![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative. This code is developed by Guangdong Provincial Academy of Building Research with the relevant organizations, based on the requirements of Guangdong Provincial Department of Construction's "Notice on issuing the development task of Guangdong provincial standard Load code for the design of building structures" (YUEJIANKEHAN [2009] No.438), in combination with the specific situation that the national standard GB 50009-2012 Load code for the design of building structures has been implemented since October 1, 2012, and through careful summary of the scientific research achievements, design experience and engineering practice experience of Guangdong province. This code consists of 10 clauses and 12 annexes. The main technical contents include general provisions, terms and symbols, classification and combination of loads, permanent load, live load on floors and roofs, crane load, wind load, thermal action, accidental load and other load. Compared with the national standard GB 50009-2012 Load code for the design of building structures, the main technical content revised in this code according to the situation of Guangdong province is as follows: 1. The partial coefficients of fire engine load, construction pre-loading and thermal action are stipulated; 2. The nominal value of uniform live load on the floor and roof of some special buildings and its combination value coefficient, frequent value coefficient and quasi-permanent value coefficient are supplemented, and the provisions of construction loads are supplemented; 3. The relevant provisions of wind direction coefficient are supplemented; 4. The reference wind pressure in all counties and cities of Guangdong province are supplemented; 5. The wind load shape factors are supplemented; 6. The wind load of envelope structure is adjusted; the local shape factor of louver and double-layer curtain wall are supplemented; the provisions of shape factor and internal pressure coefficient of buildings in typhoon area and construction stage are supplemented; the gustiness factors in typhoon area and non-typhoon area are specified respectively; the wind vibration coefficient of flexible structure is specified; 7. The wind induced along-wind vibration and wind vibration coefficient, cross-wind and torsional vibration are combined and adjusted to wind vibration of high-rise structure, and the calculation conditions of equivalent static wind load in crosswind according to Annex H.2 are modified, and the load combination condition table is modified; 8. The wind vibration of roof structure is added; 9. The provisions of concrete structures sensitive to thermal action and large-section closed steel structural members exposed to outdoor are added; 10. The other loads in Clause 10 are added; 11. The fire engine load values are added in Annex B; 12. The reference wind pressure distribution diagram of the whole province, Guangzhou, Shenzhen, Dongguan and Zhongshan are added in Annex E; 13. The judging method of the terrain roughness category is added in Annex K, technical guidance for wind tunnel test added in Annex L, and wind vibration coefficient of unilateral independence cantilevered roof added in Annex M. The provisions printed in bold type in this code are compulsory and must be enforced strictly. Guangdong Provincial Department of Housing and Urban-Rural Development is in charge of the administration of this code, and Guangdong Provincial Academy of Building Research is responsible for the explanation of mandatory provisions and specific technical contents. Contents 1 General provisions 1 2 Terms and symbols 1 2.1 Terms 1 2.2 Symbols 5 3 Classification and combination of loads 9 3.1 Classification of loads and representative values of loads 9 3.2 Combination of