This standard is developed in accordance with the rules given in GB/T 1.1-2009.
This standard replaces GB/T 19073-2008 Gearbox of wind turbine generator systems. The following main technical differences have been made with respect to GB/T 19073-2008:
— The standard name is changed;
— The referenced ISO standards and DIN standards are added to the “Normative reference” (see Clause 2);
— “Terms, definitions and conventions” is added (see Clause 3);
— “Symbols and abbreviations” is added (see Clause 4);
— “Design for reliability” is added (see Clause 5);
— “Drivetrain operating conditions and loads” is added (see Clause 6);
— “Test methods and inspection rules” is replaced by “Design verification” (see Clause 8; Clause 4 of Edition 2008);
— “Operation, service and maintenance requirements” replaces “Installation and use of gearbox in the unit”, “Signs and operating instructions” and “Packaging, transportation and storage” (see Clause 9; Clauses 5 to 7 of Edition 2008);
— “Examples of drivetrain interfaces and loads specifications” replaces “Guide for strength evaluation of main parts of gearbox” (see Annex A; Annex A of Edition 2008);
— “Gearbox design and manufacturing considerations” replaces “Lubrication and monitoring” (see Annex B; Annex B of Edition 2008);
— “Bearing design considerations” replaces “Bearing selection and configuration forms” and “Bearing stress calculation” (see Annex C; Annex C of Edition 2008);
— “Considerations for gearbox structural elements” replaces “Bearing stress calculation” (see Annex D; Annex D of Edition 2008);
— “Recommendations for lubricant performance in wind turbine” replaces “Quality assurance” (see Annex E; Annex E of Edition 2008);
— “Design verification documentation” is added (see Annex F);
— “Bearing calculation documentation” is added (see Annex G).
This standard is identical to IEC 61400-4: 2012 Wind turbines — Part 4: Design requirements for wind turbine gearboxes (English version) by means of translation.
The Chinese documents consistent and corresponding with the normative international documents in this standard are as follows:
— GB/T 3505-2009 Geometrical product specifications (GPS) — Surface texture: Profile method — Terms definitions and surface texture parameters (ISO 4287:1997, IDT)
— GB/T 4662-2012 Rolling bearings — Static load ratings (ISO 76:2006, IDT)
— GB/T 6379.2-2004 Accuracy (trueness and precision) of measurement methods and results — Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method (ISO 5725-2:1994, IDT)
— GB/T 6404.1-2005 Acceptance code for gear units — Part 1: Test code for airborne sound (ISO 8579-1:2002, IDT)
— GB/Z 6413.1-2003 Calculation method of bonding bearing capacity of cylindrical gears, bevel gears and hypoid gears Part 1: Flash temperature method (ISO/TR 13989-1:2000, IDT)
— GB/Z 6413.2-2003 Calculation of scuffing load capacity of cylindrical, bevel and hypoid gears — Part 2:Integral temperature method (ISO/TR 13989-2:2000, IDT)
— GB/T 10095.1-2008 Cylindrical gears — System of accuracy — Part 1: Definitions and allowable values of deviations relevant to corresponding flanks of gear teeth (ISO 1328-1:1995, IDT)
— GB/T 10610-2009 Geometrical product specifications (GPS) — Surface texture: Profile method — Rules and procedures for the assessment of surface texture (ISO 4288-1:1996, IDT)
— GB/T 14039 2002 Hydraulic Fluid Power — Fluids — Method for Coding the Level of Contamination by Solid Particles (ISO 4406:1999, MOD)
— GB/T 17879-1999 Gears — Surface temper etch inspection after grinding (ISO 14104: 1995, IDT)
— GB/Z 18620.3-2008 Cylindrical gears — Code of inspection practice — Part 3: Recommendations relative to gear blanks shaft centre distance and parallelism of axes (ISO/TR 10064-3:1996, IDT)
— GB/Z 19414-2003 Enclosed gear drives for industrial applications (ISO/TR 13593:1999, IDT)
— GB/Z 25426-2010 Wind turbine generator systems measurement of mechanical loads (IEC/TS 61400-13:2001, MOD)
— GB/T 31517-2015 Design requirements for offshore wind turbines (IEC 61400-3:2009, IDT)
The following editorial modifications are made in this standard:
— Modification of the standard name;
— Correction of missing references to ISO 10474, EN 10204, ISO 8579-1 and ISO 8579-2 in Clause 2.
This standard was proposed by the China Machinery Industry Federation.
This standard is under the jurisdiction of the National Technical Committee on Wind Power Machinery of Standardization Administration of China (SAC/TC 50).
The previous editions of this standard are as follows:
— GB/T 19073-1993 and GB/T 19073-2008.
Wind turbine — Design requirements for gearbox
1 Scope
This standard is applicable to enclosed speed increasing gearboxes for horizontal axis wind turbine drivetrains with a power rating in excess of 500 kW. This standard applies to wind turbines installed onshore or offshore.
This standard provides guidance on the analysis of the wind turbine loads in relation to the design of the gear and gearbox elements.
The gearing elements covered by this standard include such gears as spur, helical or double helical and their combinations in parallel and epicyclic arrangements in the main power path. This standard does not apply to power take off gears (PTO).
The standard is based on gearbox designs using rolling element bearings. Use of plain bearings is permissible under this standard, but the use and rating of them is not covered.
