Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative.
This standard is developed in accordance with the rules given in GB/T 1.1-2009.
This standard replaces GB/Z 6829-2008 General Requirements for Residual Current Operated Protective Devices; the following technical changes have been made with respect to GB/Z 6829-2008 (the previous edition):
——The paragraph "any standard for accessories, devices or equipment capable of completing only one or two of the above-mentioned three functions or failing to fully comply with all parts of this standard cannot be referred to as RCD standard, …" is added in the scope (see Chapter 1);
——Types of residual current devices type F are increased (see 4.7);
——Characteristic description for RCD type F is added (see 5.2.9.3);
——The characteristic description for RCD type B is modified (see 5.2.9.4; 5.2.9.3 of Edition 2008);
——Marking of RCD type F is added and that of RCD type B is modified (see Chapter 6);
——"Alternate current or pulsating direct residual current superimposition smooth direct current" is modified and the requirements for RCD type F and RCD type B are given respectively (see 8.3.1.3 and 8.3.1.4; 8.3.1.3 and 8.3.1.4 of Edition 2008);
——The requirements for combination frequency residual current are modified, and component values of different frequencies of test current and initial value (IΔ) for correct operation verification at the time the residual current stably increases in Table 11 as well as the range of action current of recombination residual current in Table 12 are added (see 8.3.1.5; 8.3.1.5 of Edition 2008);
——Two poles in the column of pole number corresponding smooth direct current are added in Table 14 (See Table 14);
——The possible load current and fault current in Annex B are modified (13 waveforms in the latest draft of IEC 60755 are adopted) (see Annex B; Annex B of Edition 2008);
——Annex C "Supplementary Requirements for Auto-reclosing RCD" is deleted.
This standard is modified in relation to IEC/TR 60755: 2008 General Requirements for Residual Current Operated Protective Devices.
Technical differences exist between this standard and IEC/TR 60755: 2008; these differences are marked with perpendicular single line (|) in the outside page margin of the provisions concerned, and the technical differences and their causes are as follows:
——For normative references, this standard adjusts technical differences so as to adapt to technical conditions in China, which is reflected in Chapter 2 "Normative References", and the specific adjustment is as follows:
GB/T 156-2007 modified in relation to international standard is used to replace IEC 60038 (see 5.3);
GB/T 16895.21-2011 identical to international standard is used to replace IEC 60364-4-41 (see 5.3);
GB/T 16895.4-1997 identical to international standard is used to replace IEC 60364-5-53 (see Chapter 1);
GB/T 13140.1-2008 identical to international standard is used to replace IEC 60998-1 (see Chapter 3 and 8.5);
GB/T 17045-2008 identical to international standard is used to settle IEC 61140 (see Chapter 1).
——IEC/TR 60755: 2008 may be used as guidance for residual current devices with rated voltage not exceeding 1 000V a.c. while this standard for residual current devices with rated voltage not exceeding 1 200V a.c.;
——The paragraph "any standard for accessories, devices or equipment capable of completing only one or two of the above-mentioned three functions or failing to fully comply with all parts of this standard cannot be referred to as RCD standard, …" is added in the scope (see Chapter 1);
——The classification by actuation mode as well as the requirements "according to relevant product standards" specified in IEC/TR 60755: 2008 are added (see 4.1.1);
——Types of residual current devices type F are increased (see 4.7);
——The classification of delayed type is further detailed [see 4.9 b)];
——Classification by whether there is auto-reclosing is added (see 4.11);
——The characteristic description for RCD type F is added (see 5.2.9.3);
——Grades 220 V and 380 V are added for rated voltage priority value and Grade 800 A is added for rated current priority value (see 5.4.1 and 5.4.2);
——The requirements "time-delay type is only applicable to residual current devices with IΔn greater than 0.03 A" is explicitly specified in 5.4.12.2 of this standard, thus corresponding modifications are made to other relevant parts;
——Types, requirements and markings of RCD type F are added and the requirements and markings of Type B RCD are modified (see Chapter 6);
——"Alternate current or pulsating direct residual current superimposition smooth direct current" is modified and the requirements for RCD type F and RCD type B are given respectively (see 8.3.1.3 and 8.3.1.4);
——The requirements for combination frequency residual current are modified, and component values of different frequencies of test current and initial value (IΔ) for correct operation verification at the time the residual current stably increases in Table 11 as well as the range of action current of recombination residual current in Table 12 are added (see 8.3.1.5);
——The additional requirements for RCD functionally dependent on supply voltage are added in this standard; it is also specified that residual current devices for household and similar purposes with IΔn≤0.03A shall be capable of operating automatically in case of the residual current greater than or equal to the rated residual operating current while the supply voltage drops to 50V (phase-to-earth voltage) (see 8.3.3);
——Annex B "Possible Load Current and Fault Currents" is modified (see Annex B).
This standard was proposed by China Electrical Equipment Industry Association.
This standard is under the jurisdiction of SAC/TC 189 National Technical Committee on Low-voltage Apparatus of Standardization Administration of China.
The previous editions of this standard are as follows:
——GB 6829-1986, GB 6829-1995 and GB/Z 6829-2008.
Introduction
Residual current devices are primarily intended to give protection against the risk of dangerous, and possibly lethal, electric shocks and to provide protection against fire hazards due to a persistent earth fault current.
This standard specifies the operational characteristics for these devices; details of how they should be installed to provide the desired level of protection are specified in the various parts of GB 16895.
This standard is intended for use by technical committees and relevant organizations in the preparation of standards for residual current devices. It is not intended to be used as a stand-alone standard, for example, for certification.
It has been prepared in accordance with its pilot function for residual current devices.
There are two basic conditions of protection against the risk of electric shock: fault protection (indirect contact) and basic protection (direct contact).
Fault protection implies that the device is used to prevent dangerous voltages persisting on accessible installation metalwork, which are earthed but become live under earth fault conditions.
Under such conditions, the risk arises not from the user making direct contact with a live conductive part but from making contact with earthed metalwork, which itself is in contact with a live conductive part.
The primary or basic function of residual current devices is to give fault protection, but, with devices of adequate sensitivity (i.e., units having operating residual currents not exceeding 30 mA), there is the additional benefit that, should other methods of protection fail, the device will give a high degree of protection to a user making direct contact with a live conductive part.
The operating characteristics given in this standard are therefore based on requirements, which themselves are based on the information contained in GB/T 13870 Effects of Current on Human Beings and Livestock.
