定本规范。 1.0.2本规范适用于各等级公路新建和改建工程的沥青路面设计。 1.0.3应根据公路等级、路面使用性能要求和所需承担的交通荷载,结合当地气候、水文、地质、材料、建设和养护条件、工程实践经验以及环境保护要求等,进行结构组合、材料设计和厚度设计,通过技术经济分析选定设计方案。 1.0.4路基应满足最低回弹模量要求,并应具有合适的干湿类型。应在调查掌握沿线路基土质和干湿类型的基础上,进行路基路面综合设计。 1.0.5应结合当地条件和工程经验,积极稳妥地选用新技术、新结构、新材料和新工艺。 1.0.6沙漠、膨胀土和盐渍土等特殊地区的路面设计,除应符合本规范的相关规定外,尚应考虑地区的特殊性,结合当地经验和成果,采取相应的技术措施。 1.0.7沥青路面设计除应符合本规范的规定外,尚应符合国家和行业现行有关标准的规定。 2术语和符号 2.1 术语 2.1.1沥青路面asphalt pavement 铺筑沥青面层的路面。 2.1.2可靠度reliability 路面结构在规定的时间内和规定的条件下完成预定功能的概率。要求设计结构达到的可靠度称作目标可靠度。 2.1.3可靠指标reliability index 度量路面结构可靠度的数值指标。本规范规定的作为路面结构设计依据的可靠指标称为目标可靠指标。 2.1.4路面设计使用年限design working/service life of pavement 在正常设计、施工、使用和养护条件下,路面不需结构性维修的预定使用年限。 2.1.5设计轴载design axle load 路面结构设计采用的计算轴载。 2.1.6 当量轴次equivalent single axle loads 按当量损坏原则,将不同轴载的作用次数换算为设计轴载的当量作用次数。 2.1.7 当量设计轴载累计作用次数cumulative equivalent single axle loads 在设计使用年限内,设计车道上当量轴次的总和。 2.1.8封层seal coat 路面结构中用以阻止水下渗的功能层。 2.1.9黏层tack coat 路面结构中起黏结作用的功能层。 2.1.10透层prime coat 用于非沥青类材料层上,能透入表面一定深度,增强非沥青类材料层与沥青混合料层整体性的功能层。 2.1.11排水层drainage layer 排除路面结构内部水的功能层。 2.1.12 防冻层frost protection layer 路面结构中按防冻要求所设置的功能层。 2.1.13路基平衡湿度subgrade equilibrium moisture 路基湿度达到与周围环境相平衡的稳定状态时的湿度。 2.1.14低温开裂指数low temperature cracking index 表征沥青面层低温收缩开裂程度的指标。 2.2 符号 CI——低温开裂指数; E——模量; G*——沥青动态剪切复数模量; h——厚度; l——弯沉值; N——轴载作用次数; P——轴载; R——强度; Ra——沥青混合料层永久变形量; St——沥青劲度模量; s——标准差; T——温度; ε——应变; σ——应力; β——目标可靠指标。 3 设计标准 3.0.1路面结构的目标可靠度和目标可靠指标不应低于表3.0.1的规定。 表3.0.1 目标可靠度和目标可靠指标 公路等级 高速公路 一级公路 二级公路 三级公路 四级公路 目标可靠度(%) 95 90 85 80 70 目标可靠指标β 1.65 1.28 1.04 0.84 0.52 3.0.2新建沥青路面结构设计使用年限不应低于表3.0.2的规定,应根据公路等级、经济、交通荷载等级等因素综合确定。改建路面结构设计可根据工程实际情况选取适宜的设计使用年限。 