![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative. In order to adapt to the general rules of international technical regulations and technical standards, since 2016, the Ministry of Housing and Urban-Rural Development has successively issued documents such as Opinions on furthering the reform of standardization of engineering construction, which put forward the long-term goal for the government to develop mandatory standards and for social organizations to develop voluntary standards and define the reform task of gradually replacing the mandatory provisions scattered in current standards with full-text mandatory engineering construction codes, gradually forming a "technical regulations" system composed of technical provisions in laws, administrative regulations and departmental rules and full-text mandatory engineering construction codes. About the types of codes. The mandatory engineering construction code system covers all kinds of construction projects in the field of engineering construction, namely, engineering project codes (hereinafter referred to as project codes) and general technical codes (hereinafter referred to as general codes). A project code takes the whole engineering construction project as the object, with five major factors, namely, project scale, layout, function, performance and key technical measures, as the main content. A general code takes the general technology of each discipline to meet the function and performance requirements of the engineering construction project as the object, with the general technical requirements such as survey, design, construction, repair and maintenance as the main content. In the full-text mandatory engineering construction code system, the project codes are the core, while the general codes specify the common and general professional key technical measures for all kinds of projects. About the five major factor indicators. The factors in the mandatory engineering construction codes are the basic provisions to ensure the systematization and efficiency improvement of urban and rural infrastructure construction, and the basic requirements to support the high-quality development of urban and rural construction. The scale requirements for a project mainly stipulate that a construction project shall have complete production or service capacity and shall adapt to the level of economic and social development. The layout requirements for the project mainly stipulate the industrial layout, site selection, overall design, general layout and integrated technical requirements coordinated with the scale for the construction project. Reasonable distribution of supply capacity shall be considered to improve the overall level of related facilities construction. The function requirements for the project mainly stipulate the composition and purpose of the project and clarify the basic components of the project, which are the guarantee for the project to play its expected role. The performance requirements for the project mainly stipulate the construction level or technical level of the construction project, reflect the applicability of the construction project, and define the basic levels that the project shall achieve in the aspects of quality, safety, energy