Also included is guidance on the engineering of shafts, shaft hub interfaces, bearings and the gear case structure in the development of a fully integrated design that meets the rigours of the operating conditions.
Lubrication of the transmission is covered along with prototype and production testing. Finally, guidance is provided on the operation and maintenance of the gearbox.
2 Normative references
The following referenced documents are indispensable for the application of this standard. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
GB/T 3480.5-2008 Calculation of load capacity of spur and helical gears — Part 5: Strength and quality of materials (ISO 6336-5:2003, IDT)
GB/T 6391-2010 Rolling bearings — Dynamic load ratings and rating life (ISO 281:2007, IDT)
GB/T 18451.1-2012 Wind turbine generator systems — Design requirements (IEC 61400-1:2005, IDT)
GB/T 19936.1-2005 Gears — FZG test procedures — Part1: FZG test method A/8.3/90 for relative scuffing load-carrying capacity of oils (ISO 14635-1:2000, IDT)
GB/T 24611-2009 Rolling bearings — Damage and failures — Terms, characteristics and causes (ISO 15243:2004, IDT)
IEC 60050 (All Parts) International electrotechnical vocabulary, quoted from http://electrotedia.org.
IEC 61400-3 Wind turbines — Part 3: Design requirements for offshore wind turbines
IEC/TS 61400-13:2001 Wind turbine generator systems — Part 13: Measurement of mechanical loads
IEC 61400-22:2010 Wind turbines — Part 22: Conformity testing and certification
ISO 76 Rolling bearings — Static load ratings
ISO 683 (All Parts) Heat-treatable steels, alloy steels and free-cutting steels
ISO 1328-1 Cylindrical gears — ISO system of accuracy — Part 1: Definitions and allowable values of deviations relevant to corresponding flanks of gear teeth
ISO 4287 Geometrical Product Specifications (GPS) — Surface texture: Profile method — terms, definitions and surface texture parameters
ISO 4288 Geometrical Product Specifications (GPS) — Surface texture: Profile method — rules and procedures for the assessment of surface texture
ISO 4406 Hydraulic fluid power — Fluids — Method for coding the level of contamination by solid particles
ISO 5725-2 Accuracy (trueness and precision) of measurement methods and results — Part 2: Basic methods for the determination of repeatability and reproducibility of a standard measurement method
ISO 6336 (All Parts) Calculation of load capacity of spur and helical gears
ISO 6336-1:2006 Calculation of load capacity of spur and helical gears — Part 1: Basicprinciples, introduction and general influence factors
ISO 6336-2:2006 Calculation of load capacity of spur and helical gears — Part 2: Calculation of surface durability (pitting)
ISO 6336-3:2006 Calculation of load capacity of spur and helical gears — Part 3: Calculation of tooth bending strength
ISO 6336-6:2006 Calculation of load capacity of spur and helical gears — Part 6: Calculation of service life under variable load
ISO 8579-1 Acceptance code for gear units — Part 1: Test code for airborne sound
ISO 8579-2 Acceptance code for gears — Part 2: Determination of mechanical vibrations of gear units during acceptance testing
ISO/TR 10064-3 Cylindrical gears — Code of inspection practice — Part 3: Recommendations relative to gear blanks, shaft centre distance and parallelism of axes
ISO 10474 Steel and steel products — Inspection documents
ISO 12925-1 Lubricants, industrial oils and related products (class L). Family C (Gears) — Part 1: Specifications for lubricants for enclosed gear systems
ISO/TR 13593 Enclosed gear drives for industrial applications
ISO/TR 13989-1 Calculation of scuffing load capacity of cylindrical, bevel and hypoid gears — Part 1: Flash temperature method
ISO/TR 13989-2 Calculation of scuffing load capacity of cylindrical, bevel and hypoid gears — Part 2: Integral temperature method
ISO 14104 Gears — Surface temper etch inspection after grinding
ISO/TS 16281:2008 Rolling bearings — Methods for calculating the modified reference rating life for universally loaded bearings
AGMA 9005 Industrial gear lubrication
ANSI/AGMA 925-A02 Effect of lubrication on gear surface distress
ANSI/AGMA 6001-E10 Design and selection of components for enclosed gear drives
ANSI/AGMA 6123 Design manual for enclosed epicyclic gear drives
ASTM E1049-85 Standard practices for cycle counting in fatigue analysis
DIN 471 Circlips (retaining rings) for shafts: Normal type and heavy type
DIN 472 Circlips (retaining rings) for bores: Normal type and heavy type
DIN 743-2000 Shafts and axles, calculations of load capacity, Parts 1, 2, 3
DIN 3990-4 Calculation of load capacity of cylindrical gears: calculation of scuffing load capacity
DIN 6885-2 Parallel Key Geometries
DIN 6892 Mitnehmerverbindungen ohne Anzug — Passfedern — Berechnung und Gestaltung)
DIN 7190 Interference fits — Calculation and design rules
DIN 51517-3 Lubricants: Lubricating oils — Part 3: Lubricating oils CLP; Minimum requirements
EN 10204:2004 Metallic products—Types of inspection documents
EN 12680-3:2003 Ultrasonic examination—Spheroidal graphite cast iron castings
3 Terms, definitions and conventions
3.1 Terms and definitions
For the purposes of this document, the terms and definitions given in GB/T 18451.1-2012 and IEC 60050-415 and the following apply.
Note: The definitions in this standard take precedence.