表3.0.2路面结构设计使用年限(年) 公路等级 设计使用年限 公路等级 设计使用年限 高速公路、一级公路 15 三级公路 10 二级公路 12 四级公路 8 3.0.3路面设计应采用轴重为100kN的单轴一双轮组轴载作为设计轴载,计算参数按表3.0.3确定。应根据路面结构设计使用年限,按本规范附录A确定当量设计轴载累计作用次数。 表3.0.3设计轴载的参数 设计轴载(kN) 轮胎接地压强(MPa) 单轮接地当量圆直径(mm) 两轮中心距(mm) 100 0.70 213.0 319.5 3.0.4路面结构所承受的交通荷载应按表3.0.4进行分级。 表3.0.4设计交通荷载等级 设计交通荷载等级 极重 特重 重 中等 轻 设计使用年限内设计车道累计大型客车和货车交通量(×106,辆) ≥50.0 50.0~19.0 19.0~8.0 8.0~4.0 <4.0 注:大型客车和货车为本规范附录A中表A.1.2所列的2类~11类车。 3.0.5 沥青路面设计应控制沥青混合料层疲劳开裂损坏、无机结合料稳定层疲劳开裂损坏、沥青混合料层永久变形量、路基顶面竖向压应变,以及季节性冻土地区的路面低温开裂。 3.0.6路面使用性能设计指标应满足下列要求: 1 按本规范附录b.1和附录B.2计算的沥青混合料层和无机结合料稳定层的疲劳开裂寿命,均不应小于按本规范附录A确定的设计使用年限内当量设计轴载累计作用次数。 2 按本规范附录B.3计算的沥青混合料层永久变形量不应大于表3.0.6-1所列容许永久变形量。 表3.0.6-1 沥青混合料层容许永久变形量(mm) 基层类型 沥青混合料层容许永久变形量 高速、一级公路 二级、三级公路 无机结合料稳定类基层、水泥混凝土基层和底基层为无机结合料稳定类的沥青混合料基层 15 20 其他基层 10 15 3 路基顶面竖向压应变不应大于按本规范附录B.4计算的容许值。 4按本规范附录B.5计算的季节性冻土地区沥青面层低温开裂指数不宜大于表3.0.6-2所列数值。 表3.0.6-2低温开裂指数要求 公路等级 高速、一级公路 二级公路 三级、四级公路 低温开裂指数CI,不大于 3 5 7 注:低温开裂指数CI——竣工验收时100m调查单元内横向裂缝条数,贯穿全幅的裂缝按1条计,未贯穿且长度超过一个车道宽度的裂缝按0.5条计,不超过一个车道宽度的裂缝不计入。 3.0.7高速公路、一级公路以及山岭重丘区二级和三级公路的路面在交工验收时,其抗滑技术指标应满足表3.0.7的技术要求。 表3.0.7抗滑技术要求 年平均降雨量 交工检测指标值 (mm) 横向力系数SFC60a 构造深度TDb(mm) >1 000 ≥54 ≥0.55 500~1 000 ≥50 ≥0.50 250~500 ≥45 ≥0.45 注:a横向力系数SFC60——用横向力系数测斌车,在60km/h±1km/h车速下测定。 b构造深度TD——用铺砂法测定。 4结构组合设计 4.1 一般规定 4.1.1路面结构组合设计应针对各种路面结构组合的力学特性、功能特性及其长期性能衰变规律和损坏特点,遵循路基路面综合设计的理念,保证路面结构的安全、耐久和全寿命周期经济合理。 4.1.2路面结构可由面层、基层、底基层和必要的功能层组合而成。面层采用不同材料分层铺筑时,可分为表面层、中面层和下面层。 4.1.3在设计使用年限内,路面应不发生由于疲劳导致的结构破坏,面层可进行表面功能修复。 4.1.4沥青结合料类材料层间应设置黏层;在沥青结合料类材料层与其他材料层间应设置封层,宜设置透层。 4.11.5应采取路面结构的防水、排水措施,阻止降水渗入路面结构层。 4.2路面结构组合 4.2.1 应根据交通荷载等级和路基状况等因素,结合路面材料特性和结构特性,选择路面结构类型。 