conservation, environmental protection, livable environment and sustainable development. Key technical measures are the basic technical regulations for realizing the function and performance requirements of a construction project, and they are the basic guarantee for achieving the development goals of urban and rural construction such as safety, green, resilience, wisdom, livability, fairness and efficiency. About the implementation of codes. Mandatory engineering construction codes have mandatory binding force, which specify the control requirements and bottom lines for ensuring people's life and property safety, personal health, engineering safety, ecological environment safety, public rights and interests as well as promoting energy and resource conservation and meeting economic and social management, and they must be strictly implemented in the whole process of construction activities such as survey, design, construction, acceptance, repair, maintenance and demolition of engineering construction projects. For existing building renovation projects (where existing use functions are not changed), the stringency of the code implemented shall not be inferior to that implemented in construction if the conditions are not available and it is really difficult to implement the current codes. The voluntary engineering construction standards matching with the mandatory engineering construction codes are mature technical measures that have been tested by practice and guarantee to meet the requirements of the mandatory codes, and they shall also be implemented under normal circumstances. On the premise of meeting the project function and performance requirements and key technical measures stipulated in mandatory engineering construction codes, relevant group standards and enterprise standards may be reasonably selected to optimize the project function and performance or improve their levels. Voluntary engineering construction standards, group standards and enterprise standards shall be coordinated and match with mandatory engineering construction codes, and all technical requirements shall not be lower than the relevant technical levels of mandatory engineering construction codes. After the implementation of a mandatory engineering construction code, the mandatory provisions in the current national standards and professional standards related to engineering construction shall be abolished at the same time. The mandatory provisions in the current provincial standards for engineering construction shall be revised in time, and shall not be less stringent than the provisions of the mandatory engineering construction codes. If the relevant provisions in current engineering construction standards (including mandatory and voluntary ones) are inconsistent with those of the mandatory engineering construction codes, the provisions of the mandatory engineering construction codes shall prevail. Contents 1 General provisions 1 2 Basic provisions 2 2.1 Basic requirements 2 2.2 Safety level and design service life 3 2.3 Analysis of structure 5 2.4 Actions and action combination 5 2.5 Material and geotechnical properties and geometric parameters of structure 7 3 Design of structure 8 3.1 Partial factor design method for limit state 8 