These devices also provide protection against the risk of fire resulting from earth fault currents which can persist for lengthy periods without operating the overcurrent protective device.
General Requirements for Residual Current Operated Protective Devices
1 Scope
The requirements of this standard apply to residual current operated protective devices (hereinafter referred to as “residual current devices” (RCD)) for rated voltages not exceeding 440 V a.c., intended primarily for protection against shock hazard. They are intended to be used by technical committees and relevant organizations when drafting product standards and apply only if they are incorporated or are referred to in the relevant standards. This standard is not intended to be used as a stand-alone standard, for example, for certification.
Note 1: This standard may also be used as a guide for residual current devices of rated voltages up to 1 200 V, a.c., the performance of which shall be determined through negotiation between the manufacturer and the user when the standard for relevant products are prepared.
It applies to
——a single device which detects a residual current (see 3.3.2), compares it to a reference value (see 3.3.3) and opens the protected circuit when the residual current exceeds this reference value (see 3.3.4);
——an association of devices, each one of them performing separately one or two of the above-mentioned functions, but acting together in order to accomplish all three functions. Particular requirements may be necessary for devices intended for accomplishing only one or two of the above three functions.
Any standard for accessories, devices or equipment capable of completing only one or two of the above-mentioned three functions or failing to fully comply with all parts of this standard cannot be referred to as RCD standard, or refer to "RCD", either abbreviation or full name "residual current device". "RCD" shall not be marked on products of such accessories, devices or equipment or in their technical documents.
This standard applies for conditions as stated in Chapter 7. For other conditions, additional requirements may be necessary.
Residual current devices are intended to protect persons and livestock against harmful effects of electric shock due to contact with exposed conductive parts by automatic disconnection of supply in accordance with GB/T 17045-2008 and GB/T 16895.21-2011.
Note 2: In this context “harmful effects” include the risk of occurrence of heart fibrillation.
In accordance with GB/T 16895.4-1997, residual current devices with a rated residual operating current not exceeding 300 mA may also be used to provide protection against fire hazards due to a persistent earth fault current.
In accordance with GB/T 16895.21-2011, residual current devices with a rated residual operating current not exceeding 30 mA may also be used for additional protection in case of failure of the basic protective provisions or carelessness of the user of the installation or equipment.
For residual current devices performing additional functions, this standard applies together with the relevant standard covering the additional functions; for example, when residual current devices incorporate a circuit-breaker it should comply with the relevant circuit-breaker standard.
Supplementary or particular requirements may be necessary, for example, for
——residual current devices intended for use by uninstructed persons;
——socket-outlets, plugs, adapters and couplers incorporating residual current devices.
This standard states
——the definitions and terms used for residual current devices (Chapter 3) ;
——the classification of residual current devices (Chapter 4);
——the characteristics of residual current devices (Chapter 5);
——the preferred values of the operating and influencing quantities (5.4);
——the marking and information to be provided for residual current devices (Chapter 6);
——the standard conditions for installation and operation in service (Chapter 7);
——the requirements for construction and operation (Chapter 8);
——the list of minimum requirements to be tested (Chapter 9).
Note 3: Devices having a residual current function for specific purposes other than those mentioned above (for example, motor protection) are not covered by this standard.
2 Normative References
The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
GB/T 156-2007 Standard Voltages (IEC 60038: 2002, MOD)
GB/T 2900.8-2009 International Electrotechnical Vocabulary – Insulators (IEC 60050-471: 2007, IDT)
GB/T 2900.25-2008 International Electrotechnical Vocabulary – Rotating Machines (IEC 60050-411: 1996, IDT)
GB/T 2900.35-2008 International Electrotechnical Vocabulary – Electrical Apparatus for Explosive Atmospheres (IEC 60050-426: 2008, IDT)
GB/T 2900.70-2008 International Electrotechnical Vocabulary – Electrical Accessories (IEC 60050-442: 1998, IDT)
GB/T 13140.1-2008 Connecting Devices for Low-voltage Circuits for Household and Similar Purposes – Part 1: General Requirements (IEC 60998-1: 2002, IDT)
GB/T 16895.4-1997 Electrical Installations of Buildings – Part 5: Selection and Erection of Electrical Equipment – Chapter 53: Switching and Control (IEC 60364-5-53: 1994, IDT)
GB/T 16895.21-2011 Low-voltage Electrical Installations – Part 4-41: Protection for Safety – Protection Against Electric Shock (IEC 60364-4-41: 2005, IDT)
GB/T 17045-2008 Protection against Electric Shock – Common Aspects for Installation and Equipment (IEC 61140: 2001, IDT)
IEC 60050-441: 1984 International Electrotechnical Vocabulary - Part 441: Switchgear, Controlgear and Fuses
3 Terms and Definitions
For the purposes of this document, definitions given in GB/T 2900.8-2009, GB/T 2900.25-2008, GB/T 2900.35-2008, GB/T 2900.70-2008 and IEC 60050-441: 1984, as well as the following, apply.
3.1 Definitions relating to currents flowing from live parts to earth
3.1.1
earth fault current
current flowing to earth due to an insulation fault
3.1.2
earth leakage current
current flowing from the live parts of the installation to earth in the absence of an insulation fault
3.1.3
pulsating direct current
current of pulsating wave form which assumes, in each period of the rated power frequency, the value 0 or a value not exceeding 0.006 A d.c. during one single interval of time, expressed in angular measure, of at least 150°
3.1.4
current delay angle
α
time, expressed in angular measure, by which the starting instant of the current conduction is delayed by phase control
3.1.5
smooth direct current
direct current which is ripple-free
Note: A current is considered to be ripple-free when the coefficient of ripple is below 10 %.
3.2 Definitions relating to the energization of a residual current device
3.2.1
residual current
IΔ
vector sum of the instantaneous values of the current flowing in the main circuit of the residual current device (expressed as r.m.s. value)
3.2.2
residual operating current
value of residual current which causes the residual current device to operate under specified conditions
3.2.3
residual non-operating current
value of residual current at which and below which the residual current device does not operate under specified conditions
3.3 Definitions relating to the operation and to the functions of the residual current device
3.3.1
residual current device; RCD
mechanical switching device or association of devices designed to make, carry and break currents under normal service conditions and to cause the opening of the contacts when the residual current attains a given value under specified conditions
3.3.2
detection
function consisting in sensing the presence of a residual current
3.3.3
evaluation
function consisting in giving to the residual current device the possibility to operate, when the detected residual current exceeds a specified reference value
3.3.4
interruption
function consisting in bringing automatically the main contacts of the residual current device from the closed position into the open position, thereby interrupting the current(s) flowing through them
3.3.5
switching device
device designed to make or to break the current in one or more electric circuits
3.3.6
trip-free mechanism of a residual current device
mechanism, the moving contacts of which return to and remain in the open position when the opening operation is initiated after the initiation of the closing operation, even if the closing command is maintained
Note: To ensure proper breaking of the current which may have been established, it may be necessary that the contacts momentarily reach the closed position.