4.2.2路面结构类型可按基层材料性质分为无机结合料稳定类基层沥青路面、粒料类基层沥青路面、沥青结合料类基层沥青路面和水泥混凝土基层沥青路面四类。 4.2.3路面结构的选用宜符合下列规定: 1 无机结合料稳定类基层沥青路面适用于各种交通荷载等级。 2 粒料类基层沥青路面适用于重及以下交通荷载等级。 3 沥青结合料类基层沥青路面适用于各种交通荷载等级。 4水泥混凝土基层沥青路面适用于重及以上交通荷载等级。 4.2.4路基湿度状态为中湿或潮湿时,宜采用粒料类底基层或设置粒料类路基改善层。 4.2.5 多雨地区,无机结合料稳定类基层和水泥混凝土基层沥青路面应采取措施控制唧泥、脱空等水损坏。 4.2.6 当采用无机结合料稳定类基层时,可采取下列一种或多种措施减少基层收缩开裂和路面反射裂缝: 1 选用抗裂性好的无机结合料稳定类基层。 2 增加沥青混合料层厚度,或在无机结合料稳定类基层上设置沥青碎石层或级配碎石层。 3 在无机结合料稳定类基层上设置改性沥青应力吸收层或敷设土工合成材料。 4.2.7选定结构组合后,可根据交通荷载等级参考本规范附录C初选各结构层厚度。 4.3 路基 4.3.1路基应稳定、密实和均匀,具有足够的承载能力。 4.3.2多雨地区土质路堑和强风化岩石路段,应加强填挖交界处及路堑段的排水设计,改善路基水文状况。 4.3.3 岩石或填石路基顶面应设置整平层,厚度宜为200~300mm。 4.3.4新建公路路床应处于干燥或中湿状态,并应采取措施防止地表水或地下水的侵入。 4.4基层和底基层 4.4.1基层和底基层应具有足够的承载能力、抗疲劳开裂性能、足够的耐久性和水稳定性。沥青结合料类和粒料类基层尚应具有足够的抗永久变形能力。 4.4.2基层和底基层的材料类型可参照表4.4.2选用。 表4.4.2基层和底基层材料的适用交通荷载等级和层位 类型 材料类型 适用交通荷载等级和层位 无机结合料稳定类 水泥稳定级配碎石或砾石、水泥粉煤灰稳定级配碎石或砾石、石灰粉煤灰稳定级配碎石或砾石 各交通荷载等级的基层和底基层 水泥稳定未筛分碎石或砾石、石灰粉煤灰稳定未筛分碎石或砾石、石灰稳定未筛分碎石或砾石 轻交通荷载等级的基层、各交通荷载等级的底基层 水泥稳定土、石灰稳定土、石灰粉煤灰稳定土 轻交通荷载等级的基层、各交通荷载等级的底基层 粒料类 级配碎石 重及重以下交通荷载等级的基层、各交通荷载等级的底基层 级配砾石、未筛分碎石、天然砂砾、填隙碎石 中等和轻交通荷载等级的基层、各交通荷载等级的底基层 沥青结合料类 密级配沥青碎石、半开级配沥青碎石、开级配沥青碎石 极重、特重和重交通荷载等级的基层 沥青贯入碎石 重及重以下交通荷载等级的基层 水泥混凝土 水泥混凝土或贫混凝土 极重、特重交通荷载等级的基层 4.4.3 再生沥青混合料和再生无机结合料稳定材料可用于各交通荷载等级的基层和底基层,厂拌热再生沥青混合料宜用于极重、特重和重交通荷载等级的基层。 4.4.4无机结合料稳定层与沥青结合料类材料层间可设置级配碎石、半开级配或开级配沥青碎石层。 4.4.5不同材料基层和底基层厚度宜符合表4.4.5的规定。 表4.4.5基层和底基层厚度 材料种类 集料公称最大粒径(mm) 厚度(mm),不小于 密级配沥青碎石 半开级配沥青碎石 开级配沥青碎石 19.0 50 26.5 80 31.5 100 37.5 120 沥青贯入碎石 40 贫混凝土 31.5 120 续表4.4.5 材料种类 集料公称最大粒径(mm) 厚度(mm),不小于 无机结合料稳定类 19.0、26.5、31.5、37.5 150 53.0 180 级配碎石 级配砾石 未筛分碎石、天然砂砾 26.5、31.5、37.5 100 53.0 120 填隙碎石 37.5 75 53.0 100 63.0 120 4.4.6沥青路面的水泥混凝土基层应符合现行《公路水泥混凝土路面设计规范》(JTG D40)的有关规定。 