3.2 Other design methods 13 4 Actions of structure 14 4.1 Permanent action 14 4.2 Live loads on floors and roofs 14 4.3 Pedestrian load 20 4.4 Crane load 20 4.5 Snow load and ice load 21 4.6 Wind load 22 4.7 Temperature action 23 4.8 Accidental action 24 4.9 Water flow force and ice pressure 25 4.10 Actions in specialized fields 25 Annex A Symbols 28 1 General provisions 1.0.1 This code is formulated with a view to implementing the building policies in engineering construction, ensuring the safety, applicability and durability of engineering structures, and meeting the needs of normal use and green development of construction projects. 1.0.2 For engineering structures, this code must be implemented. 1.0.3 Whether the technical methods and measures adopted in the engineering construction meet the requirements of this code shall be judged by the relevant responsibility subjects. Innovative technical methods and measures shall be demonstrated and meet the performance requirements in this code. 2 Basic provisions 2.1 Basic requirements 2.1.1 The structure must meet the following requirements during its design service life: 1 The structure shall be able to withstand various actions that may occur in normal construction and normal use; 2 The structure shall be ensured to meet the requirements for the intended use of the structure and its members; 3 The structure shall be ensured to meet adequate durability requirements. 2.1.2 The structural system shall have a reasonable force transmission path, which can transfer all kinds of actions that the structure may bear from the action points to the resisting members. 2.1.3 In case of an accidental event such as explosion, impact and rare earthquake or human error, the structure shall maintain overall stability, and be free from the consequences of failure that are disproportionate to the cause. In case of a fire, the structure shall be able to maintain load-bearing capacity and overall stability within the specified time. 2.1.4 According to the influence of environmental conditions on durability, corresponding protective measures shall be taken for the structural materials. 2.1.5 The design of the structure shall include the following: 1 Structural scheme; 2 Determination of actions and analysis of action effects; 3 Design and checking calculation of the structure and its members; 4 Construction and connection measures of the structure and its members; 5 Durability design of the structure; 6 Construction feasibility. 2.1.6 The structure shall be constructed in accordance with the design documents. Technical measures and management measures to ensure construction quality and safety shall be taken during construction. 2.1.7 The structure shall be used according to the purpose specified in the design, and shall be checked regularly for the structural condition so as to take necessary maintenance and repair. The following behaviors affecting the use safety of the structure are strictly prohibited: 1 Unauthorized change in the purpose or use environment of the structure without technical appraisal or design permission; 2 Damage to or unauthorized change of the structural system and seismic facilities; 3 Increase in the service load of the structure without authorization; 4 Damage to the foundation; 5 Illegal storage of explosive, toxic, radioactive, corrosive and other dangerous articles; 6 Structural transformation and construction that affect the use safety of adjacent structures. 