3.3.7
residual current device without integral overcurrent protection
residual current device not designed to perform the functions of protection against overloads and/or short circuits
3.3.8
residual current device with integral overcurrent protection
residual current device designed to perform the functions of protection against overloads and/or short circuits
Note: This definition includes residual current devices intended to be coupled to a circuit breaker (r.c. units, see 3.3.9)
3.3.9
r.c.unit
device performing simultaneously the functions of detection of the residual current and of comparison of the value of this current with the residual operating value and incorporating the means of operating the tripping mechanism of a circuit-breaker with which it is designed to be assembled or associated
3.3.10
break time of a residual current device
time which elapses between the instant the residual operating current is attained and the instant of arc extinction in all poles
3.3.11
limiting non-actuating time
maximum time during which the residual operating current can be applied to the residual current device without causing it to operate
3.3.12
time-delay residual current device
residual current device specially designed to attain a predetermined value of limiting non-actuating time, corresponding to a given value of residual current
3.3.13
reset residual current device
residual current device which should be intentionally reset prior to reclosing by a means different from the operation means to be able to be reclosed and to operate again
3.3.14
test device
device incorporated in the residual current device simulating the residual current conditions for the operation of the residual current device under specified conditions
3.4 Definitions relating to values and ranges of energizing quantities
3.4.1
non-operating overcurrents
3.4.1.1
limiting value of the non-operating over-current in the case of a single-phase load
maximum value of a single-phase overcurrent which, in the absence of a residual current, can flow through a residual current device (whatever the number of poles) without causing it to operate
Notes:
1 In the case of an overcurrent in the main circuit, unwanted tripping may occur in the absence of residual current, due to asymmetry existing in the detecting device itself.
2 In the case of a residual current device with integral overcurrent protection, the limiting value of the non-operating current may be determined by the overcurrent protection means.
3.4.1.2
limiting value of the non-operating current in the case of a balanced load
maximum value of the current which, in the absence of a residual current, can flow through a residual current device with a balanced load (whatever the number of poles) without causing it to operate
Notes:
1 In the case of an overcurrent in the main circuit, unwanted tripping may occur in the absence of residual current, due to asymmetry existing in the detecting device itself.
2 In the case of a residual current device with integral overcurrent protection, the limiting value of the non-operating current may be determined by the overcurrent protection means.
3.4.2
residual short-circuit withstand current
maximum value of the residual current for which the operation of the residual current device is assured under specified conditions and above which that device may undergo irreversible alterations
3.4.3
limiting thermal value of the short-time current
highest value of current (r.m.s.) which the device is capable of carrying for a specified short period and under specified conditions without undergoing, by heating effect, permanent deterioration of its characteristics
3.4.4
prospective current
current that would flow in the circuit, if each main current path of the residual current device and of the overcurrent protective device (if any) were replaced by a conductor of negligible impedance
Note: The prospective current may be qualified in the same manner as an actual current, for example, prospective breaking current, prospective peak current, prospective residual current, etc.
3.4.5
making capacity
value of the a.c. component of a prospective current that a residual current device is capable of making at a stated voltage under prescribed conditions of use and behaviour
3.4.6
breaking capacity
value of the a.c. component of a prospective current that a residual current device is capable of breaking at a stated voltage under prescribed conditions of use and behaviour
3.4.7
residual making and breaking capacity
value of the a.c. component of a residual prospective current which a residual current device can make, carry for its opening time and break under specified conditions of use and behaviour
3.4.8
conditional short-circuit current
value of the a.c. component of a prospective current, which a residual current device without integral short-circuit protection, but protected by a suitable short-circuit protective device (hereafter referred to as an SCPD) in series, can withstand under specified conditions of use and behaviour
3.4.9
conditional residual short-circuit current
value of the a.c. component of a residual prospective current which a residual current device, without integral short-circuit protection but protected by a suitable SCPD in series, can withstand under specified conditions of use and behaviour
3.4.10
I2t (Joule integral)
integral of the square of the current, over a given time interval (t0, t1):
3.4.11
recovery voltage
voltage which appears across the supply terminals of the residual current device after the breaking of the current
Note: This voltage may be considered as comprising two successive intervals of time, one during which a transient voltage exists, followed by a second one during which power-frequency recovery voltage alone exists.