loads 10 4 Permanent load 15 5 Live load on floors and roofs 15 5.1 Uniformly distributed live loads on floors in civil buildings 15 5.2 Live loads on floors in industrial buildings 23 5.3 Live loads on roofs 23 5.4 Ash load on roofs 25 5.5 Construction and maintenance loads and horizontal and vertical loads on railings 27 5.6 Dynamic coefficient 28 6 Crane load 28 6.1 Vertical and horizontal crane loads 28 6.2 Combination of multi-cranes 29 6.3 Dynamic coefficients of crane loads 30 6.4 Combination value, frequent value and quasi-permanent value of crane load 30 7 Wind load 31 7.1 Characteristic value of wind load and reference wind pressure 31 7.2 Exposure factor for wind pressure 35 7.3 Shape factor of wind load 38 7.4 Wind load of building envelope 58 7.5 Wind vibration of high-rise structure 66 7.6 Wind vibration of roof structure 72 8 Thermal action 73 8.1 General 73 8.2 Reference air temperature 74 8.3 Uniform thermal action 74 9 Accidental loads 75 9.1 General 75 9.2 Explosion 75 9.3 Impact 76 10 Other loads 78 10.1 Load of footbridge 78 10.2 Water pressure of underground structure 78 10.3 Snow load 79 Annex A Self-weight and classification of commonly used materials and structural members 80 Annex B Live load values of fire engine taking different slab span and influence of covered soil thickness under consideration 97 Annex C Determine method of equivalent uniformly distributed live loads on floors 100 Annex D Live loads on floors of industrial buildings 105 Annex E Determination method of reference snow pressure, wind pressure and temperature 113 Annex F Empirical formula for fundamental natural period of structure 123 Annex G Approximate mode shape coefficient of structure 127 Annex H Equivalent wind load for cross-wind and torsional vibration 129 Annex J Acceleration of along-wind and cross-wind vibration for high-rise buildings 138 Annex K Judging method of terrain roughness category 141 Annex L Wind tunnel test guidelines 145 Annex M Wind vibration coefficient of unilateral independence cantilevered roof 146 Explanation of wording in this code 147 List of quoted codes 148 Load code for the design of building structures 1 General provisions 1.0.1 This code is developed with a view to meeting the needs of building structure design in Guangdong province and meeting the requirements of safety, applicability, economy and rationality. 1.0.2 This code is applicable to the structural design of constructional engineering in Guangdong province. 1.0.3 This code is developed according to the basic criteria set out in the national standard GB 50153-2008 Unified standard for reliability design of engineering structures. 1.0.4 The actions involved in the design of building structures include direct actions (loads) and indirect actions. This code only specifies loads and thermal actions, and the provisions on variable load are also applicable to thermal actions. 1.0.5 In addition to those specified in this code, the loads involved in the design of building structures shall also comply with those specified in the current relevant standards of the Nation and Guangdong province. 2 Terms and symbols 2.1 Terms 2.1.1 permanent load load whose value does not change with time, or whose change is negligible compared with the average, or whose change is monotonous and can tend to the limit during the service life of structure 2.1.2 variable load load whose value changes with time and whose change cannot be ignored compared with the average during the service life of structure 2.1.3 accidental load load that does not necessarily occur in the design service life of structure, but once occurred, its magnitude is very large and its duration is very short 2.1.4 representative values of a load load values used to check the limit state in design, such as nominal value, combination