4.5面层 4.5.1 面层应具有平整、抗车辙、抗疲劳开裂、抗低温开裂和抗水损坏等性能,表面层混合料尚应具有抗滑和耐磨损性能,密级配沥青混合料表面层应具有低透水性能。 4.5.2面层材料类型宜按表4.5.2选用。 表4.5.2面层材料的交通荷载等级和层位 材料类型 适用交通荷载等级和层位 连续级配沥青混合料 各交通荷载等级的表面层、中面层和下面层 沥青玛蹄脂碎石混合料 极重、特重和重交通荷载等级的表面层、 对抗滑有特殊要求的表面层 厂拌热再生沥青混合料 各交通荷载等级的表面层、中面层和下面层 上拌下贯沥青碎石 中等、轻交通荷载等级的面层 沥青表面处治 中等、轻交通荷载等级的表面层 4.5.3对抗滑、排水或降噪有特殊要求的表面层可采用开级配沥青混合料,表面层下应设置防水层,防水层可采用改性乳化沥青或改性沥青等。 4.5.4不同粒径沥青混合料的层厚应符合表4.5.4的规定。连续级配沥青混合料和沥青玛蹄脂碎石混合料的结构层厚度不宜小于集料公称最大粒径的2.5倍。开级配沥青混合料的结构层厚度不宜小于集料公称最大粒径的2.0倍。 表4.5.4不同粒径沥青混合料层厚 沥青混合料类型 以下集料公称最大粒径沥青混合料的层厚(mm),不小于 4.75 9.5 13.2 16.0 19.0 26.5 连续级配沥青混合料 15 25 35 40 50 75 沥青玛蹄脂碎石 30 40 50 60 开级配沥青混合料 20 25 30 4.5.5沥青贯入碎石层的厚度宜为40~80mm,乳化沥青贯入式路面的厚度不宜超过50mm。上拌下贯式路面的拌和层厚度不宜小于25mm。 4.5.6沥青表面处治可分为单层、双层和三层。单层表面处治厚度宜为10~15mm,双层表面处治厚度宜为15~25 mm,三层表面处治厚度宜为25~30mm。 4.6 功能层 4.6.1季节性冻土地区路面厚度不满足防冻要求时,应增设防冻层。防冻层宜采用粗砂、砂砾和碎石等粒料类材料。 4.6.2地下水位高、排水不良的路段,有裂隙水、泉眼等水文条件不良岩石挖方路段,基层和底基层为非粒料类材料时,可在基层或底基层与路床间设置粒料层。粒料层应与路基边缘或与边沟下渗沟相连接,厚度不宜小于150mm。 4.6.3无机结合料稳定类或冷再生类材料结构层与沥青结合料类结构层之间宜设置封层,封层可采用单层沥青表面处治或稀浆封层等。当设置改性沥青应力吸收层时,可不再设封层。 4.6.4极重、特重和重交通荷载等级路面的黏层宜采用改性乳化沥青、道路石油沥青或改性沥青;中等和轻交通荷载等级路面的黏层可选用乳化沥青;水泥混凝土板与沥青面层间的黏层宜采用改性沥青。 4.6.5单层表面处治封层的结合料可采用改性沥青、道路石油沥青或乳化沥青。改性沥青应力吸收层宜采用橡胶沥青。 4.6.6粒料类基层和无机结合料稳定类基层顶面宜设置透层,透层沥青应具有良好的渗透性,可采用稀释沥青和乳化沥青等。 4.7路肩 4.7.丑路肩结构组合和材料选用应与行车道路面相协调,不应影响路面结构中水的排出。 4.7.2极重、特重和重交通荷载等级公路及冻土地区,硬路肩基层、底基层材料和厚度应与行车道路面相同。 4.7.3三级和四级公路硬路肩可采用沥青结合料类材料或粒料。 4.8 路面排水 4.8.1路面结构内部排水应与公路其他相关排水系统相衔接,并应符合现行《公路排水设计规范》(JTG/T D33)的有关规定。 4.8.2采用开级配沥青混合料表面层,或设置粒料、开级配或半开级配混合料等排水层、防冻层时,可采用横贯整幅路基的形式,或设置边缘排水系统。 