3.1.1
bearing manufacturer
legal entity supplying bearings for the wind turbine gearbox, and who is responsible for the design and the application engineering of the bearing
Note 1 to entry: Typically, the bearing supplier will also manufacture the bearing.
3.1.2
certification body
entity that conducts certification of conformity of the wind turbine gearbox in accordance with IEC 61 400-22
3.1.3
characteristic load
load value having a prescribed probability of not being exceeded
Note 1 to entry: See also 3.1.5, design load.
3.1.4
design lifetime
specified duration for which strength verification shall be performed
Note 1 to entry: Some serviceable components and wear parts may have a lower design lifetime than the one specified for the entire gearbox.
3.1.5
design load
load for which the strength of any component has to be documented
Note 1 to entry: It consists of the characteristic load multiplied by the appropriate partial safety factor for load.
Note 2 to entry: See also GB/T 18451.1-2012 and Clause 6.
3.1.6
double-row bearings
rolling bearings with two rows of rolling elements
3.1.7
equivalent load
load which when repeated for a specified number of cycles causes the same damage as the actual load variation if a specified life exponent applies
Note 1 to entry: When applied to load ranges, the equivalent load is not equal to the average load value of all load cycles.
3.1.8
extreme load
that design load from any source, either operating or non-operating, that is the largest absolute value of the respective load component
Note 1 to entry: This component can be a force, a moment, a torque or a combination of these.
3.1.9
gearbox manufacturer
the entity responsible for designing the gearbox, and specifying manufacturing requirements for the gearbox and its components
Note 1 to entry: In reality, several legal entities may be involved in this process, which is not further reflected in this standard.
3.1.10
interface
defined boundary of the gearbox that is either a physical mount to another wind turbine subcomponent or a path of exchange such as control signals, hydraulic fluid, or lubricant
3.1.11
load reserve factor
LRF
ratio of the design load to the maximum allowable load on a specific component
Note 1 to entry: LRF can be determined separately for both the ultimate and fatigue strength calculation.
3.1.12
local failure
failure which occurs when at a critical location, the maximum allowable strain is exceeded
3.1.13
locating bearing fixed bearing
bearing supporting axial forces in both directions
3.1.14
lubricant supplier
legal entity supplying lubricants for the wind turbine gearbox through either the wind turbine manufacturer, the gearbox manufacturer, or the wind turbine owner
Note 1 to entry: The lubricant supplier is responsible for the performance of the lubricant and the blending specifications, but will not necessarily produce any of the components, or blend the final product.
3.1.15
maximum operating load
highest load determined by the design load cases used in fatigue analysis as defined in GB/T 18451.1-2012, including partial load safety factor as applicable in accordance with GB/T 18451.1-2012
3.1.16
nacelle
turbine structure above the tower that holds the drivetrain, generator, other subcomponents, and parts of the controls and actuation systems
3.1.17
non-locating bearing
floating bearing
bearing supporting only radial load
3.1.18
paired bearings
two bearings of the same type at the same location
Note 1 to entry: These can be arranged so that their radial capacities complement and their axial capacities are opposite (e.g., two TRB or two ACBB in face-to-face or back-to-back arrangement), or they can be two bearings in tandem to increase both radial and axial load carrying capacities (see C.7).
3.1.19
rainflow matrices
representation of fatigue loads using a two dimensional matrix containing counts of cycle occurrence within sub-ranges of cyclic means and amplitudes
Note 1 to entry: See A.4.3
3.1.20
time series
set of time sequences of loads, describing different operational regimes of the wind turbine
Note 1 to entry: These time series together with their corresponding occurrences specify the load history during the entire design lifetime.
3.1.21
wind turbine manufacturer
entity responsible for specifying the requirements for the gearbox designed in accordance with this standard
Note 1 to entry: Typically, the wind turbine manufacturer will design, manufacture and market the wind turbine.
3.1.22
wind turbine owner
entity who purchases and is responsible for operating the wind turbine
Note 1 to entry: In reality, the owner may contract different legal entities to operate, service and maintain the wind turbine. This distinction is not further reflected in this standard.
3.2 Conventions
3.2.1 Bearing position designations
The following abbreviations can be used to define bearing positions (shaft designations are defined in 3.2.2):
● RS: rotor side (normally upwind);
● GS: generator side (normally downwind).
In case of paired bearings the following can be used:
● IB: inboard (pointing inwards related to the shaft);
● OB: outboard (pointing outwards related to the shaft)
3.2.2 Shaft designations — examples for typical wind turbine gearbox architecture
Figure 1 shows the designations of shafts in 3-stage parallel shaft gearboxes. In 4-stage gearboxes, the intermediate shafts are called “low speed intermediate shaft”, “medium speed intermediate shaft”, and “high speed intermediate shaft”.