value, frequent value and quasi-permanent value 2.1.5 design reference period time selected to determine the representative value of variable load 2.1.6 characteristic value/nominal value basic representative value of a load, which is the characteristic value of the statistical distribution of the maximum load in the design reference period (such as average, mode, median or tantile) 2.1.7 combination value value of variable load making the exceeding probability of the combined load effect in the design reference period be consistent with the corresponding probability when the load appears alone, or making the combined structure have uniformly specified reliable index 2.1.8 frequent value value of variable load of which the total exceeding time is the specified smaller ratio or the exceeding frequency is the specified frequency within the design reference period 2.1.9 quasi-permanent value value of variable load of which the total exceeding time is about half of the design reference period within the design reference period 2.1.10 design value of a load product of the representative value of a load and the partial coefficient for load 2.1.11 load effect reaction of structure or structural member caused by load, such as internal force, deformation and crack 2.1.12 load combination provisions for the design values of various loads appearing at the same time when designing according to the limit state, in order to ensure the reliability of the structure 2.1.13 fundamental combination combination of permanent action and variable action when calculating the ultimate limit state 2.1.14 accidental combination combination of permanent load, variable load and accidental load when calculating the ultimate limit state, and the combination of permanent load and variable load when checking the overall stability of damaged structures after accidental event 2.1.15 characteristic/ nominal combination combination adopting the nominal value or combination value as the representative value of a load when calculating the limit state of normal use 2.1.16 frequent combination combination adopting the frequent value or quasi-permanent value as the representative value of load for variable loads when calculating the limit state of normal use 2.1.17 quasi-permanent combination combination adopting the quasi-permanent value as the representative value of load for variable loads when calculating the limit state of normal use 2.1.18 equivalent uniform live load actual load distributed discontinuously on the floor in structural design, which is generally replaced by equivalent uniform live load; the equivalent uniform live load refers to the uniformly distributed load whose load effect on the structure can be consistent with the actual load effect 2.1.19 tributary area floor area used to calculate the load of members in consideration of the deduction of uniformly distributed load of beams, columns and other members 2.1.20 dynamic coefficient equivalent coefficient of a structure or member subjected to dynamic load adopted for static design; its value is the ratio of the maximum dynamic effect of the structure or member to the corresponding static effect 2.1.21 reference snow pressure reference pressure of snow load, which is generally determined by the maximum value once every 50 years obtained through probability statistics of the observed data of snow self-weight on the local open flat ground 2.1.22 reference wind pressure reference pressure of wind load, which is generally determined using the Bernoulli equation (E.2.4) by the maximum value once every 50 years obtained through probability statistics of the observed data of the average wind speed within 10min at a height of 10m above the local open flat ground, in consideration of the corresponding air density 2.1.23 terrain