Foreword i
Introduction iv
1 Scope
2 Normative References
3 Terms and Definitions
4 Classification
5 Characteristics of Residual Current Devices
6 Marking and Other Product Information
7 Standard Conditions for Operation in Service and for Installation
8 Conditions for Construction and Operation
9 Guidance for Type Tests
Annex A (Informative) Recommended Diagram for Short-circuit Tests
Annex B (Informative) Possible Load and Fault Currents
Bibliography
Figure A.1 Diagram for All the Short-circuit Tests
Figure A.2 Detail of Impedance Z or Z
Figure B.1 Possible Load and Fault Currents according to the Different Electronic Circuits
Table 1 Standard Values of Maximum Break Time of Non-time-delay Type RCDs for a.c. Residual Current
Table 2 Standard Values of Maximum Break Time of Non-time-delay Type RCDs for Half-wave Pulsating d.c. Residual Current
Table 3 Standard Values of Maximum Break Time of Non-time-delay Type RCDs for Residual Direct Currents Which Result From Rectifying Circuits and/or Smooth d.c. Residual Current
Table 4 Acceptable Alternative Standard Values of Maximum Break Times for RCD with a Rated Residual Current of 6mA and Non-time-delay Type Intended to Be Used in Bi-phase System 120 V with Middle Point
Table 5 Standard Values of Break Time for a.c. Residual Current for Time-delay Type Residual Current Devices
Table 6 Standard Values of Break Time for Pulsating d.c. Residual Current for Time-delay Type Residual Current Devices
Table 7 Standard Values of Break Time for Smooth d.c. Residual Current for Time-delay Type Residual Current Devices
Table 8 Values of Influencing Quantities
Table 9 Tripping Current Limits of Alternating Residual Current
Table 10 Tripping Current Limits of Pulsating d.c. Residual Current
Table 11 Component Value of Different Frequencies in Test Current and Initial Value (IΔ) of Recombination Residual Current for Correct Operation Verification When Residual Current Is Stably Increased
Table 12 Range of Operating Current of Recombination Residual Current
Table 13 Tripping Current Range of Type B RCD at Frequencies Different from Rated Frequency Preferred Value 50Hz/60Hz
Table 14 Tripping Current Limits of Smooth Direct Residual Current
Table 15 List of Minimum Requirements to Be Checked or Tested
剩余电流动作保护电器(RCD)的一般要求
1 范围
本标准适用于额定电压不超过交流440 V,主要用于电击危险保护的剩余电流动作保护电器(以下称为剩余电流保护电器,简称RCD)。本标准的技术要求作为技术委员会和有关单位起草产品标准时使用,并且只有在与相关标准组合时或在相关标准中引用时才适用。本标准不作为一个独立标准使用,例如单独作为认证标准用。
注1:本标准也可用来指导额定电压不超过交流1 200 V的剩余电流保护电器,在起草相关产品标准时其性能要求由制造厂和用户协商确定。
本标准适用于:
——检测剩余电流(见3.3.2);将其同基准值(见3.3.3)相比较;以及当剩余电流超过该基准值断开被保护电路(见3.3.4)的单一电器。
——组合电器,其每个部分分别执行上述一个或两个功能,但是一起作用以完成所有三个功能。对预期仅完成上述三个功能中一个或两个功能的电器,可能需要特殊的技术要求。
任何只能完成上述三个功能中一个或两个,或不能完全符合本标准的所有部分的附件、装置或设备的标准不能称为RCD标准,或引用“RCD”,无论是缩写或全称“剩余电流装置”。这些附件、装置或设备在其产品上或技术文件中均不能标志“RCD”。
本标准适用于第7章规定的条件。对于其他条件,可能需要补充技术要求。
根据GB/T 17045—2008和GB/T 16895.21—2011,剩余电流保护电器通过自动切断电源来防止人和牲畜由于触及外露的导电部件而产生的电击的有害影响。
注2:上述“有害影响”包括发生心脏纤维性颤动的危险。
根据GB/T 16895.4—1997,额定剩余动作电流不超过300 mA的剩余电流保护电器也可以对持续接地故障电流引起的火灾危险提供防护。
根据GB/T 16895.21—2011,额定剩余动作电流不超过30 mA的剩余电流保护电器也可以在基本保护措施失效或者电气装置或设备使用者疏忽的情况下,提供附加保护。
对于能够执行附加功能的剩余电流保护电器,本标准与包含附加功能的相关标准一起适用,例如:当剩余电流保护电器与断路器组合时,应符合相应的断路器标准。
对下列情况可能需要补充的或者特定的技术要求,例如:
——由非专业人员使用的剩余电流保护电器;
——与剩余电流保护电器组合的插座、插头、适配器和连接器。
本标准规定:
——剩余电流保护电器使用的术语和定义(第3章);
——剩余电流保护电器的分类(第4章);
——剩余电流保护电器的特性(第5章);
——动作值和影响量的优选值(5.4);
——剩余电流保护电器的标志和信息(第6章);
——使用时安装和工作的标准条件(第7章);
——结构和操作的要求(第8章);
——最少试验要求明细表(第9章)。
注3:除了上述提及的以外,用于特定场合(例如:电动机保护)的具有剩余电流功能的电器不包括在本标准内。
2规范性引用文件
下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T 156—2007 标准电压(IEC 60038:2002,MOD)
GB/T 2900.8—2009 电工术语 绝缘子(IEC 60050-471:2007,IDT)
GB/T 2900.25—2008 电工术语 旋转电机(IEC 60050-411:1996,IDT)
GB/T 2900.35—2008 电工术语 爆炸性环境用设备(IEC 60050-426:2008,IDT)
GB/T 2900.70—2008 电工术语 电器附件(IEC 60050-442:1998,IDT)
GB/T 13140.1—2008家用和类似用途低压电路用的连接器件 第1部分:通用要求(IEC 60998-1:2002,IDT)
GB/T 16895.4—1997 建筑物电气装置 第5部分:电气设备的选择和安装 第53章:开关设备和控制设备(IEC 60364-5-53:1994,IDT)
GB/T 16895.21—2011 建筑物电气装置 第4-41部分:安全防护 电击防护(IEC 60364-4-41:2005,IDT)
GB/T 17045—2008 电击防护 装置和设备的通用部分(IEC 61140:2001,IDT)
IEC 60050-441:1984国际电工词汇 第441部分:开关设备、控制设备和熔断器(International Electrotechnical Vocabulary—Part 441:Switchgear,controlgear and fuses)
3术语和定义
GB/T 2900.8—2009、GB/T 2900.25—2008、GB/T 2900.35—2008、GB/T 2900.70—2008和IEC 60050-441:1984界定的以及下列术语和定义适用于本文件。
3.1 关于从带电部件流入大地电流的定义
3.1.1
接地故障电流earth fault current
由于绝缘故障而流入大地的电流。
3.1.2
对地泄漏电流earth leakage current
无绝缘故障,从设备的带电部件流入大地的电流。
3.1.3
脉动直流电流pulsating direct current
在每一个额定工频周期内,用电角度表示至少为150°的一段时间间隔内电流值为0或不超过直流0.006 A的脉动波形电流。
3.1.4
电流滞后角current delay angle
α
通过相位控制,使电流导通的起始时刻滞后的用电角度表示的时间。
3.1.5
平滑直流电流smooth direct current
没有波纹的直流电流。
注:当波纹系数小于10%时,可以认为电流没有波纹。
3.2关于剩余电流保护电器激励的定义
3.2.1
剩余电流 residual current
IΔ
流过剩余电流保护电器主回路的电流瞬时值的矢量和(用有效值表示)。
3.2.2
剩余动作电流 residual operating current
使剩余电流保护电器在规定条件下动作的剩余电流值。
3.2.3
剩余不动作电流 residual non-operating current
在该电流或低于该电流时,剩余电流保护电器在规定条件下不动作的剩余电流值。
3.3 关于剩余电流保护电器动作和功能的定义
3.3.1
剩余电流保护电器residual current device;RCD
在正常运行条件下能接通、承载和分断电流,以及在规定条件下当剩余电流达到规定值时能使触头断开的机械开关电器或组合电器。
3.3.2
检测detection
感知剩余电流存在的功能。
3.3.3
判别 evaluation
当检测的剩余电流超过规定的基准值时,使剩余电流保护电器可能动作的功能。
3.3.4
断开 interruption
使得剩余电流保护电器的主触头从闭合位置转换到断开位置,从而切断其流过的电流的功能。
3.3.5
开关电器switching device
用以接通和分断一个或几个电气回路中电流的装置。
3.3.6
剩余电流保护电器的自由脱扣机构trip-free mechanism of a residual current device
闭合操作开始后,若进行断开操作时,即使保持闭合指令,其动触头能返回并保持在断开位置的机构。
注:为了确保正常分断可能已经产生的电流,可能需要使触头瞬时地到达闭合位置。
3.3.7
不带过电流保护的剩余电流保护电器residual current device without integral overcurrent protection
不能用来执行过载和/或短路保护功能的剩余电流保护电器。
3.3.8
带过电流保护的剩余电流保护电器 residual current device with integral overcurrent protection
能用来执行过载和/或短路保护功能的剩余电流保护电器。
注:本定义包括与断路器组合的剩余电流保护电器(r.c.单元,见3.3.9)。
3.3.9
剩余电流单元(r.c.单元) r.c.unit
r.c.单元是一个能同时执行检测剩余电流、将该电流值与剩余动作电流值相比较的功能,以及具有操作与其组装或组合的断路器脱扣机构的器件的装置。
3.3.10
剩余电流保护电器的分断时间 break time of a residual current device
从达到剩余动作电流瞬间起至所有极电弧熄灭瞬间为止所经过的时间间隔。
3.3.11
极限不驱动时间limiting non-actuating time
能对剩余电流保护电器施加一个剩余动作电流而不使其动作的最长时间。
3.3.12
延时型剩余电流保护电器time-delay residual current device
专门设计的对应于一个给定的剩余电流值,能达到一个预定的极限不驱动时间的剩余电流保护电器。
3.3.13
复位型剩余电流保护电器reset residual current device
若能重新闭合并再次操作,在重新闭合前必须用一个操作件之外的器件人为复位的剩余电流保护电器。
3.3.14
试验装置test device
组装在剩余电流保护电器中的模拟剩余电流保护电器在规定条件下动作的剩余电流条件的装置。
3.4与激励量值和范围有关的定义
3.4.1
不动作的过电流 non-operating overcurrents
3.4.1.1
在单相负载时不动作过电流的限值limiting value of the non-operating over-current in the case of a single-phase load
在没有剩余电流时,能够流过剩余电流保护电器(不论极数)而不导致其动作的最大单相过电流值。
注1:在主电路过电流的情况下,没有剩余电流时,由于检测器件本身存在的不对称可能发生误脱扣。
注2:在剩余电流保护电器带过电流保护时,不动作电流的限值可以由过电流保护装置来确定。
3.4.1.2