Foreword I
1 Scope
2 Normative references
3 Terms, definitions and conventions
3.1 Terms and definitions
3.2 Conventions
4 Symbols and abbreviations
4.1 Symbols
4.2 Abbreviations
5 Design for reliability
5.1 Design lifetime and reliability
5.2 Design process
5.3 Documentation
5.4 Quality plan
6 Drivetrain operating conditions and loads
6.1 Drivetrain description
6.2 Deriving drivetrain loads
6.3 Results from wind turbine load calculations
6.4 Operating conditions
6.5 Drivetrain analysis
7 Gearbox design, rating, and manufacturing requirements
7.1 Gearbox cooling
7.2 Gears
7.3 Bearings
7.4 Shafts, keys, housing joints, splines and fasteners
7.5 Structural elements
7.6 Lubrication
8 Design verification
8.1 General
8.2 Test planning
8.3 Workshop prototype testing
8.4 Field test
8.5 Production testing
8.6 Robustness test
8.7 Field lubricant temperature and cleanliness
8.8 Bearing specific validation
8.9 Test documentation
9 Operation, service and maintenance requirements
9.1 Service and maintenance requirements
9.2 Inspection Requirements
9.3 Commissioning and run-in
9.4 Transport, handling and storage
9.5 Repair
9.6 Installation and exchange
9.7 Condition monitoring
9.8 Lubrication
9.9 Operations and maintenance documentation
Annex A (Informative) Examples of drivetrain interfaces and loads specifications
Annex B (Informative) Gearbox design and manufacturing considerations
Annex C (Informative) Bearing design considerations
Annex D (Informative) Considerations for gearbox structural elements design
Annex E (Informative) Recommendations for lubricant performance in wind turbine gearboxes
Annex F (Informative) Design verification documentation
Annex G (Informative) Bearing calculation documentation
Bibliography
风力发电机组 齿轮箱设计要求
1 范围
本标准适用于额定功率大于500kW的水平轴式风力发电机组动力传动链的闭式增速齿轮箱。本标准适用于安装在陆上或海上的风力发电机组齿轮箱。
本标准对风力发电机组中所设计的齿轮和齿轮箱零部件载荷分析提供指导。
本标准适用的齿轮件包括:主传动链中的平行轴和行星传动的齿轮,诸如直齿轮、斜齿轮或人字齿轮。本标准不适用于齿轮取力装置(PTO)。
本标准基于使用滚动轴承的齿轮箱设计。使用滑动轴承允许参照本标准,但是本标准不包括对滑动轴承的使用评定。
本标准还对全集成化设计中的轴、轴与轮毂接口、轴承和齿轮箱箱体结构进行工程性指导,以便满足其恶劣的运行工况。
除了型式试验和产品试验以外,本标准还包括传动装置的润滑。最后,本标准还对齿轮箱的运行和维护提供指导。
2 规范性引用文件
下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T 3480.5—2008 直齿轮和斜齿轮承载能力计算 第5部分:材料的强度和质量(ISO 6336-5:2003,IDT)
GB/T 6391—2010 滚动轴承 额定动载荷和额定寿命(ISO 281:2007,IDT)
GB/T 18451.1—2012 风力发电机组 设计要求(IEC 61400-1:2005,IDT)
GB/T 19936.1—2005 齿轮 FZG 试验程序 第1部分:油品的相对胶合承载能力FZG试验方法A/8.3/90(ISO 14635-1:2000,IDT)
GB/T 24611—2009 滚动轴承 损伤和失效 术语、特征及原因(ISO 15243:2004,IDT)
IEC 60050(所有部分) 国际电工词汇(International electrotechnical vocabulary),引自http://electropedia.org
IEC 61400-3 风力发电机组 第3部分:海上风力发电机组设计要求(Wind turbines—Part 3:Design requirements for offshore wind turbines)
IEC/TS 61400-13:2001 风力发电机组 第13部分:机械载荷测量(Wind turbine generator systems—Part 13:Measurement of mechanical loads)