roughness grade used to describe the distribution of irregular obstacles on the ground, when the wind blows over the ground within 2km before reaching the structure 2.1.24 thermal action action caused by temperature change in structure or structural member 2.1.25 shade air temperature temperature measured in a standard louver box and recorded in hours 2.1.26 reference air temperature reference value of temperature, which is determined through statistics according to the average value of the highest temperature in the month with the highest temperature and the average value of the lowest temperature in the month with the lowest temperature in the past years, based on the monthly average maximum temperature and monthly average minimum temperature once every 50 years 2.1.27 uniform temperature constant temperature throughout the cross section of the structural member, which dominates expansion or contraction of structural member 2.1.28 initial temperature temperature at which a structure forms an integrally restrained structural system at a certain stage of construction, which is also called the closure temperature 2.1.29 wind direction coefficient correction factor for different azimuth of wind pressure in different recurrence intervals, in consideration of the joint probability distribution of wind speed and wind direction, which is usually used in combination with wind tunnel test data 2.2 Symbols 2.2.1 Representative values of a load and load combination Ad——the characteristic value of accidental load; C——the specified limit of structure or member in normal use; Gk——the characteristic value of permanent load; Qk——the characteristic value of variable load; Rd——the design resistance value of structural member SAd——the characteristic value of accidental load effect; SGk——the characteristic value of permanent load effect; SQk——the characteristic value of variable load effect; Sd——the design value of load effect combination; γ0——the structural importance factor; γG——the partial coefficient of permanent load; γQ——the partial coefficient of variable load; γLj——the adjustment factor of variable load with design service life taken into consideration; ψc——the combination value coefficient of variable load; ψf ——the frequent value coefficient of variable load; ψq ——the quasi-permanent value coefficient of variable load. 2.2.2 Wind loads αD, Z——the acceleration of wind induced along-wind vibration of high-rise buildings at z height (m/s2); αL, z——the acceleration of wind induced across-wind vibration of high-rise buildings at z height (m/s2); B——the width of windward side of structure; Bz——the background component factor of the fluctuating wind load; C′L——the across-wind wind factor; C′T——the wind-induced torque coefficient; Cm——the angle edge correction factor of across-wind wind; Csm——the angle edge correction factor of across-wind wind power spectrum; D——the plane depth (along-wind dimension) or diameter of structure; f1—— the first-order natural frequency of the structure; fT1—— the first-order torsional natural frequency of the structure; ——the conversion frequency; ——the torsional conversion frequency; FDk——the characteristic value of along-wind wind per unit height; FLk——the characteristic value of across-wind wind per unit height; TTk——the characteristic value of wind-induced torque per unit height; g——the gravitational acceleration, or peak factor; H——the height of the top of the structure or mountain; I10——the nominal turbulence intensity of wind at 10m high; KL——the across-wind mode correction factor; KT——the torsional mode correction factor; R——the resonant component factor of the fluctuating wind load; RL——the wind induced across-wind vibration resonance factor; RT——the wind induced torsional vibration resonance factor; Re——the Reynolds number; St——the