5材料性质要求和设计参数 5.1 一般规定 5.1.1 路面材料应根据公路等级、交通荷载等级、气候条件、各结构层功能要求和当地材料特性等,在技术经济论证基础上进行设计并确定材料设计参数。 5.1.2各结构层的原材料性质要求和混合料组成与性质要求,应符合现行《公路沥青路面施工技术规范》(JTG F40)和《公路路面基层施工技术细则》(JTG/T F20)的有关规定,并应结合工程特点和当地经验确定。 5.1.3 路面结构层材料设计参数的确定可分为下列三个水平: 1 水平一,通过室内试验实测确定。 2 水平二,利用已有经验关系式确定。 3 水平三,参照典型数值确定。 5.1.4高速公路和一级公路的施工图设计阶段宜采用水平一,其他设计阶段可采用水平二或水平三;二级及二级以下公路可采用水平二或水平三。 5.2 路基 5.2.1路基顶面回弹模量的确定应符合现行《公路路基设计规范》(JTG D30)的有关规定。 5.2.2路基顶面回弹模量应符合表5.2.2的规定。不满足要求时,应采取改变填料、设置粒料类或无机结合料稳定类路基改善层,或采用石灰或水泥处理等措施提高路基顶面回弹模量。 表5.2.2路基顶面回弹模量(NPa) 交通荷载等级 极重 特重 重 中等、轻 回弹模量,不小于 70 60 50 40 5.3粒料类材料 5.3.1基层、底基层级配碎石的CBR值应符合表5.3.1的有关规定。 表5.3.1级配碎石CBR值 结构层 公路等级 极重、特重交通 重交通 中等、轻交通 基层 高速公路、一级公路 ≥200 ≥180 ≥160 二级及二级以下公路 ≥160 ≥140 ≥120 底基层 高速公路、一级公路 ≥120 ≥100 ≥80 二级及二级以下公路 ≥100 ≥80 ≥60 5.3.2级配砾石或天然砂砾用于基层时,CBR值不应小于80。级配砾石或天然砂砾用于底基层时,对极重、特重和重交通荷载等级,CBR值不应小于80;对中等交通荷载等级,CBR值不应小于60;对轻交通荷载等级,CBR值不应小于40。 5.3.3高速公路和一级公路基层粒料公称最大粒径不宜大于26.5mm;底基层采用级配碎石或级配砂砾时,公称最大粒径不宜大于31.5mm;底基层采用天然砂砾时,公称最大粒径不宜大于53.0mm。二级及二级以下公路的基层、底基层粒料公称最大粒径不宜大于53.0mm。 5.3.4填隙碎石公称最大粒径宜为层厚的1/2~2/3。填隙碎石用于基层时,骨料公称最大粒径不应超过53.0mm;用于底基层时,骨料公称最大粒径不应超过63.0mm。 5.3.5 防冻层所用砂砾、碎石材料的最大粒径不应超过53.0mm。 5.3.6级配碎石和级配砂砾中通过0.075mm筛孔的颗粒含量不宜大于5%,不满足要求时,可用天然砂替代部分细集料。 5.3.7粒料层的回弹模量在结构验算时应采用粒料回弹模量乘以湿度调整系数后得到,湿度调整系数可在1.6~2.0范围内选取。粒料回弹模量应取用最佳含水率和与压实度要求相应的干密度条件下的试验值。压实度要求应符合现行《公路路面基层施工技术细则》(JTG/T F20)的有关规定。 5.3.8 最佳含水率和与压实度要求相应的干密度条件下的粒料回弹模量应按本规范第5.1.4条规定,依据相应的水平确定: 1 水平一,按本规范附录D采用重复加载三轴压缩试验测定,取回弹模量试验结果的均值。 2 水平三,按粒料类型和层位参照表5.3.8确定粒料回弹模量取值。 