在平衡负载时不动作电流的限值limiting value of the non-operating current in the case of a bal-anced load
在没有剩余电流时,能够流过带平衡负载的剩余电流保护电器(不论极数)而不导致其动作的最大电流值。
注1:在主电路过电流的情况下,没有剩余电流时,由于检测器件本身存存的不对称可能发生误脱扣。
注2:在剩余电流保护电器带过电流保护时,不动作电流的限值可以由过电流保护装置来确定。
3.4.2
剩余短路耐受电流 residual short-circuit withstand current
在规定的条件下能够确保剩余电流保护电器运行的剩余电流最大值,超过该值时,该装置可能遭受不可逆转的变化。
3.4.3
短时电流极限发热值limiting thermal value of the short-time current
剩余电流保护电器能够承载一个特定的短时间,并且在规定条件不会因热效应而使其特性产生永久性劣化的最大电流值(有效值)。
3.4.4
预期电流prospective current
当剩余电流保护电器和过电流保护装置(如果有的话)的每个主电流回路用一个阻抗可忽略不计的导体代替时,在电路中流过的电流。
注:预期电流同样可以看作一个实际电流,例如:预期分断电流,预期峰值电流,预期剩余电流等。
3.4.5
接通能力 making capacity
剩余电流保护电器在规定的使用和工作条件下以及在规定的电压下能够接通的预期电流的交流分量值。
3.4.6
分断能力 breaking capacity
剩余电流保护电器在规定的使用和工作条件下以及在规定的电压下能够分断的预期电流的交流分量值。
3.4.7
剩余接通和分断能力 residual making and breaking capacity
在规定的使用和工作条件下,剩余电流保护电器能够接通、承载其断开时间以及能够分断的剩余预期电流的交流分量值。
3.4.8
限制短路电流 conditional short-circuit current
本身不带过电流保护,但用一个合适的串联的短路保护装置(以下简称SCPD)保护的剩余电流保护电器在规定的使用和工作条件下能够承受的预期电流的交流分量值。
3.4.9
限制剩余短路电流 conditional residual short-circuit current
本身不带过电流保护,但用一个合适的串联的SCPD保护的剩余电流保护电器在规定的使用和工作条件下能够承受的剩余预期电流的交流分量值。
3.4.10
I2t(焦耳积分)I2t(Joule integral) 电流的平方在给定的时间间隔(t0,t1)内的积分。
3.4.11
恢复电压 recovery voltage
分断电流后,在剩余电流保护电器的电源接线端子之间出现的电压。
注:此电压可以认为有两个连续的时间间隔组成,第一个时间间隔出现瞬态电压,接着的第二个时间间隔只出现工频恢复电压。
3.4.12
瞬态恢复电压transient recovery voltage
在具有显著瞬态特征的时间内的恢复电压。
注1:根据电路和剩余电流保护电器的特性,瞬态电压可以是振荡的,或非振荡的或两者兼有。此电压包括多相电路中性点位移的电压。
注2:除非另外规定,三相电路中的瞬态恢复电压是首先断开极出现的电压,因为该电压通常高于其余二极断开时出现的电压。
3.4.13
工频恢复电压 power-frequency recovery voltage
在瞬态电压现象消失后的恢复电压。
3.5与影响量值和范围有关的定义
3.5.1
影响量 influencing quantity
可能改变剩余电流保护电器的规定动作的任何量。
3.5.2
影响量的基准值 reference value of an influencing quantity
与制造商规定的特性有关的影响量值。
3.5.3
影响量的基准条件 reference conditions of influencing quantities
所有的影响量都是基准值。
3.5.4
影响量的范围 range of an influencing quantity
在这个影响量值范围内,剩余电流保护电器在规定的条件下满足规定的技术要求。
3.5.5
影响量的极限范围 extreme range of an influencing quantity
在这个影响量值范围内,剩余电流保护电器仅受到自发的可逆的变化,但不必符合本标准的技术要求。
3.5.6
周围空气温度ambient air temperature
在规定条件下确定的剩余电流保护电器周围的空气的温度。
注:对于封闭的剩余电流保护电器,该温度是指外壳外的空气温度。
3.6 操作条件
3.6.1
操作 operation
动触头从断开位置到闭合位置的转换或相反的转换。
注:如果需要加以区分,则电气含义上的操作(即接通和分断)称为开闭操作,而机械含义上的操作(即闭合和断开)称为机械操作。
3.6.2
闭合操作 closing operation
剩余电流保护电器从断开位置转换到闭合位置的操作。
3.6.3
断开操作 opening operation
剩余电流保护电器从闭合位置转换到断开位置的操作。
3.6.4
操作循环operating cycle
从一个位置转换到另一个位置再返回至起始位置的连续操作。
3.6.5
操作顺序sequence of operations
具有规定时间间隔的规定的连续操作。
3.6.6
电气间隙clearance
两个导电部件之间在空气中的最短距离。
注:为确定对易触及部件的电气间隙,绝缘外壳的易触及表面宜视为导电的,好象该外壳能被手或GB/T 42082008的标准试指触及的表面覆盖一层金属箔一样。
3.6.7
爬电距离 creepage distance
两个导电部件之间沿绝缘材料表面的最短距离。
注:为确定对易触及部件的爬电距离,绝缘外壳的易触及表面宜视为导电的,好象该外壳能被手或GB/T 4208—2008的标准试指触及的表面覆盖一层金属箔一样。
3.7试验
3.7.1
型式试验type test
对按某一设计制造的一个或几个电器所进行的试验,以表明该设计符合一定的技术要求。
3.7.2
常规试验 routine tests
对每个正在制造的和/或制造完毕的电器进行的试验,以确定其是否符合某些标准。
3.8
短路保护电器 short-circuit protective device;SCPD
制造商规定的应与剩余电流保护电器一起串联安装在电路中仅对其进行短路电流保护的电器。
4分类
正确使用本章分类剩余电流保护电器应符合安装规程(例如:根据GB 16895系列标准)。
4.1 根据动作方式分
4.1.1 动作功能与电源电压无关的RCD。
4.1.2动作功能与电源电压有关的RCD。
4.1.2.1 电源电压故障时,有延时或无延时自动动作。
4.1.2.2 电源电压故障时不能自动动作:
a) 在电源电压故障时不能自动动作,但发生剩余电流故障时能按预期要求动作;
b)在电源电压故障时不能自动动作,即使发生剩余电流故障时也不能动作。
4.2根据安装型式分
主要有以下几项:
——固定装设和固定接线的剩余电流保护电器;
——移动设置和/或用电缆将装置本身连接到电源的剩余电流保护电器。
4.3根据极数和电流回路数分
主要有以下几项:
——单极二回路剩余电流保护电器;
——二极剩余电流保护电器;
——二极三回路剩余电流保护电器;
——三极剩余电流保护电器;
——三极四回路剩余电流保护电器;
——四极剩余电流保护电器。
4.4根据过电流保护分
主要有以下几项:
a) 不带过电流保护的剩余电流保护电器;