2.1.8 Before demolition of the structure or its components, a detailed demolition plan and scheme shall be made, and an emergency plan shall be made for the contingencies, if any, that may occur in the demolition process. The demolition of the structure shall follow the principles of reduction, resource utilization and recycling. 2.2 Safety level and design service life 2.2.1 In the design of the structure, different safety levels shall be adopted according to the severity of possible consequences caused by structural failure. The classification of safety level of structures shall be in accordance with those specified in Table 2.2.1. The safety level of the structure and its components shall not be lower than Level III. Table 2.2.1 Classification of safety level Safety level Consequence of failure Safety level Consequence of failure Safety level Consequence of failure Level I Very serious Level II Serious Level III Not serious 2.2.2 In the design of the structure, the design service life shall be specified according to the factors such as the use function, construction, use and maintenance cost and environmental impact of the engineering, which shall meet the following requirements: 1 The design service life of housing building structures shall not be less than those specified in Table 2.2.2-1. Table 2.2.2-1 Design service life of housing building structures Category Design service life (years) Temporary building structures 5 Common buildings and structures 50 Particularly important building structures 100 2 The design service life of highway engineering structures shall not be less than those specified in Table 2.2.2-2. Table 2.2.2-2 Design service life of highway engineering structures (years) Highway class Structure category Expressway and Class I highway Class II highway Class III highway Class IV highway Pavement Asphalt concrete pavement 15 12 10 8 Cement concrete pavement 30 20 15 10 Bridge and culvert Major structure Grand bridge and large bridge 100 100 100 100 Medium bridge 100 50 50 50 Small bridge and culvert 50 30 30 30 Replaceable components Stay cable, sling, tie bar, etc. 20 20 20 20 Railing, telescopic device, bearing, etc. 15 15 15 15 Tunnel Major structure Extra-long tunnel 100 100 100 100 Long tunnel 100 100 100 50 Medium tunnel 100 100 100 50 Short tunnel 100 100 50 50 Replaceable and repairable members Extra-long, long, medium and short tunnels 30 30 30 30 3 The design service life of permanent port building structures shall not be less than 50 years. 2.2.3 The design service life of ancillary facilities such as waterproof layer, electricity and pipeline of the structure shall be determined according to the design service life of the major structure and the factors such as material, construction and use requirements of the ancillary facilities. 