表5.3.8粒料回弹模量取值范围(MPa) 材料类型和层位 最佳含水率和与压实度要求相应的干密度条件下 经湿度调整后 级配碎石基层 200~400 300~700 级配碎石底基层 180~250 190~440 级配砾石基层 150~300 250~600 级配砾石底基层 150~220 160~380 未筛分碎石层 180~220 200~400 天然砂砾层 105~135 130~240 注:材料性能好、级配好或压实度大时取高值,反之取低值 5.4无机结合料稳定类材料 5.4.1无机结合料稳定类材料用于高速公路、一级公路基层时,公称最大粒径不宜大于31.5mm;用于高速公路和一级公路底基层或二级及二级以下公路基层时,公称最大粒径不宜大于37.5mm;用于二级及二级以下公路底基层时,公称最大粒径不宜大于53.0mm。 5.4.2水泥稳定类材料水泥剂量宜为3.0%~6.0%。 5.4.3贫混凝土集料公称最大粒径不宜大于31.5mm,水泥用量不得少于170kg/m3,28d弯拉强度标准值宜控制在2.0~2.5MPa范围内。 5.4.4无机结合料稳定类材料7d无侧限抗压强度代表值应符合表5.4.4的要求。 表5.4.4无机结合料稳定类材料7d无侧限抗压强度标准(代表值)(MPa) 材料 结构层 公路等级 极重、特重交通 重交通 中等、轻交通 水泥稳定类 基层 高速公路、一级公路 5.0~7.0 4.0~6.0 3.0~5.0 底基层 二级及二级以下公路 4.0~6.0 3.0~5.0 2+0~4.0 高速公路、一级公路 3.0~5.0 2.5~4.5 2.0~4.0 二级及二级以下公路 2.5~4.5 2.0~4.0 1.0~3.0 水泥粉煤灰稳定类 基层 高速公路、一级公路 4.0~5.0 3.5~4.5 3.0~4.0 二级及二级以下公路 3.5~4.5 3.0~4.0 2.5~3.5 底基层 高速公路、一级公路 2.5~3.5 2.0~3.0 1.5~2.5 二级及二级以下公路 2.0~3.0 1.5~2.5 1.0~2.0 续表5.4.4 材料 结构层 公路等级 极重、特重交通 重交通 中等、轻交通 石灰粉煤灰 稳定类 基层 高速公路、一级公路 ≥1.1 ≥1.0 ≥0.9 二级及二级以下公路 ≥0.9 ≥0.8 ≥0.7 底基层 高速公路、一级公路 ≥0.8 ≥0.7 ≥0.6 二级及二级以下公路 ≥0.7 ≥0.6 ≥0.5 石灰稳定类 基层 二级及二级以下公路 ≥0.8a 底基层 高速公路、一级公路 ≥0.8 二级及二级以下公路 0.5~0.7b 注:a在低塑性土(塑性指数小于7)地区,石灰稳定砂砾和碎石的7d龄期无侧限抗压强度应大于0.5MPa(100g平衡锥测液限)。 b低限用于塑性指数小于7的黏土,高限用于塑性指数大于或等于7的黏土。 5.4.5无机结合料稳定类材料弯拉强度和弹性模量应按本规范第5.1.4条规定,依据相应的水平确定: 1 水平一,按本规范附录E,采用中间段法单轴压缩试验测定。弯拉强度和弹性模量的测定应符合现行《公路工程无机结合料稳定材料试验规程》(JTG E51)中T 0851的有关规定。测试时水泥稳定类、水泥粉煤灰稳定类材料试件的龄期应为90d,石灰稳定类、石灰粉煤灰稳定类材料试件的龄期应为180d。弯拉强度和弹性模量应取用测试数据的平均值。 2水平三,参照表5.4.5确定弯拉强度和弹性模量。 表5.4.5无机结合料稳定类材料的弯拉强度和弹性模量取值范围(MPa) 材 料 弯拉强度 弹性模量 水泥稳定粒料、水泥粉煤灰稳定粒 料、石灰粉煤灰稳定粒料 1.5~2.0 18 000~28 000 0.9~1.5 14 000~20 000 水泥稳定土、水泥粉煤灰稳定土、石灰粉煤灰稳定土 0.6~1.0 5 000~7 000 石灰土 0.3~0.7 3 000~5 000 注:结合料用量高、材料性能好、级配好或压实度大时取高值,反之取低值。 