IEC 61400-22:2010 风力发电机组 第22部分:一致性测试和认证(Wind turbines—Part 22:Conformity testing and certification)
ISO 76 滚动轴承额定静载荷(Rolling bearings—Static load ratings)
ISO 683(所有部分) 热处理钢、合金钢和易切削钢(Heat-treatable steels,alloy steels and free-cutting steels)
ISO 1328-1 圆柱齿轮 ISO制齿面公差分类 第1部分:齿轮齿面偏差的定义和允许值(Cylindrical gears—ISO system of accuracy—Part 1:Definitions and allowablevalues of deviations relevant to corresponding flanks of gear teeth)
ISO 4287 产品几何技术规范(GPS) 表面纹理:剖面法 术语、定义和表面纹理参数[Geometrical Product Specifications (GPS)—Surface texture:Profile method—terms,definitions and surface texture parameters]
ISO 4288 产品几何技术规范(GPS) 表面纹理:剖面法 表面纹理评估的规则和程序[Geometrical Product Specifications (GPS)—Surface texture:Profile method—rulesand procedures for the assessment of surface texture]
ISO 4406 液压流体动力 流体 固体颗粒污染分级编码方法(Hydraulic fluid power—Fluids—Method for coding the level of contamination bysolid particles)
ISO 5725-2 测量方法和结果的准确度 第2部分:标准测量方法的可重复性和可还原性基本测量方法[Accuracy (trueness and precision) of measurement methods and results—Part 2:Basic methods for the determination of repeatability and reproducibility of a standardmeasurement method]
ISO 6336(所有部分) 直齿和斜齿圆柱齿轮承载能力的计算(Calculation of load capacity of spur and helical gears)
ISO 6336-1:2006 直齿和斜齿圆柱齿轮承载能力的计算 第1部分:基本原理、绪论和一般影响因素(Calculation of load capacity of spur and helical gears—Part 1: Basicprinciples,introduction and general influence factors)
ISO 6336-2:2006 直齿和斜齿圆柱齿轮承载能力的计算 第2部分:表面耐久性的计算[Calculation of load capacity of spur and helical gears—Part 2:Calculationof surface durability (pitting)]
ISO 6336-3:2006 直齿和斜齿圆柱齿轮承载能力的计算 第3部分:齿根弯曲强度的计算(Calculation of load capacity of spur and helical gears—Part 3:Calculationof tooth bending strength)
ISO 6336-6:2006 直齿和斜齿圆柱齿轮承载能力的计算 第6部分:变载荷工况的寿命计算(Calculation of load capacity of spur and helical gears—Part 6:Calculationof service life under variable load)
ISO 8579-1 齿轮装置的验收规范 第1部分:空气传播噪声的试验规范(Acceptance code for gear units—Part 1:Test code for airborne sound)
ISO 8579-2 齿轮装置的验收规范 第2部分:验收试验中齿轮装置机械振动的测定(Acceptance code for gears—Part 2:Determination of mechanical vibrations of gear units during acceptance testing)
ISO/TR 10064-3 圆柱齿轮使用检验规程 第3部分:轴心圆柱的齿轮胚料、轴心距和平行度的建议(Cylindrical gears—Code of inspection practice—Part 3:Recommendationsrelative to gear blanks,shaft centre distance and parallelism of axes)
ISO 10474 钢和钢成品 检验文件(Steel and steel products—Inspection documents)
ISO 12925-1 润滑剂、工业用油及有关(L类)产品,(齿轮)C种 第1部分:闭式齿轮系统用润滑剂规范[Lubricants,industrial oils and related products (class L). Family C (Gears)—Part 1:Specifications for lubricants for enclosed gear systems]
ISO/TR 13593 工业用闭式齿轮传动装置(Enclosed gear drives for industrial applications)
ISO/TR 13989-1 圆柱、斜面和准双曲面齿轮咬接载荷能力的计算 第1部分:瞬间温度法(Calculation of scuffing load capacity of cylindrical,bevel and hypoid gears—Part 1:Flash temperature method)