1 General provisions 2 Basic provisions 2.1 Basic requirements 2.2 Safety level and design service life 2.3 Analysis of structure 2.4 Actions and action combination 2.5 Material and geotechnical properties and geometric parameters of structure 3 Design of structure 3.1 Partial factor design method for limit state 3.2 Other design methods 4 Actions of structure 4.1 Permanent action 4.2 Live loads on floors and roofs 4.3 Pedestrian load 4.4 Crane load 4.5 Snow load and ice load 4.6 Wind load 4.7 Temperature action 4.8 Accidental action 4.9 Water flow force and ice pressure 4.10 Actions in specialized fields Annex A Symbols 1 总则 1.0.1 为在工程建设中贯彻落实建筑方针,保障工程结构安全性、适用性、耐久性,满足建设项目正常使用和绿色发展需要,制定本规范。 1.0.2 工程结构必须执行本规范。 1.0.3 工程建设所采用的技术方法和措施是否符合本规范要求,由相关责任主体判定。其中,创新性的技术方法和措施,应进行论证并符合本规范中有关性能的要求。 2 基本规定 2.1 基本要求 2.1.1 结构在设计工作年限内,必须符合下列规定: 1 应能够承受住正常施工和正常使用期间预期可能出现的各种作用; 2 应保障结构和结构构件的预定使用要求; 3 应保障足够的耐久性要求。 2.1.2 结构体系应具有合理的传力路径,能够将结构可能承受的各种作用从作用点传递到抗力构件。 2.1.3 当发生可能遭遇的爆炸、撞击、罕遇地震等偶然事件及人为失误时,结构应保持整体稳固性,不应出现与起因不相称的破坏后果。当发生火灾时,结构应能在规定的时间内保持承载力和整体稳固性。 2.1.4 根据环境条件对耐久性的影响,结构材料应采取相应的防护措施。 2.1.5 结构设计应包括下列基本内容: 1 结构方案; 2 作用的确定及作用效应分析; 3 结构及构件的设计和验算; 4 结构及构件的构造、连接措施; 5 结构耐久性的设计; 6 施工可行性。 2.1.6 结构应按照设计文件施工。施工过程应采取保证施工质量和施工安全的技术措施和管理措施。 2.1.7 结构应按设计规定的用途使用,并应定期检查结构状况,进行必要的维护和维修。严禁下列影响结构使用安全的行为: 1 未经技术鉴定或设计许可,擅自改变结构用途和使用环境; 2 损坏或者擅自变动结构体系及抗震设施; 3 擅自增加结构使用荷载; 4 损坏地基基础; 5 违规存放爆炸性、毒害性、放射性、腐蚀性等危险物品; 6 影响毗邻结构使用安全的结构改造与施工。 2.1.8 对结构或其部件进行拆除前,应制定详细的拆除计划和方案,并对拆除过程可能发生的意外情况制定应急预案。结构拆除应遵循减量化、资源化和再生利用的原则。 2.2 安全等级与设计工作年限 2.2.1 结构设计时,应根据结构破坏可能产生后果的严重性,采用不同的安全等级。结构安全等级的划分应符合表2.2.1的规定。结构及其部件的安全等级不得低于三级。 表2.2.1 安全等级的划分 安全等级 破坏后果 安全等级 破坏后果 安全等级 破坏后果 一级 很严重 二级 严重 三级 不严重 2.2.2 结构设计时,应根据工程的使用功能、建造和使用维护成本以及环境影响等因素规定设计工作年限,并应符合下列规定: 1 房屋建筑的结构设计工作年限不应低于表2.2.2-1的规定; 表2.2.2-1 房屋建筑的结构设计工作年限 类别 设计工作年限(年) 临时性建筑结构 5 普通房屋和构筑物 50 特别重要的建筑结构 100 2 公路工程的结构设计工作年限不应低于表2.2.2-2的规定; 表2.2.2-2 公路工程的结构设计工作年限(年) 公路等级 结构类别 高速公路、一级公路 二级公路 三级公路 四级公路 路面 沥青混凝土路面 15 12 10 8 水泥混凝土路面 30 20 15 10 桥涵 生体结构 特大桥、大桥 100 100 100 100 中桥 100 50 50 50 小桥、涵洞 50 30 30 30 可更换部件 斜拉索、吊索、系杆等 20 20 20 20 栏杆、伸缩装置、支座等 15 15 15 15 隧道 主体结构 特长隧道 100 100 100 100 长隧道 100 100 100 50 中隧道 100 100 100 50 短隧道 100 100 50 50 可更换、修复构件 特长、长、中、短隧道 30 30 30 30 3 永久性港口建筑物的结构设计工作年限不应低于50年。 2.2.3 结构的防水层、电气和管道等附属设施的设计工作年限,应根据主体结构的设计工作年限和附属设施的材料、构造和使用要求等因素确定。 2.2.4 结构部件与结构的安全等级不一致或设计工作年限不一致的,应在设计文件中明确标明。 2.3 结构分析 2.3.1 结构构件及其连接的作用效应应通过考虑了力学平衡条件、变形协渊条件、材料时变特性以及稳定性等因素的结构分析方法确定。 2.3.2 结构分析采用的计算模型应能合理反映结构在相关因素作用下的作用效应。分析所采用的简化或假定,应以理论和工程实践为基础,无成熟经验时应通过试验验证其合理性。分析时设置的边界条件应符合结构的实际情况。 2.3.3 结构分析应根据结构类型、材料性能和受力特点等因素,选用线性或非线性分析方法。当动力作用对结构影响显著时,尚应采用动力响应分析或动力系数等方法考虑其影响。 2.3.4 当结构的变形可能使作用效应显著增大时,应在结构分析中考虑结构变形的影响。 2.4 作用和作用组合 2.4.1 结构上的作用根据时间变化特性应分为永久作用、可变作用和偶然作用,其代表值应符合下列规定: 1 永久作用应采用标准值; 2 可变作用应根据设计要求采用标准值、组合值、频遇值或准永久值; 3 偶然作用应按结构设计使用特点确定其代表值。 2.4.2 结构上的作用应根据下列不同分类特性,选择恰当的作用模型和加载方式: 1 直接作用和间接作用; 2 固定作用和非固定作用; 3 静态作用和动态作用。 2.4.3 确定可变作用代表值时应采用统一的设计基准期。当结构采用的设计基准期不是50年时,应按照可靠指标一致的原则,对本规范规定的可变作用量值进行调整。 2.4.4 对于结构在施工和使用期间可能出现,而本规范未规定的各类作用,应根据结构的设计工作年限、设计基准期和保证率,确定其量值大小。 2.4.5 生产工艺荷载应根据工艺及相关专业的要求确定。 2.4.6 结构作用应根据结构设计要求,按下列规定进行组合: 1 基本组合: (2.4.6-1) 2 偶然组合: (2.4.6-2) 3 地震组合:应符合结构抗震设计的规定; 4 标准组合: (2.4.6-3) 5 频遇组合: (2.4.6-4) 6 准永久组合: (2.4.6-5) 注:式中符号的含义见本规范附录A。 2.4.7 作用组合的效应设计值,应将所考虑的各种作用同时加载于结构之后,再通过分析计算确定。 2.4.8 当作用组合的效应设计值简化为单个作用效应的组合时,作用与作用效应应满足线性关系。 2.5 材料和岩土的性能及结构几何参数 2.5.1 在选择结构材料种类、材料规格进行结构设计时,应考虑各种可能影响耐久性的环境因素。 2.5.2 材料特性应通过标准化测试方法确定。当实际应用条件与试验条件有差异时,应对试验值进行修正。 2.5.3 岩土性能指标和地基承载力、桩基承载力等,应通过原位测试、室内试验等直接或间接试验方法测定,并应考虑由于钻探取样、室内外试验条件与实际建筑结构条件的差别以及所采用计算公式的误差等因素的影响。 