5.4.6 结构验算时,无机结合料稳定类材料弹性模量应乘以结构层模量调整系数0.5。 5.4.7 冻土地区高速公路和一级公路的石灰粉煤灰稳定类基层,应按现行《公路工程无机结合料稳定材料试验规程》(JTG E51)中T 0858的有关规定进行材料抗冻性能检验,其残留抗压强度比应符合表5.4.7的要求。 表5.4.7 石灰粉煤灰稳定类材料抗冻性能技术要求 气候区 重冻区 中冻区 残留抗压强度比(%) ≥70 ≥65 5.5 沥青结合料类材料 5.5.1沥青结合料应采用道路石油沥青或其加工产品,沥青类型应根据公路等级、气候条件、交通荷载等级、结构层位和施工条件等确定。 5.5.2极重、特重和重交通荷载等级公路、气候条件严酷地区公路,以及连续长陡纵坡路段,中面层和表面层宜采取优化混合料级配、选用改性沥青或添加外掺剂等措施。 5.5.3开级配沥青混合料表面层宜采用高黏沥青或橡胶沥青,并采用适量消石灰或水泥替代矿粉。 5.5.4表面层沥青混合料公称最大粒径不宜大于16.0mm,中面层和下面层沥青混合料公称最大粒径不宜小于16.0mm,基层沥青碎石公称最大粒径不宜小于26.5mm。 5.5.5季节性冻土地区高速公路和一级公路表面层沥青低温性能宜满足下列指标要求: 1 分析连续10年年最低气温平均值,作为路面低温设计温度。路面低温设计温度提高10℃的试验条件下,沥青弯曲梁流变试验蠕变劲度St不宜大于300MPa,且蠕变曲线斜率m不宜大于0.30。 2 当蠕变劲度St在300~600MPa范围内,且蠕变曲线斜率m大于0.30时,增加沥青直接拉伸试验,其断裂应变不宜小于1%。 3 以上都不满足时,采用弯曲梁流变试验和直接拉伸试验确定沥青临界开裂温度,临界开裂温度不宜高于路面低温设计温度。 5.5.6二级及二级以上公路公称最大粒径不大于19.0mm的沥青混合料,宜在温度为-10℃、加载速率为50mm/min条件下进行小梁弯曲试验。沥青混合料的破坏应变宜符合表5.5.6的规定。 表5.5.6沥青混合料低温弯曲试验破坏应变技术要求 气候条件与技术指标 相应于下列气候分区所要求的破坏应变(με) 试验 方法 年极端最低气温(℃) 及气候分区 <-37.0 -37.0~-21.5 -21.5~-9.0 >-9.0 1.冬严寒区 2.冬寒区 3.冬冷区 4.冬温区 1-1 2-1 1-2 2-2 3-2 1-3 2-3 1-4 2-4 普通沥青混合料,不小于 2 600 2 300 2 000 T 0715 改性沥青混合料,不小于 3 000 2 800 2 500 注:气候分区的确定应符合现行《公路沥青路面施工技术规范》(JTG F40)的有关规定。 5.5.7高速公路和一级公路沥青混合料应在规定的试验条件下进行车辙试验,并应符合表5.5.7的要求。二级公路可参照执行。 表5.5.7沥青混合料车辙试验动稳定度技术要求(次/mm) 气候条件与技术指标 相应于以下气候分区所要求的动稳定度技术要求 试验 方法 七月平均最高气温(℃) 及气候分区 >30 20~30 <20 1.夏炎热区 2.夏热区 3.夏凉区 1-1 1-2 1-3 1-4 2-1 2-2 2-3 2-4 3-2 普通沥青混合料,不小于 800 1 000 600 800 600 T 0719 改性沥青混合料,不小于 2 800 3 200 2 000 2 400 1 800 SMA混合料,不小于 普通沥青 1 500 改性沥青 3 000 OGFC混合料,不小于 1 500(中等、轻交通荷载等级)、3 000(重及以上交通荷载等级) 注:1.气候分区的确定应符合现行《公路沥青路面施工技术规范》(JTG F40)的有关规定。 2.当其他月份的平均最高气温高于七月时,可使用该月平均最高气温。 