ISO/TR 13989-2 圆柱、斜面和准双曲面齿轮咬接负载能力的计算 第2部分:累积温度法(Calculation of scuffing load capacity of cylindrical,bevel and hypoid gears—Part 2:Integral temperature method)
ISO 14104 齿轮 磨光后的表面回火侵蚀检查(Gears—Surface temper etch inspection after grinding)
ISO/TS 16281:2008 滚动轴承 万向承重轴承用修正额定寿命参考值的计算方法(Rolling bearings—Methods for calculating the modified reference ratinglife for universally loaded bearings)
AGMA 9005 工业齿轮润滑(Industrial gear lubrication)
ANSI/AGMA 925-A02 齿面润滑失效的影响(Effect of lubrication on gear surface distress)
ANSI/AGMA 6001-E10 封闭齿轮传动装置的设计和选择(Design and selection of components for enclosed gear drives)
ANSI/AGMA 6123 封闭式行星齿轮传动设计手册(Design manual for enclosed epicyclic gear drives)
ASTM E1049-85 疲劳分析中周期计算规程(Standard practices for cycle counting in fatigue analysis)
DIN 471 轴用弹性挡圈:标准型和重型[Circlips (retaining rings) for shafts: Normal type and heavy type]
DIN 472 孔用弹性挡圈:标准型和重型[Circlips (retaining rings) for bores:Normal type and heavy type]
DIN 743-2000 轴类零件承载能力的计算,第1、2、3部分(Shafts and axles,calculations of load capacity,Parts 1,2,3)
DIN 3990-4 圆柱齿轮承载能力的计算:啮齿承载能力的计算(Calculation of load capacity of cylindrical gears:calculation of scuffing loadcapacity)
DIN 6885-2 机床用平键 传动连接 键和键槽型式及尺寸(Parallel Key Geometries)
DIN 6892 无锥度连接驱动式紧固件 键的计算和设计(仅在德国使用) (Mitnehmerverbindungen ohne Anzug—Passfedern—Berechnung und Gestaltung) (available in German only)
DIN 7190 过盈配合 计算和设计原则(Interference fits—Calculation and design rules)
DIN 51517-3 润滑剂 第3部分:润滑剂的CLP,最小需求(Lubricants:Lubricating oils—Part 3:Lubricating oils CLP;Minimum requirements)
EN 10204:2004 金属产品 检验文件类型(Metallic products—Types of inspection documents)
EN 12680-3:2003 铸件超声检测(Ultrasonic examination—Spheroidal graphite cast iron castings)
3 术语和定义、约定
3.1 术语和定义
GB/T 18451.1—2012和IEC 60050-415界定的以及下列术语和定义适用于本文件。
注:本标准的定义优先采用。
3.1.1
轴承制造商 bearing manufacturer
为风力发电机组齿轮箱提供轴承的法人实体,并负责轴承的设计及应用工程。
注:通常轴承供应商也制造轴承。
3.1.2
认证机构 certification body
按照IEC 61400-22的要求对风力发电机组齿轮箱进行合格认证的实体。
3.1.3
特征载荷 characteristic load
负载值不超过规定概率的载荷。
注:参见3.1.5设计载荷。
3.1.4
设计寿命 design lifetime
规定的满足强度验证的持续时间。
注:某些易维护的组件和易损件寿命可能低于规定的整台齿轮箱设计寿命。
3.1.5
设计载荷 design load
任何零部件强度验证所采用的载荷。
注1:设计载荷由特征载荷乘以适当的载荷局部安全系数得到。
注2:参见GB/T 18451.1—2012及第6章。
3.1.6
双列轴承 double-row bearings
有双列滚动体的滚动轴承。
3.1.7
等效载荷 equivalent load
使用规定的寿命指数和循环次数下,与实际的变化载荷造成相同损伤的载荷。
注:在整个载荷范围内,等效载荷并不等于所有载荷段的平均载荷值。
3.1.8
极限载荷 extreme load
运行或非运行工况中所有载荷分量中,具有最大绝对值的设计载荷。
注:该载荷分量可以是一个力、力矩、转矩或它们的组合。
3.1.9
齿轮箱制造商 gearbox manufacturer
负责齿轮箱设计,并规定齿轮箱及其零部件制造要求的实体。
注:在实际情况中,一些法人实体可能参与了这一过程,但在本标准没有反映这种情况。
3.1.10
接口 interface
齿轮箱与风力发电机组连接所采用的型式和尺寸,以及控制信号、液压油和润滑油交换所采用的型式和尺寸。
3.1.11
载荷裕度系数 load reserve factor
LRF
零部件的最大许用载荷与设计载荷的比值。
注:LRF可以分别由极限强度和疲劳强度计算确定。
3.1.12
局部失效 local failure
在一个危险截面,应变超过最大许用值而产生的失效。
3.1.13
定位轴承 locating bearing fixed bearing
承受双向轴向载荷的轴承。
3.1.14