Strouhal number; T1——the first-order natural vibration period of the structure; TL1——the first-order across-wind natural vibration period of the structure; TT1——the first-order torsional natural vibration period of the structure; w0——the reference wind pressure; wk——the characteristic value of wind load; wLk——the characteristic value of equivalent wind load for across-wind vibration; wTk——the characteristic value of equivalent wind load for torsional vibration; α——the angle of gradient, or wind speed profile index; βz——the wind vibration coefficient at the height of z; βgz——the gustiness factor; vcr——the critical wind speed of across-wind resonance; vH——the wind speed at the top of the structure; μz——the exposure factor for wind pressure; μs——the shape factor of wind load; μs1——the local shape factor of wind load; μ′s1——the local shape factor of louver wind load; η——the wind load topography and landform correction factor; ηa——the fluctuation coefficient of acceleration of wind induced along-wind vibration; ——the air density; ρx, ρz——the correlation coefficient of fluctuating wind load in horizontal direction and vertical direction; z——the structural mode shape coefficient; ζ——the structural damping ratio; ζa——the across-wind aerodynamic damping ratio. 2.2.3 Thermal action Tmax, Tmin——the monthly average maximum temperature and monthly average minimum temperature; Ts, max, Ts, min——the highest average temperature of structure and the lowest average temperature of structure; T0, max, T0, min——the highest initial temperature of structure and the lowest initial temperature of structure; Tk——the characteristic value of uniform temperature action; αT——the linear expansion factor of material. 2.2.4 Accidental load AV——the area of through-hole plate (m2); Kdc——the dynamic coefficient for calculating equivalent uniform static load of explosion; m——the mass of automotive or helicopter; Pk——the characteristic value of impact load; pc——the maximum pressure of uniform dynamic load of explosion; pv——the approved failure pressure of through-hole plate; qce——the characteristic value of equivalent uniform static load of explosion; t——the impact time; v——the automotive speed; V——the volume of explosion space. 2.2.5 Other loads W——the crowd load per unit area; L——the loading length; B——the width of half bridge; Sk——the characteristic value of snow load; S0——the reference snow pressure; μr——the snow distribution coefficient of roof; ρ ——the snow density. 3 Classification and combination of loads 3.1 Classification of loads and representative values of loads 3.1.1 Loads on building structures may be classified into the following three categories: 1 Permanent load, including self-weight of structure, soil pressure, prestress, etc. 2 Variable load, including live load on floor, live load on roof and dust load, crane load, wind load, snow load, fire engine load, thermal action, construction pre-loading, building maintenance unit (BMU) load during work, roof helicopter load, etc. 3 Accidental load, including explosive force, impact force, etc. 3.1.2 When designing the building structures, different representative values shall be adopted for different loads according to the following requirements: 1 For permanent load, characteristic value shall be adopted as the representative value. 2 For variable load, characteristic value, combination value, frequent value or quasi-permanent value shall be adopted as the representative value according to design requirements. 3 The representative value of accidental load shall be determined according to the characteristics of building structures. 