2.5.4 当试验数据不充分时,材料性能的标准值应根据可靠资料确定。 2.5.5 结构连接部件几何参数的公差应相互兼容。 3 结构设计 3.1 极限状态的分项系数设计方法 3.1.1 涉及人身安全以及结构安全的极限状态应作为承载能力极限状态。当结构或结构构件出现下列状态之一时,应认为超过了承载能力极限状态: 1 结构构件或连接因超过材料强度而破坏,或因过度变形而不适于继续承载; 2 整个结构或其一部分作为刚体失去平衡; 3 结构转变为机动体系; 4 结构或结构构件丧火稳定; 5 结构因局部破坏而发生连续倒塌; 6 地基丧失承载力而破坏; 7 结构或结构构件发生疲劳破坏。 3.1.2 涉及结构或结构单元的正常使用功能、人员舒适性、建筑外观的极限状态应作为正常使用极限状态。当结构或结构构件出现下列状态之一时,应认为超过了正常使用极限状态: 1 影响外观、使用舒适性或结构使用功能的变形; 2 造成人员不舒适或结构使用功能受限的振动; 3 影响外观、耐久性或结构使用功能的局部损坏。 3.1.3 结构设计应对起控制作用的极限状态进行计算或验算;当不能确定起控制作用的极限状态时,结构设计应对不同极限状态分别计算或验算。 3.1.4 结构设计应区分下列设计状况: 1 持久设计状况,适用于结构正常使用时的情况; 2 短暂设计状况,适用于结构施工和维修等临时情况; 3 偶然设计状况,适用于结构遭受火灾、爆炸、非正常撞击等罕见情况; 4 地震设计状况,适用于结构遭受地震时的情况。 3.1.5 结构设计时选定的设计状况,应涵盖正常施工和使用过程中的各种不利情况。各种设计状况均应进行承载能力极限状态设计,持久设计状况尚应进行正常使用极限状态设计。 3.1.6 对每种设计状况,均应考虑各种不同的作用组合,以确定作用控制工况和最不利的效应设计值。 3.1.7 进行承载能力极限状态设计时采用的作用组合,应符合下列规定: 1 持久设计状况和短暂设计状况应采用作用的基本组合; 2 偶然设计状况应采用作用的偶然组合; 3 地震设计状况应采用作用的地震组合; 4 作用组合应为可能同时出现的作用的组合; 5 每个作用组合中包括一个主导可变作用或一个偶然作用或一个地震作用; 6 当静力平衡等极限状态设计对永久作用的位置和大小很敏感时,该永久作用的有利部分和不利部分应作为单独作用分别考虑; 7 当一种作用产生的几种效应非完全相关时,应降低有利效应的分项系数取值。 3.1.8 进行正常使用极限状态设计时采用的作用组合,应符合下列规定: 1 标准组合,用于不可逆正常使用极限状态设计; 2 频遇组合,用于可逆正常使用极限状态设计; 3 准永久组合,用于长期效应是决定性因素的正常使用极限状态设计。 3.1.9 设计基本变量的设计值应符合下列规定: 1 作用的设计值应为作用代表值与作用分项系数的乘积。 2 材料性能的设计值应为材料性能标准值与材料性能分项系数之商。 3 当几何参数的变异性对结构性能无明显影响时,几何参数的设计值应取其标准值:当有明显影响时,几何参数设计值应按不利原则取其标准值与几何参数附加量之和或差。 4 结构或结构构件的抗力设计值应为考虑了材料性能设计值和几何参数设计值之后,分析计算得到的抗力值。 3.1.10 结构或结构构件按承载能力极限状态设计时,应符合下列规定: 1 对于结构或结构构件的破坏或过度变形的承载能力极限状态设计,作用组合的效应设计值与结构重要性系数的乘积不应超过结构或结构构件的抗力设计值,其中结构重要性系数γ0应按本规范表3.1.12的规定取值。 2 对于整个结构或其一部分作为刚体失去静力平衡的承载能力极限状态设计,不平衡作用效应的设计值与结构重要性系数的乘积不应超过平衡作用的效应设计值,其中结构重要性系数γ0应按本规范表3.1.12的规定取值。 3 对于结构或结构构件的疲劳破坏的承载能力极限状态设计,应根据构件受力特性及疲劳设计方法采用不同的疲劳荷载模型和验算表达式。 3.1.11 结构或结构构件按正常使用极限状态设计时,作用组合的效应设计值不应超过设计要求的效应限值。 3.1.12 结构重要性系数γ0不应小于表3.1.12的规定。 表3.1.12 结构重要性系数γ0 结构重要性系数 对持久设计状况和短暂设计状况 对偶然设计状况和地震设计状况 安全等级 一级 二级 三级 γ0 1.1 1.0 0.9 1.0 3.1.13 房屋建筑结构的作用分项系数应按下列规定取值: 1 永久作用:当对结构不利时,不应小于1.3;当对结构有利时,不应大于1.0。 2 预应力:当对结构不利时,不应小于1.3;当对结构有利时,不应大于1.0。 3 标准值大于4kN/m2的工业房屋楼面活荷载,当对结构不利时不应小于1.4;当对结构有利时,应取为0。 4 除第3款之外的可变作用,当对结构不利时不应小于1.5;当对结构有利时,应取为0。 3.1.14 公路桥涵结构永久作用的分项系数,应按表3.1.14采用。 表3.1.14 公路桥涵结构永久作用的分项系数 作用类别 当作用效应对结构的承载力不利时 当作用效应对结构的承载力有利时 混凝土和圬工结构重力(包括结构附加重力) 1.2 1.0 钢结构重力(包括结构附加重力) 1.1~1.2 预加力 1.2 土的重力 混凝土的收缩及徐变作用 1.0 土侧压力 1.1 水的浮力 1.0 基础变位作用 混凝土和圬工结构 0.5 0.5 钢结构 1.0 1.0 3.1.15 港口工程结构的作用分项系数,应按表3.1.15采用。 表3.1.15 港口工程结构的作用分项系数 荷载名称 分项系数 荷载名称 分项系数 永久荷载(不包括土压力、静水压力) 1.2 铁路荷载 1.4 五金钢铁荷载 1.5 汽车荷载 散货荷载 缆车荷载 起重机械荷载 船舶系缆力 船舶撞击力 船舶挤靠力 水流力 运输机械荷载 冰荷载 风荷载 波浪力(构件计算) 人群荷载 一般件杂货、集装箱荷载 1.4 土压力 1.35 液体管道(含推力)荷载 剩余水压力 1.05 3.1.16 房屋建筑的可变荷载考虑设计工作年限的调整系数γL应按下列规定采用: 1 对于荷载标准值随时间变化的楼面和屋面活荷载,考虑设计工作年限的调整系数γL应按表3.1.16采用。当设计工作年限不为表中数值时,调整系数γL不应小于按线性内插确定的值。 表3.1.16 楼面和屋面活荷载考虑设计工作年限的调整系数γL 结构设计工作年限(年) 5 50 100 γL 0.9 1.0 1.1 2 对雪荷载和风荷载,调整系数应按重现期与设计工作年限相同的原则确定。 3.2 其他设计方法 3.2.1 采用容许应力法进行结构设计时,结构在作用的标准组合或地震组合下的应力值不应超过材料的容许应力值。 3.2.2 采用安全系数法进行结构设计时,结构在作用标准组合或地震组合下的效应值乘以安全系数之后,不应超过结构或构件的抗力值。 3.2.3 结构或结构构件的疲劳破坏和正常使用条件下的设计,应根据设计需要采用相应的疲劳荷载模型和验算表达式。 |
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 |
服务热线:400-001-5431 | 电话:010-8572 5110 | 传真:010-8581 9515 | Email: bz@bzfyw.com | |
版权所有: 北京悦尔信息技术有限公司 2008-2020 京ICP备17065875号-1 51La |
本页关键词: |
GB 55001-2021, GB/T 55001-2021, GBT 55001-2021, GB55001-2021, GB 55001, GB55001, GB/T55001-2021, GB/T 55001, GB/T55001, GBT55001-2021, GBT 55001, GBT55001 |