润滑剂供应商 lubricant supplier
通过风力发电机组制造商、齿轮箱制造商或者风力发电机组业主为风力发电机组齿轮箱提供润滑油的法人实体。
注:润滑油供应商可不生产任何润滑剂成分或按比例混合最终产品,但需对润滑剂的性能和混合技术规范负责。
3.1.15
最大运行载荷 maximum operating load
按照GB/T 18451.1—2012所定义的设计工况及载荷局部安全系数,确定的疲劳分析的最大载荷。
3.1.16
机舱 nacelle
机组塔架之上的结构,容纳动力传动链、发电机、其他部件、控制件以及执行系统。
3.1.17
浮动端轴承 non-locating bearing
浮动轴承 floating bearing
仅承受径向载荷的轴承。
3.1.18
配对轴承 paired bearings
安装在同一位置的相同类型的两个轴承。
注:轴承的配对布置使得它们的径向承载能力得到加强并且具有双向轴向承载能力(例如两个TRB轴承或两个ACBB轴承面对面或背靠背布置),或者可将它们串联布置以增强径向承载能力和单向轴向承载能力(参见C.7)。
3.1.19
雨流矩阵 rainflow matrices
使用一个包含计数循环的二维矩阵,此循环发生在循环方式和幅值的子范围内,表示的疲劳载荷。
注:参见A.4.3。
3.1.20
时间序列 time series
描述风力发电机组不同运行载荷区间的时间集合。
注:这些时间序列和其相应的出现次数组合在一起表征整个设计寿命周期内的载荷历程。
3.1.21
风力发电机组制造商 wind turbine manufacturer
按照本标准提出齿轮箱设计要求的责任实体。
注:通常,风力发电机组制造商负责设计、制造和销售风力发电机组。
3.1.22
风力发电机组业主 wind turbine owner
购买和负责风力发电机组运行的实体。
注:实际上,业主可以与不同的法人实体就风力发电机组的运行和维护签约。在本标准中并没有反映这种区别。
3.2 约定
3.2.1 轴承位置的命名
下列缩写可以用来定义轴承位置(轴的命名定义在3.2.2中):
● RS:风轮侧(通常为上风向);
● GS:发电机侧(通常为下风向)。
如果是配对轴承可以使用下列缩写:
● IB:内侧(相对指向轴内侧);
● OB:外侧(相对指向轴外侧)。
3.2.2 轴的命名——典型的风力发电机组齿轮箱结构实例
图1给出了3级平行传动齿轮箱中轴的名称定义。在4级平行传动齿轮箱中,中间的轴称为“低速中间轴”“中速中间轴”和“高速中间轴”。
说明:1——HSS高速轴; 4——LSS低速轴;
2——HS-IS高速中间轴; PIN——功率输入;
3——LS-IS低速中间轴; POUT——功率输出。
图1 3级平行传动齿轮箱中轴的名称定义
图2给出了1级行星加2级平行传动齿轮箱中轴的名称定义。
说明:
1——HSS高速轴; 5——LSS低速轴;
2——HS-IS高速中间轴; PIN——功率输入;
3——LS-IS低速中间轴; POUT——功率输出。
4——PS行星轴;
图2 1级行星加2级平行传动齿轮箱中轴的名称定义
图3给出了2级行星加1级平行传动齿轮箱中轴的名称定义。
说明:
1——HSS高速轴;
2——HS-IS高速中间轴;
3——IS-PS中速行星轴;
4——ISS中速轴;
5——LS-PS低速行星轴;
6——LSS低速轴;
PIN——功率输入;
POUT——功率输出。
图3 2级行星加1级平行传动齿轮箱中轴的名称定义
4 符号和缩略语
4.1 符号
本标准从数个工程学科中引用方程和关系式。所以在某些情况下,同一个符号存在定义不一致的地方。尽管如此,文中所有的符号都在表1中列出。如有歧义,符号所指定的定义将在公式、图表或文本中以备注形式呈现。
表1 文本中使用的符号
符号 描述 单位
a 加速度 mm/s2
a 赫兹接触椭圆的长半轴 mm
a1 可靠性寿命修正系数 —
A3 极限应变 %
A5 极限应变 %
b 赫兹接触椭圆的短半轴 mm
c 刚度 N/mm
Nm/rad
c 单位应力 MPa/N
MPa/Nm
C 轴承的基本额定动载荷 N
CLIi ith冲载荷段的寿命消耗指数 %
c(s) 位置s处的单轴弹性单位应力 MPa/N
MPa/Nm
CδL 轴承的弹性常数 —
C0 轴承的基本额定静载荷 —
cij(s) 单轴单位载荷在位置s处的弹性应力张量 MPa/N
MPa/Nm
cij,k(s) 单位载荷K在位置s处的弹性应力张量 MPa/N
MPa/Nm
cij,m(s) 位置s处的弹性应力张量的平均值 MPa/N
MPa/Nm
CT 接触截短系数 —
d 阻尼增量
D 累积损伤 —
Di 第i载荷段造成的损伤 —
Dw 轴承滚动体的直径 mm
Dpw 轴承中滚动体组合的节圆直径 mm
e 轴承常数,轴向载荷与径向载荷之比(Fa/Fr)的限值 —
eC 润滑剂清洁度系数 —
eσij(s,t) 时间t时,位置s处的弹性应力张量 MPa
eσij,a(s) 局部应力张量幅值 MPa
eσa,eq(s) 位置s处的等效应力幅值 MPa
eσij,m(s) 平均局部应力张量 MPa
E 弹性模量(杨氏模量) MPa
F 力 N
f∑δ 箱体或转架在同一平面内的偏差 mm
f∑γ 投影到齿宽上的理想轴相对于轴的对中误差而产生的啮合错位 mm
f∑β 箱体或支架的外平面偏差 mm
Fa 轴承的轴向载荷 N
fHβ 齿轮螺旋线偏差 mm
fma 齿轮幅啮合错位量 mm
Fr 轴承径向载荷 N
Gr 轴承径向工作游隙 mm
J 坐标系中x,y,z方向转动惯量 kgm2
k S/N曲线倾斜指数 —
k 最大承载滚动体载荷分配系数 —
Kγ 啮合载荷系数 —
KFα 齿间载荷分配系数(弯曲应力) —
KFβ 齿向载荷分布系数(弯曲应力) —
KHα 齿间载荷分配系数(接触应力) —
KHβ 齿向载荷分布系数(接触应力) —
KIc 最大接触应力与无错位线接触应力比 —
Km 错位最大接触应力与无错位最大接触应力比 —
Kv 动载系数 —
l 长度 mm
L 载荷值 N或Nm
L10mr,i 10%失效概率,第i载荷段的修正参考额定寿命 106r
La 载荷幅值 N或Nm
La,eq 等效载荷幅值 N或Nm
Le 弹性载荷极限 N或Nm
Lh10 10%失效概率的基本额定寿命 h
Lk(t) 时间序列中与时间相关的某个载荷分量 N或Nm
Lm 载荷段中的平均载荷 N或Nm
Lnmr n%失效概率的修正参考额定寿命 106r