3.在特殊情况下,对钢桥面铺装、重载车特别多或纵坡较大的长距离上坡路段、厂矿专用道路,可酌情提高动稳定度要求。 4.对炎热地区或特重及以上交通荷载等级公路,可根据气候条件和交通状况适当提高试验温度或增加试验荷载。 5.5.8宜采用本规范附录F规定的单轴贯入试验方法测定沥青混合料贯入强度。 无机结合料稳定类基层沥青路面、底基层采用无机结合料稳定类材料的沥青结合料类基层沥青路面和水泥混凝土基层沥青路面的沥青混合料贯入强度,宜满足式(5.5.8-1)的要求。 (5.5.8-1) 式中:[Ra]——沥青混合料层容许永久变形量(mm),根据公路等级,参照表3.0.6-1确定; Ne5——设计使用年限内或通车至首次针对车辙维修的期限内,月平均气温大于0℃的月份,设计车道当量设计轴载累计作用次数,按本规范附录A计算; Td——设计气温(℃),为所在地区月平均气温大于0℃的各月份气温平均值; Ψs——路面结构系数,根据式(5.5.8-2)计算: (5.5.8-2) ha——沥青混合料层的厚度(mm); hb——无机结合料稳定层或水泥混凝土层的厚度(mm); Eb——无机结合料稳定层或水泥混凝土层的模量(MPa); Rτs——各沥青混合料层的综合贯入强度,根据式(5.5.8-3)确定: (5.5.8-3) Rτi——第i层沥青混合料的贯入强度(MPa),根据本规范附录F所列方法试验确定,普通沥青混合料一般为0.4~0.7MPa,改性沥青混合料一般为0.7~1.2MPa; n——沥青混合料层的层数; wis——第i层沥青混合料的权重,为第i层厚度中点剪应力与各层厚度中点剪应力之和的比值 。沥青混合料层为1层时,w1取1.0; 沥青混合料层2层时,自上而下,w1可取0.48,w2可取1.52;沥青混合料层为3层时,自上而下,w1、w2和w3可分别取0.35、0.42和0.23。 5.5.9粒料类基层沥青路面和底基层采用粒料的沥青结合料类基层沥青路面,沥青混合料贯入强度宜满足式(5.5.9-1)的要求。 (5.5.9-1) 式中:Ψg——路面结构系数,根据式(5.5.9-2)计算: (5.5.9-2) Rτg——路面各层沥青混合料的综合贯入强度,根据式(5.5.9-3)确定: (5.5.9-3) wig——第i层沥青混合料的权重,为第i层厚度中点的剪应力与各层厚度中点剪应力之和的比值 。沥青混合料层为1层时,w1取1.0;沥青混合料层2层时,自上而下,w1可取0.44,w2可取0.56;沥青混合料层为3层时,自上而下,w1、w2和w3可分别取0.27、0.36和0.37; 其他符号意义同式(5.5.8-1)~式(5.5.8-3)。 5.5.10沥青混合料应测试浸水马歇尔试验残留稳定度和冻融劈裂试验残留强度比检验水稳定性。两项指标应符合表5.5.10的规定。水稳定性不满足要求时,可采取掺入消石灰、水泥或抗剥落剂,或更换集料等措施。 |
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 |
服务热线:400-001-5431 | 电话:010-8572 5110 | 传真:010-8581 9515 | Email: bz@bzfyw.com | |
版权所有: 北京悦尔信息技术有限公司 2008-2020 京ICP备17065875号-1 51La |
本页关键词: |
JTG D50-2017, JTG/T D50-2017, JTGT D50-2017, JTGD50-2017, JTG D50, JTGD50, JTG/TD50-2017, JTG/T D50, JTG/TD50, JTGTD50-2017, JTGT D50, JTGTD50 |