b)带过电流保护的剩余电流保护电器;
c) 仅带过载保护的剩余电流保护电器;
d)仅带短路保护的剩余电流保护电器。
4.5 根据调节剩余动作电流的可能性分
主要有以下几项:
——有一个固定的额定剩余动作电流的剩余电流保护电器;
——额定剩余动作电流分级可调的剩余电流保护电器;
——额定剩余动作电流连续可调的剩余电流保护电器。
4.6根据冲击电压产生的浪涌电流作用下耐误脱扣的能力分
主要有以下几项:
——正常耐误脱扣;
——增强耐误脱扣。
4.7 在剩余电流含有直流分量时,剩余电流保护电器根据动作特性分
主要有以下几项:
——AC型剩余电流保护电器;
——A型剩余电流保护电器;
——F型剩余电流保护电器;
——B型剩余电流保护电器。
4.8 根据周围空气温度范围分
主要有以下几项:
a) 预期在-5℃~+40℃环境温度下使用的剩余电流保护电器;
b) 预期在-25℃~+40℃环境温度下使用的剩余电流保护电器;
c) 预期在规定的更严酷的条件下使用的剩余电流保护电器。
4.9根据剩余电流大于IΔn时的延时分
主要有以下几项:
a)无延时,例如:用于一般用途;
b)有延时,例如:用于选择性保护:
——延时不可调节;
——延时可以调节。
4.10根据结构型式分
主要有以下几项:
——由制造商装配成一个完整单元的剩余电流保护电器;
——在现场由断路器和r.c.单元装配组成的剩余电流保护电器。对这类器件的要求应在相关产品标准中规定。
注:电流检测装置和/或信号处理器件可与电流分断装置分开安装。
4.11 根据有无自动重合闸分
主要有以下几项:
——无自动重合闸功能的剩余电流保护电器;
——具有自动重合闸功能的剩余电流保护电器(相应的技术要求由相关产品标准规定)。
5剩余电流保护电器的特性
5.1 特性概要
剩余电流保护电器的特性应由下列项目规定(适用时):
a) 安装型式(4.2);
b)极数和电流回路数(4.3);
c) 额定电流In(5.2.1);
d)剩余电流含有直流分量时,根据动作特性确定的剩余电流保护电器的型式(5.2.9);
e) 额定剩余动作电流IΔn(5.2.2);
f) 额定剩余不动作电流IΔno,如果与优选值不同时(5.2.3);
g)额定电压(5.2.4);
h) 额定频率(5.2.5);
i) 额定接通和分断能力Im(5.2.6);
j) 额定剩余接通和分断能力IΔm(5.2.7);
k)延时(如果适用时)(5.2.8);
l) 额定限制短路电流(5.3.2);
m)额定限制剩余短路电流IΔc(5.3.3)。
5.2所有剩余电流保护电器共同的特性
5.2.1 额定电流(In)
制造商规定的剩余电流保护电器能在适用于开关电器(见3.3.5)的相关国家标准规定的不间断工作制下承载的电流值。
5.2.2额定剩余动作电流(IΔn)
制造商对剩余电流保护电器规定的额定频率下正弦剩余动作电流的有效值(见3.2.2),在该电流值时剩余电流保护电器应在规定的条件下动作。
5.2.3额定剩余不动作电流(IΔno)
制造商对剩余电流保护电器规定的剩余不动作电流值(见3.2.3),在该电流值时剩余电流保护电器在规定的条件下不动作。
5.2.4额定电压(Un)
由制造商规定的剩余电流保护电器的电压有效值,剩余电流保护电器的性能与该值有关(尤其是短路性能)。
5.2.5 额定频率
RCD的额定频率是对RCD规定的以及其他特性值与之相应的电源频率。
5.2.6额定接通和分断能力(Im)
剩余电流保护电器在规定的条件下能够接通、承载其断开时间和分断的,并不产生影响其功能变化的预期电流有效值(见3.4.5和3.4.6)。
5.2.7 额定剩余接通和分断能力(IΔm)
剩余电流保护电器在规定条件下能够接通、承载其断开时间和分断的,并不产生影响其功能变化的预期剩余电流(见3.4.7和3.4.9)的有效值。
5.2.8有或无延时
无延时的剩余电流保护电器和有延时的剩余电流保护电器。
5.2.9剩余电流含有直流分量的动作特性
5.2.9.1 AC型剩余电流保护电器
在正弦交流剩余电流下,无论突然施加或缓慢上升确保其脱扣的剩余电流保护电器。
5.2.9.2 A型剩余电流保护电器
在下列条件下确保其脱扣的剩余电流保护电器:
——同AC型;
——脉动直流剩余电流;
——脉动直流剩余电流叠加6 mA的平滑直流电流。
有或没有相位角控制,与极性无关,无论突然施加或缓慢上升。
5.2.9.3 F型剩余电流保护电器
在下列条件下确保其脱扣的剩余电流保护电器:
——同A型;
——由相线和中性线或者相线和接地的中间导体供电的电路产生的复合剩余电流;
——脉动直流剩余电流叠加10 mA的平滑直流电流。
上述规定的剩余电流可突然施加或缓慢上升。
5.2.9.4 B型剩余电流保护电器
在下列条件下确保其脱扣的剩余电流保护电器:
——同F型;
——1 000 Hz及以下的正弦交流剩余电流;
——交流剩余电流叠加0.4倍额定剩余动作电流(IΔn)或10 mA的平滑直流电流(两者取较大值);
——脉动直流剩余电流叠加0.4倍额定剩余动作电流(IΔn)或10 mA的平滑直流电流(两者取较大值);
——下列整流线路产生的直流剩余电流:
a) 二极、三极和四极剩余电流装置的连接至相与相的双脉冲桥式整流电路;
b) 三极和四极剩余电流装置的三脉冲星形连接或六脉冲桥式连接的整流电路。
——平滑直流剩余电流。
与极性无关,无论突然施加或缓慢上升。
5.3 不带过电流保护(见4.4a))和仅带过载保护(见4.4c))的剩余电流保护电器的特定特性
5.3.1 与短路保护电器(见3.4.8)的配合
短路保护电器与剩余电流保护电器的组合是用来确保剩余电流保护电器免受短路电流的影响。
剩余电流保护电器的制造商应规定短路保护电器的下列特性:
a) 最大允通I2t;
b)最大允通电流峰值Ip。
任何符合相关国家标准并且上述a)和b)项的特性值低于剩余电流保护电器制造商规定值的短路保护电器(SCPD)可用于保护剩余电流保护电器,只要其不影响正常工作。SCPD的额定值和型号应与5.3.2和5.3.3相同。
5.3.2额定限制短路电流(Inc)
制造商规定的由短路保护电器保护的剩余电流保护电器在规定条件下能承受而不使其发生影响功能变化的预期电流有效值。
注1:注意,由规定的短路保护电器控制的特定短路电流施加到剩余电流保护电器上的应力实际上是可变的,这取决于短路保护电器的个别特性(尽管其包括在相关的标准动作区域内),也与接通瞬间相对于短路电流波形上的点有关(接通点是随机的)。
注2:制造商宜注意确保在相应于剩余电流保护电器最严酷的应力条件下配合的有效性。
注3:对一个与给定的短路保护电器配合的剩余电流保护电器规定额定限制短路电流,表示这种组合能承受至规定值的任何短路电流。
5.3.3 额定限制剩余短路电流(IΔc)
制造商规定的由短路保护电器保护的剩余电流保护电器在规定条件下能承受而不使其发生影响功能变化的预期剩余电流值。
注:如果对一个与给定的短路保护电器配合的剩余电流保护电器规定额定限制剩余短路电流,则认为这种组合能承受至规定值的任何剩余短路电流。
5.4优选值或标准值
5.4.1额定电压优选值
根据GB/T 156—2007,额定电压的优选值是110 V,120 V,220 V(230 V),380 V(400 V)。
5.4.2额定电流优选值(In)
额定电流的优选值是6 A,10 A,13 A,16 A,20 A,25 A,32 A,40 A,50 A,63 A,80 A,100 A,125 A,160 A,200 A,250 A,400 A,630 A,800A。
5.4.3额定剩余动作电流标准值(IΔn)