3.1.3 The design reference period of 50 years shall be adopted for determining the representative value of variable load. 3.1.4 The characteristic value of load shall be adopted according to the requirements of each clause of this code. 3.1.5 When the ultimate limit state or the serviceability limit state is designed according to characteristic combination, the load combination value or characteristic value shall be adopted as the representative value for variable load according to the specified load combination. The combination value of variable load shall be the characteristic value of variable load multiplied by the combination value coefficient of load. 3.1.6 When the serviceability limit state is designed according to frequent combination, the frequent value or quasi-permanent value of variable load shall be adopted as its load representative value; when it is designed according to the quasi-permanent combination, the quasi-permanent value of variable load shall be adopted as its load representative value. The frequent value of variable load shall be the characteristic value of variable load multiplied by the frequent value coefficient. The quasi-permanent value of variable load shall be the characteristic value of variable load multiplied by the quasi-permanent value coefficient. 1 General provisions 2 Terms and symbols 2.1 Terms 2.2 Symbols 3 Classification and combination of loads 3.1 Classification of loads and representative values of loads 3.2 Combination of loads 4 Permanent load 5 Live load on floors and roofs 5.1 Uniformly distributed live loads on floors in civil buildings 5.2 Live loads on floors in industrial buildings 5.3 Live loads on roofs 5.4 Ash load on roofs 5.5 Construction and maintenance loads and horizontal and vertical loads on railings 5.6 Dynamic coefficient 6 Crane load 6.1 Vertical and horizontal crane loads 6.2 Combination of multi-cranes 6.3 Dynamic coefficients of crane loads 6.4 Combination value, frequent value and quasi-permanent value of crane load 7 Wind load 7.1 Characteristic value of wind load and reference wind pressure 7.2 Exposure factor for wind pressure 7.3 Shape factor of wind load 7.4 Wind load of building envelope 7.5 Wind vibration of high-rise structure 7.6 Wind vibration of roof structure 8 Thermal action 8.1 General 8.2 Reference air temperature 8.3 Uniform thermal action 9 Accidental loads 9.1 General 9.2 Explosion 9.3 Impact 10 Other loads 10.1 Load of footbridge 10.2 Water pressure of underground structure 10.3 Snow load Annex A Self-weight and classification of commonly used materials and structural members Annex B Live load values of fire engine taking different slab span and influence of covered soil thickness under consideration Annex C Determine method of equivalent uniformly distributed live loads on floors Annex D Live loads on floors of industrial buildings Annex E Determination method of reference snow pressure, wind pressure and temperature Annex F Empirical formula for fundamental natural period of structure Annex G Approximate mode shape coefficient of structure Annex H Equivalent wind load for cross-wind and torsional vibration Annex J Acceleration of along-wind and cross-wind vibration for high-rise buildings Annex K Judging method of terrain roughness category Annex L Wind tunnel test guidelines Annex M Wind vibration coefficient of unilateral independence cantilevered roof Explanation of wording in this code List of quoted codes 1 总 则 1.0.1 为了适应广东省建筑结构设计的需要,符合安全适用、经济合理的要求,制定本规范。 1.0.2 本规范适用于广东省建筑工程的结构设计。 1.0.3 本规范依据国家标准《工程结构可靠性设计统一标准》CB50153—2008规定的基本准则制订。 1.0.4 建筑结构设计中涉及的作用包括直接作用(荷载)和间接作用。本规范仅对荷载和温度作用作出规定,有关可变荷载的规定同样适用于温度作用。 1.0.5 建筑结构设计中涉及的荷载,除应符合本规范的规定外,尚应符合国家和广东省现行有关标准的规定。 2 术语和符号 2.1 术语 2.1.1 永久荷载 permanent load 在结构使用期间,其值不随时间变化,或其变化与平均值相比可以忽略不计,或其变化是单调的并能趋于限值的荷载。 2.1.2 可变荷载 variable load 在结构使用期间,其值随时间变化,且其变化与平均值相比不可以忽略不计的荷载。 2.1.3 偶然荷载 accidental load 在结构设计使用年限内不一定出现,而一旦出现其量值很大,且持续时间很短的荷载。 2.1.4 荷载代表值 representative values of a load 设计中用以验算极限状态所采用的荷载量值,例如标准值、组合值、频遇值和准永久值。 