Lnr n%失效概率的参考额定寿命 106r
Lp 总屈服极限或发生塑性变形的载荷极限 N或Nm
LRFf 抗疲劳载荷裕度系数 —
LRFu 抗极限载荷裕度系数 —
Lw 滚动体的有效长度 mm
m 质量 kg
m 载荷谱中的载荷段数 —
M 力矩 Nm
mn 齿轮法向模数 mm
n 失效概率 %
n 转速 min-1
neq,j 载荷谱中第j载荷段的等效转速 min-1
ni or nj 第i或第j载荷段的循环次数 —
N 特征应力寿命曲线的循环次数 —
ND 等幅测试试样的应力-寿命曲线拐点处的循环次数
Ni 根据S/N曲线的第i载荷段的耐久循环次数 —
Ni 在整个设计寿命期间i循环发生的次数 —
NL 循环次数 —
npl,σ,GF 与Rp相关的整体失效局部应力截面系数 —
npl,σ,LF 与Rp相关的局部失效局部应力截面系数 —
nref 参考循环次数 —
p 轴承寿命计算等式中的指数 —
P 轴承动态等效载荷 N
Pi,j 载荷谱中第i或第j载荷段的载荷值 N
P0 轴承点接触时的接触应力 MPa
P0 轴承当量静载荷 N
Pel 发电机的电功率 kW
Pline 轴承线接触近似承载接触应力 MPa
Pmax 轴承线接触近似最大接触应力 MPa
Q 零游隙轴承单个滚子最大载荷 N
qi 在第i个载荷等级内时间、循环或旋转数的分配 —
Qoil 润滑油量 L
R 应力比 —
r12 旋转轴平面内滚动体半径 mm
r22 滚道横截面的沟槽半径 mm
Ra 算术平均粗糙度 μm
Rm 极限抗拉或抗压强度 MPa
Rp 屈服强度(0.2%的塑性应变的屈服点或位移屈服点) MPa
Rz 平均峰谷粗糙度(按照ISO 4287/ISO 4288) μm
s 位移 mm
s 位置变量 —
S 接触密合度 —
S0 (轴承)静态安全系数 —
SB 胶合安全系数 —
SF 弯曲强度安全系数 —
SH 接触强度安全系数 —
t 时间变量 s
VI 黏度指数 —
vt 节圆线速度 m/s
X0 轴承常数,径向静载荷系数 —
Y0 轴承常数,轴向静载荷系数 —
YNT 弯曲强度计算的寿命系数 —
YSg 载荷作用于齿顶时的应力修正系数 —
Z 轴承单个滚道中滚动体总数 —
ZNT 接触强度计算的寿命系数 —
α 旋转角度 °
α0 轴承公称接触角 °
γf 载荷局部安全系数 —
γm 材料局部安全系数 —
γn 失效后果的局部安全系数 —
δ 偏转 mm
εlim 切口弹塑性极限应变 %
ΘL 轴不对中倾角 °arc-min
κ 黏度比 —
μ 附加的赫兹参数 —
v 附加的赫兹参数 —
v 实际的运动黏度 mm2/s
v1 参考运动黏度 mm2/s
v40 40℃的运动黏度 mm2/s
ρ11 主平面1内滚动体1的曲率因子 —
ρ12 主平面2内滚动体1的曲率因子 —
ρ21 主平面1内滚动体2的曲率因子 —
ρ22 主平面2内滚动体2的曲率因子 —
σ 应力(真实应力) MPa
σa 产生循环应力振幅 MPa
σA 构件在ND循环时的设计疲劳强度 MPa
σa,R 应力循环具有最小/最大比值R对应的σa值 MPa
σA,R 与具有最小/最大比值R的载荷循环相关的σA值 MPa
σD 试样在ND循环时的特征疲劳强度 MPa
σD,R 具有最小/最大比值R的试验得到的σD值 MPa
σel 线性弹性应力 MPa
σFE 许用应力数(弯曲) MPa
σHlim 许用应力数(接触应力) MPa
σI 最大主应力 MPa
σⅢ 最小主应力 MPa
σij,pre(s) 位置s处的局部预应力张量 MPa
σlim 极限应力水平 MPa
σmax 最大弹性应力 MPa
σprin 绝对最大主应力 MPa
∑ρline 线接触曲率和 —
∑ρpoine 点接触曲率和 —
τ 附加赫兹参数 —
4.2 缩略语
缩略语如表2所示。
表2 缩略语
缩略语 描述
ACBB 角接触球轴承
AGMA 美国齿轮制造商协会
ANSI 美国国家标准学会
ASTM 美国材料实验协会
CEC 欧盟委员会
CRB 圆柱滚子轴承
CRTB 推力圆柱滚子轴承
DGBB 深沟球轴承
DIN 德国标准化学会
DLC GB/T 18451.1—2012中使用的设计载荷工况
DR ACBB 双列角接触球轴承
DR CRB 双列圆柱滚子轴承
DR FCCRB 双列满滚子圆柱滚子轴承
DR TRB 双列圆锥滚子轴承
EXT 极限载荷(矩阵)
EHL 弹性流体动力润滑
FCCRB 满滚子圆柱滚子轴承
FEA 有限元分析
FMEA 失效模式和影响分析
FPCBB 四点接触球轴承
FZG 慕尼黑工业大学“齿轮和齿轮装置测试”
GS 发电机侧(通常下风向)
HS-IS 高速-中间轴
HSS 高速轴
IEC 国际电工委员会
ISO 国际标准化组织
LDD 载荷-持续时间分布(直方图)
LRD 载荷-循环次数分布(直方图)
LS-IS 低速-中间轴
LS-PS 低速-行星轴
LSS 低速轴
NPT 美国标准圆锥管螺纹
PAG 聚烷基乙二醇或聚乙二醇合成润滑剂
PAO 基于合成烃的聚α-烯烃全石蜡族合成润滑剂
PS 行星轮轴(或轮轴)
PTO 取力装置,驱动辅助设备如油泵的附加输出轴
RFC 雨流计数
RMS 均方根
RS 风轮侧(通常上风向)
SRB 调心球面滚子轴承
SRTB 调心球面滚子推力轴承
TCT 总接触温度法(勃洛克方法)
TIFF 齿轮内部疲劳断裂
TORB 圆环轴承
TRB 圆锥滚子轴承
VG 黏度等级
WTG 风力发电机组(系统)
5 可靠性设计
5.1 设计寿命及可靠性
风力发电机组齿轮箱的设计目标在于实现高利用率的同时,其可靠性亦可控制寿期内的维护及修理费用。其设计寿命应不小于风力发电机组的设计寿命。根据GB/T 18451.1—2012,对于Ⅰ到Ⅲ级风力发电机组,其寿命应不小于20年。
GB/T 18451.1—2012将部件级别定义为其失效潜在结果的函数。齿轮箱被定义为2级部件,或“无失效”结构部件,即其自身失效会导致风力发电机组主要部分失效。一台风力发电机组齿轮箱是由扭矩传递零件如齿轮、齿轮轴、轴及联轴器,机械零件如轴承,结构支撑零件如扭力臂或箱体,及螺纹连接件装配而成的。这些零件是依据其具体设计标准进行设计的,如滚动轴承依据ISO 76及GB/T 6391—2010,齿轮件依据ISO 6336。这些标准大多都涵盖了不同的应用种类,并未注明其在某一具体应用中应满足的安全系数或设计寿命。这些相关的零件标准又大多使用不同的可靠性计量方法,因此使得这些零件在同一系统内(如风力发电机组齿轮箱)达到同一可靠性等级变得困难。