额定剩余动作电流的优选值是0.006 A,0.01 A,0.03 A,0.1 A,0.2 A,0.3 A,0.5 A,1 A,2 A,3 A,5 A,10 A,20 A,30 A。
5.4.4额定剩余不动作电流标准值(IΔno)
额定剩余不动作电流优选值是0.5 IΔn。
注:0.5 IΔn值仅指工频交流剩余电流。
5.4.5在多相线路中不平衡负载时不动作电流优选的最小值
在多相线路中不平衡负载时,不动作电流优选的最小值是6 In。
注:对于带过电流保护的剩余电流保护电器,该最小值可能更低。
5.4.6在平衡负载中不动作电流优选的最小值
在平衡负载中不动作电流的优选最小值是6 In。
注:对于带过电流保护的剩余电流保护电器,该最小值可能更低。
5.4.7额定频率的优选值
额定频率的优选值是50 Hz和/或60 Hz。
5.4.8额定接通和分断能力值(Im)
适用于不带短路保护的剩余电流保护电器。
最小值应为10 In或500 A1),两者取较大值。
与这些值有关的功率因数在相关的产品标准中给出。
5.4.9额定剩余接通和分断能力的优选值(IΔm)
额定剩余接通和分断能力的优选值是500 A1),1 000 A,1 500 A,3 000 A,4 500 A,6 000 A,10 000 A,20 000 A,50 000 A。
最小值应为10In或500 A1),两者取较大值。
与这些电流值有关的功率因数在相关的产品标准中给出。
5.4.10额定限制短路电流的优选值
不带短路保护的剩余电流保护电器的额定限制短路电流的优选值是1 500 A,3 000 A,4 500 A,6 000 A,10 000 A,20 000 A,50 000 A。
与这些电流值相关的功率因数在相关的产品标准中给出。
5.4.11 额定限制剩余短路电流的优选值(IΔc)
不带短路保护的剩余电流保护电器的额定限制剩余短路电流IΔc的优选值是1 500 A,3 000 A,
1) 对移动式剩余电流装置(PRCD)和带剩余电流保护的固定安装插座(SRCD)为250 A。4 500 A,6 000 A,10 000 A,20 000 A,50 000 A。
与这些电流有关的功率因数在相关的产品标准中给出。
5.4.12动作时间的标准值
5.4.12.1 无延时型RCD的最大分断时间标准值
无延时型RCD的最大分断时间标准值在表1、表2、表3和表4中规定。
表1 无延时型RCD对于交流剩余电流的最大分断时间标准值
IΔn
A 最大分断时间标准值
s
IΔn 2IΔn 5 IΔna >5 IΔnb
任何值 0.3 0.15 0.04 0.04
a 对于IΔn≤0.030 A的RCD,可用0.25 A代替5 IΔn。
b 在相关的产品标准中规定。
表2 无延时型RCD对于半波脉动直流剩余电流的最大分断时间标准值
IΔn A 最大分断时间标准值
s
1.4 IΔn 2 IΔn 2.8 IΔn 4 IΔn 7 IΔna 10 IΔnb >7 IΔnc >10 IΔnc
≤0.010 0.3 0.15 0.04 0.04
0.030 0.3 0.15 0.04 0.04
>0.030 0.3 0.15 0.04 0.04
a 对于IΔn=0.030 A的RCD,可以用0.35 A代替7 IΔn。
b 对于IΔn≤0.010 A的RCD,可以使用0.5 A代替10 IΔn。
c 在相关产品标准中规定。
表3 无延时型RCD对整流线路产生的直流剩余电流和/或平滑直流剩余电流的最大分断时间标准值
IΔn
A 最大分断时间标准值
s
2 IΔn 4 IΔn 10 IΔn >10 IΔna
任何值 0.3 0.15 0.04 0.04
a 相关的产品标准中规定。
表4对预期在120 V带中性点的两相系统中使用的额定剩余电流为6 mA的无延时型RCD的最大分断时间可替代的标准值
IΔn
A 最大分断时间标准值
s
l IΔn 2 IΔn 5 IΔn >5 IΔna
0.006 5 2 0.04 0.04
a 在相关产品标准中规定。
5.4.12.2 延时型剩余电流保护电器的分断时间和不驱动时间的标准值
延时型仅适用于IΔn>0.03 A的剩余电流保护电器。
延时型剩余电流保护电器的分断时间和不驱动时间的标准值在表5、表6和表7中规定。对于其他额定延时的延时型剩余电流保护电器,应由制造商规定2 IΔn的不驱动时间。
2 IΔn时的最小不驱动时间的优选值是0.06 s,0.1 s,0.2 s,0.3 s,0.4 s,0.5 s,1 s。
表5 延时型RCD对于交流剩余电流的分断时间标准值
额定延时
s 动作时间 分断时间标准值和不驱动时间
s
IΔn 2 IΔn 5 IΔn >5 IΔn
0.06 最大分断时间 0.5 0.2 0.15 0.15
最小不驱动时间 b 0.06 b b
其他额定延时 最大分断时间 ab b b b
最小不驱动时间 b 额定延时 b b
a 为确保故障保护,最大动作时间应按GB/T 16895.21—2011。
b 由相关的产品标准或制造商规定。
表6 延时型RCD对于脉动直流剩余电流的分断时间标准值
额定延时
s 动作时间 分断时间标准值和不驱动时间
s
1.4 IΔn 2.8 IΔn 7 IΔn >7 IΔn
0.06 最大分断时间 0.5 0.2 0.15 0.15
最小不驱动时间 b 0.06 b b
其他额定延时 最大分断时间 ab b b b
最小不驱动时间 b 额定延时 b b
a 为确保故障保护,最大动作时间应按GB/T 16895.21—2011。
b 由相关的产品标准或制造商规定。
表7 延时型RCD对于平滑直流剩余电流的分断时间标准值
额定延时
s 动作时间 分断时间标准值和不驱动时间
s
2 IΔn 4 IΔn 10 IΔn >10 IΔn
0.06 最大分断时间 0.5 0.2 0.15 0.15
最小不驱动时间 b 0.06 b b
其他额定延时 最大分断时间 ab b b b
最小不驱动时间 b 额定延时 b b
a 为确保故障保护,最大动作时间应按GB/T 16895.21—2011。
b 由相关的产品标准或制造商规定。
6标志和其他产品资料
剩余电流保护电器上的信息和标志应按相关的产品标准。
应提供下列信息:
a) 制造商名称或商标;
b)型号或序列号;
c) 额定电压;
d)额定频率(如果不是50 Hz或60 Hz);
e) 额定电流;
f) 剩余电流含有直流分量时的动作特性:
——AC型剩余电流保护电器应标志符号
——A型剩余电流保护电器应标志符号
——F型剩余电流保护电器应标志符号 或
——B型剩余电流保护电器应标志符号 或
g)额定剩余动作电流(或范围,如果适用);
h)额定延时(如果适用);
i) 额定剩余不动作电流(如果不是优选值时);
j) 额定剩余接通和分断能力;
k)额定限制短路电流(如果适用时),在这种情况下还应根据5.3.1标志组合的短路保护电器的特性;
l) 防护等级(如果不是IP20时);
m)使用位置(如果适用时);
n)工作温度范围;
o) 试验装置的识别字母T或相应的文字;
p)应提供指示剩余电流保护电器断开和闭合状态的器件;
q) 接线图(如果适用时)(该要求通常对大于二极或带有不可开闭中性线的电器是必需的);
r) 如果有必要区分电源端和负载端,则应清晰地标明(例如:在相应的端子旁边标明“电源”和“负载”);
s) 专门用于连接中性线的端子应标志符号N。
此外,对于r.c.单元:
——应标志能与其装配或组装的断路器的最大额定电流;
——应标志其可与哪种断路器装配或组装。
应提供所有关于产品正确装配(如果有的话)、安装和使用的信息。