2.1.5 设计基准期 design reference period 为确定可变荷载代表值而选用的时间参数。 2.1.6 标准值 characteristic value/ nominal value 荷载的基本代表值,为设计基准期内最大荷载统计分布的特征值(例如均值、众值、中值或某个分位值)。 2.1.7 组合值 combination value 对可变荷载,使组合后的荷载效应在设计基准期内的超越概率,能与该荷载单独出现时的相应概率趋于一致的荷载值;或使组合后的结构具有统一规定的可靠指标的荷载值。 2.1.8 频遇值 frequent value 对可变荷载,在设计基准期内,其超越的总时间为规定的较小比率或超越频率为规定频率的荷载值。 2.1.9 准永久值 quasi-permanent value 对可变荷载,在设计基准期内,其超越的总时间约为设计基准期一半的荷载值。 2.1.10 荷载设计值 design value of a load 荷载代表值与荷载分项系数的乘积。 2.1.11 荷载效应 load effect 由荷载引起结构或结构构件的反应,例如内力、变形和裂缝等。 2.1.12 荷载组合 load combination 按极限状态设计时,为保证结构的可靠性而对同时出现的各种荷载设计值的规定。 2.1.13 基本组合 fundamental combination 承载能力极限状态计算时,永久荷载和可变荷载的组合。 2.1.14 偶然组合 accidental combination 承载能力极限状态计算时永久荷载、可变荷载和一个偶然荷载的组合,以及偶然事件发生后受损结构整体稳固性验算时永久荷载与可变荷载的组合。 2.1.15 标准组合 characteristic/ nominal combination 正常使用极限状态计算时,采用标准值或组合值为荷载代表值的组合。 2.1.16 频遇组合 frequent combination 正常使用极限状态计算时,对可变荷载采用频遇值或准永久正常使用极限状态计算时,对可变荷载采用频遇值或准永久值为荷载代表值的组合。 2.1.17 准永久组合 quasi-permanent combination 正常使用极限状态计算时,对可变荷载采用准永久值为荷载代表值的组合。 2.1.18 等效均布荷载 equivalent uniform live load 结构设计时,楼面,上不连续分布的实际荷载,一般采用均布荷载代替;等效均布荷载系指其在结构上所得的荷载效应能与实际的荷载效应保持一致的均布荷载。 2.1.19 从属面积 tributary area 考虑梁、柱等构件均布荷载折减所采用的计算构件负荷的楼面面积。 2.1.20 动力系数 dynamic cofficient 承受动力荷载的结构或构件,当按静力设计时采用的等效系数,其值为结构或构件的最大动力效应与相应的静力效应的比值。 2.1.21 基本雪压 reference snow pressure 雪荷载的基准压力,一般按当地空旷平坦地面上积雪自重的观测数据,经概率统计得出50年一遇最大值确定。 2.1.22 基本风压 reference wind pressure 风荷载的基准压力,一般按当地空旷平坦地面上10m高度处10min平均的风速观测数据,经概率统计得出50年一遇最大值确定的风速,再考虑相应的空气密度,按贝努利( Bernoulli)公式(E.2.4)确定的风压。 2.1.23 地面粗糙度 terrain roughness 风在到达结构物以前吹越过2km范围内的地面时,描述该地面上不规则障碍物分布状况的等级。 2.1.24 温度作用 thermal action 结构或结构构件中由于温度变化所引起的作用。 2.1.25 气温 shade air temperature 在标准百叶箱内测量所得按小时定时记录的温度。 2.1.26 基本气温 reference air temperature 气温的基准值,取50年一遇月平均最高气温和月平均最低气温,根据历年最高温度月内最高气温的平均值和最低温度月内最低气温的平均值经统计确定。 2.1.27 均匀温度 uniform temperature 在结构构件的整个截面中为常数且主导结构构件膨胀或收缩的温度。 2.1.28 初始温度 initial temperature 结构在施工某个特定阶段形成整体约束的结构系统时的温度,也称合拢温度。 2.1.29 风压方向性系数 wind direction coefficient 考虑风速风向联合概率分布后,不同重现期风压的不同方位角修正系数,通常与风洞试验数据结合使用。 2.2 符号 2.2.1 荷载代表值及荷载组合 Ad——偶然荷载的标准值; C——结构或构件达到正常使用要求的规定限值; Gk——永久荷载的标准值; Qk——可变荷载的标准值; Rd——结构构件抗力的设计值; SAd——偶然荷载效应的标准值; SGk——永久荷载效应的标准值; SQk——可变荷载效应的标准值; Sd——荷载效应组合设计值; γ0——结构重要性系数; γG——永久荷载的分项系数; γQ——可变荷载的分项系数; γLj——可变荷载考虑设计使用年限的调整系数; ψc——可变荷载的组合值系数; ψf——可变荷载的频遇值系数; ψq——可变荷载的准永久值系数。 2.2.2 风荷载 αD,Z——高层建筑z高度顺风向风振加速度(m/s2); αL,z——高层建筑z高度横风向风振加速度(m/s2); B——结构迎风面宽度; Bz——脉动风荷载的背景分量因子; C′L——横风向风力系数; C′T——风致扭矩系数; Cm——横风向风力的角沿修正系数; Csm——横风向风力功率谱的角沿修正系数; D——结构平面进深(顺风向尺寸)或直径; f1——结构第1阶自振频率; fT1——结构第1阶扭转自振频率; ——折算频率; ——扭转折算频率; FDk——顺风向单位高度风力标准值; FLk——横风向单位高度风力标准值; TTk——单位高度风致扭矩标准值; g——重力加速度,或峰值因子; H——结构或山峰顶部高度; I10——10m高度处风的名义湍流强度; KL——横风向振型修正系数; KT——扭转振型修正系数; R——脉动风荷载的共振分量因子; RL——横风向风振共振因子; RT——扭转风振共振因子; Re——雷诺数; St——斯脱罗哈数; T1——结构第1阶自振周期; TL1——结构横风向第1阶自振周期; TT1——结构扭转第1阶自振周期; w0——基本风压; wk——风荷载标准值; wLk——横风向风振等效风荷载标准值; wTk——扭转风振等效风荷载标准值; α——坡度角,或风速剖面指数; βz——高度z处的风振系数; βgz——阵风系数; vcr——横风向共振的临界风速; vH——结构顶部风速; μz——风压高度变化系数; μs——风荷载体型系数; μs1——风荷载局部体型系数; μ′s1——百叶条风荷载局部体型系数; η——风荷载地形地貌修正系数; ηa——顺风向风振加速度的脉动系数; ρ——空气密度; ρx、ρz——水平方向和竖直方向脉动风荷载相关系数; z——结构振型系数; ζ——结构阻尼比; ζa——横风向气动阻尼比。 2.2.3 温度作用 Tmax、Tmin——月平均最高气温,月平均最低气温; Ts,max、Ts,min——结构最高平均温度,结构最低平均温度; T0,max、T0,min——结构最高初始温度,结构最低初始温度; Tk——均匀温度作用标准值; αT——材料的线膨胀系数。 2.2.4 偶然荷载 AV——通口板面积(m2); Kdc——计算爆炸等效均布静力荷载的动力系数; m——汽车或直升机的质量; Pk——撞击荷载标准值; pc——爆炸均布动荷载最大压力; pv——通口板的核定破坏压力; qce——爆炸等效均布静力荷载标准值; t——撞击时间; v——汽车速度(m/s); V——爆炸空间的体积。 2.2.5 其他荷载 W——单位面积的人群荷载; L——加载长度; B——半桥宽度; Sk——雪荷载标准值; S0——基本雪压; μr——屋面积雪分布系数; ρ——积雪密度。 3 荷载分类和荷载组合 3.1 荷载分类和荷载代表值 3.1.1 建筑结构的荷载可分为下列三类: 1 永久荷载,包括结构自重、土压力、预应力等。 2 可变荷载,包括楼面活荷载、屋面活荷载和积灰荷载、吊车荷载、风荷载、雪荷载、消防车荷载、温度作用、施工堆载、工作时的擦窗机荷载、屋顶直升飞机荷载等。 3 偶然荷载,包括爆炸力、撞击力等。 3.1.2 建筑结构设计时,应按下列规定对不同荷载采用不同的代表值: 1 对永久荷载应采用标准值作为代表值。 2 对可变荷载应根据设计要求采用标准值、组合值、频遇值或准永久值作为代表值。 3 对偶然荷载应按建筑结构使用的特点确定其代表值。 3.1.3 确定可变荷载代表值时应采用50年设计基准期。 3.1.4 荷载的标准值,应按本规范各章的规定采用。 3.1.5 承载能力极限状态设计或正常使用极限状态按标准组合设计时,对可变荷载应按规定的荷载组合采用荷载的组合值或标准值作为其荷载代表值。可变荷载的组合值,应为可变荷载的标准值乘以荷载组合值系数。 3.1.6 正常使用极限状态按频遇组合设计时,应采用可变荷载的频遇值或准永久值作为其荷载代表值;按准永久组合设计时,应采用可变荷载的准永久值作为其荷载代表值。可变荷载的頻遇值,应为可变荷载标准值乘以频遇值系数。可变荷载准永久值,应为可变荷载标准值乘以准永久值系数。 3.2 荷载组合 3.2.1 建筑结构设计应根据使用过程中在结构上可能同时出现的荷载,按承载能力极限状态和正常使用极限状态分别进行荷载组合,并应取各自的最不利的组合进行设计。 3.2.2 对于承载能力极限状态,应按荷载的基本组合或偶然组合计算荷载组合的效应设计值,并应采用下列设计表达式进行设计: γ0Sd≤Rd (3.2.2) 式中:γ0——结构重要性系数,应按各有关建筑结构设计规范的规定采用; Sd——荷载组合的效应设计值; Rd——结构构件抗力的设计值,应按各有关建筑结构设计规范的规定确定。 3.23 荷载基本组合的效应设计值Sd,应从下列荷载组合值中取用最不利的效应设计值确定: 1 由可变荷载控制的效应设计值,应按下式进行计算: (3.2.3-1) 式中:γGj——第j个永久荷载的分项系数,应按本规范第3.2.4条采用; γQi——第i个可变荷载的分项系数,其中γQ1为主导可变荷载Q1的分项系数,应按本规范第3.2.4条采用; γLi——第i个可变荷载考虑设计使用年限的调整系数,其中γL1为主导可变荷载Q1考虑设计使用年限的调整系数; SGjk——按第j个永久荷载标准值Gjk计算的荷载效应值; SQik——按第i个可变荷载标准值Qik计算的荷载效应值,其中SQ1k为诸可变荷载效应中起控制作用者; ψci——第i个可变荷载Qi的组合值系数; m——参与组合的永久荷载数; n——参与组合的可变荷载数。 2 由永久荷载控制的效应设计值,应按下式进行计算: (3.2.3-2) 注:1 基本组合中的效应设计值仅适用于荷载与荷载效应为线性的情况; 2 当对SQ1k无法明显判断时,应轮次以各可变荷载效应作为SQ1k,并选取其中最不利的荷载组合的效应设计值。 3.2.4 基本组合的荷载分项系数,应按下列规定采用: 1 永久荷载的分项系数应符合下列规定: 1) 当永久荷载效应对结构不利时,对由可变荷载效应控制的组合应取1.2,对由永久荷载效应控制的组合应取1.35; 2) 当永久荷载效应对结构有利时,不应大于1.0。 2 可变荷载的分项系数应符合下列规定: 1) 对标准值大于4kN/m2的工业房屋楼面结构的活荷载,应取1.3; 2) 其他情况,应取1.4。 3 对结构的倾覆、滑移或漂浮验算,荷载的分项系数应满足有关的建筑结构设计规范的规定。 3.2.5 地下水压力、消防车荷载及施工堆载的分项系数可按下列规定采用: 1 地下水压力分项系数按如下规定取值: 1) 按历史最高水位计算承载力时,水压力分项系数取1.0,无承压水情况下最高水位一般取到地面; 2) 其他情况,取1.2。 2 消防车荷载取1.0。 3 施工堆载取1.0。 3.2.6 可变荷载考虑设计使用年限的调整系数γL应按下列规定采用: 1 楼面和屋面活荷载考虑设计使用年限的调整系数γL应按表3.2.6采用。 表3.2.6 楼面和屋面活荷载考虑设计使用年限的调整系数γL 结构设计使用年限(年) 5 50 100 γL 0.9 1.0 1.1 注:1 当设计使用年限不为表中数值时,调整系数γL可按线性内插确定; 2 对于荷载标准值可控制的活荷载,设计使用年限调整系数γL取1.0。 2 对雪荷载和风荷载,应取重现期为设计使用年限,按本规范E.3.4条的规定确定基本雪压和基本风压,或按有关规范的规定采用。 3.2.7 荷载偶然组合的效应设计值Sd可按下列规定采用: 1 用于承载能力极限状态计算的效应设计值,应按下式进行计算: (3.2.7-1) 式中:SAd——按偶然荷载设计值Ad计算的荷载效应值; ψf1——第1个可变荷载的频遇值系数; ψqi——第i个可变荷载的准永久值系数。 2 用于偶然事件发生后受损结构整体稳固性验算的效应设计值,应按下式进行计算: (3.2.7-2) 注:组合中的设计值仅适用于荷载与荷载效应为线性的情况。 3.2.8 对于正常使用极限状态,应根据不同的设计要求,采用荷载的标准组合、频遇组合或准永久组合,并应按下列设计表达式进行设计: Sd≤C (3.2.8) 式中:C——结构或结构构件达到正常使用要求的规定限值,例如变形、裂缝、振幅、加速度、应力等的限值,应按各有关建筑结构设计规范的规定采用。 3.2.9 荷载标准组合的效应设计值Sd应按下式采用: (3.2.9) 注:组合中的设计值仅适用于荷载与荷载效应为线性的情况。 3.2.10 荷载频遇组合的效应设计值Sd应按下式进行计算: (3.2.10) 注:组合中的设计值仅适用于荷载与荷载效应为线性的情况。 3.2.11 荷载准永久组合的效应设计值Sd应按下式进行计算: (3.2.11) 注:组合中的设计值仅适用于荷载与荷载效应为线性的情况。 4 永久荷载 4.0.1 永久荷载应包括结构构件、围护构件、面层及装饰、固定设备、长期储物的自重,土压力,以及其他需要按永久荷载考虑的荷载。 4.0.2 结构自重的标准值可按结构构件的设计尺寸与材料单位体积的自重计算确定。 4.0.3 一般材料和构件的单位自重可取其平均值,对于自重变异较大的材料和构件,自重的标准值应根据对结构的不利或有利状态,分别取上限值或下限值。常用材料和构件单位体积的自重可按本规范附录A采用。 4.0.4 固定隔墙的自重可按永久荷载考虑,位置可灵活布置的隔墙自重应按可变荷载考虑。 5 楼面和屋面活荷载 5.1 民用建筑楼面均布活荷载 5.1.1 民用建筑楼面均布活荷载的标准值及其组合值系数、频遇值系数和准永久值系数的取值,不应小于表5.1.1的规定。 表5.1.1 民用建筑楼面均布活荷载标准值及其组合值、频遇值和准永久值系数 项次 类别 标准值(KN/m2) 组合值系数ψc 频遇值系数ψf 准永久值系数ψq 1 (1)住宅、宿舍、旅馆、办公楼、医院病房、托儿所、幼儿园 2.0 0.7 0.5 0.4 (2)试验室、阅览室、会议室、医院门诊室 2.0 0.7 0.6 0.5 2 教室、食堂、餐厅、一般资料档案室 2.5 0.7 0.6 0.5 3 (1)礼堂、剧场、影院、有固定座位的看台 3.0 0.7 0.5 0.3 (2)公共洗衣房 3.0 0.7 0.6 0.5 4 (1)商店、展览厅、车站、港口、机场大厅及其旅客等候室 3.5 0.7 0.6 0.5 (2)无固定座位的看台 3.5 0.7 0.5 0.3 5 (1)健身房、演出舞台 4.0 0.7 0.6 0.5 (2)运动场、舞厅 4.0 0.7 0.6 0.3 6 (1)书库、、档案库、贮藏室、百货食品超市 5.0 0.9 0.9 0.8 (2)密集柜书库 12.0 0.9 0.9 0.8 7 通风机房、电梯机房 7.0 0.9 0.9 0.8 8 汽车通道及客车停车库 (1)单向板楼盖(板跨不小于2m)和双向楼盖(板跨不小于3m×3m) 客车 4.0 0.7 0.7 0.6 消防车 35.0 0.7 0.5 0.0 (2)双向板楼盖(板跨不小于6m×6m) 和无梁楼盖 (柱网不小于 6m x 6m) 客车 2.5 0.7 0.7 0.6 消防车 20.0 0.7 0.5 0.0 9 厨房 (1)餐厅 4.0 0.7 0.7 0.7 (2)其他 2.0 .7 0.6 0.5 10 浴室、卫生间、盥洗室 2.5 0.7 0.6 0.5 11 走廊、门厅 (1)宿舍、旅馆、医院病房、托儿所、幼儿园、住宅 2.0 0.7 0.5 0.4 (2)办公楼、餐厅,医院门诊部 2.5 0.7 0.6 0.5 (3)教学楼及其他可能出现人员密集的情况 3.5 0.7 0.5 0.3 12 楼梯 (1)多层住宅(含单层) 2.0 0.7 0.5 0.4 (2)其他 3.5 0.7 0.5 0.3 13 阳台 (1)可能出现人员密集的情况 3.5 0.7 0.6 0.5 (2)其他 2.5 0.7 0.6 0.5 注:1 所给各项活荷载适用于一般使用条件,当使用荷载较大、情况特殊或有专门要求时,应按实际情况采用; 2 第6项书库活荷载当书架高度大于2m时,书库活荷载尚应按每米书架高度不小于2.5kN/m2确定; 3 第7项不包括基础自重、对特殊设备按具体产品情况采用; 4 第8项中的客车活荷载适用于停放载人少于9人的小型客车,消防车活荷载适用于满载总重为300kN的大型车辆,当不符合本表的要求时,应将车轮的局部荷载按结构效应等效原则,换算为等效均布荷载; 5 第8项消防车活荷载及550kN消防车活荷载根据不同板跨和不同折算覆土厚度的取值按附录B表B.0.1~表B.0.4采用; 6 第12项楼梯活荷载,对预制楼梯踏步平板,尚应按1.5kN集中荷载验算; 7 本表各项荷载不包括隔墙自重和二次装修荷载。对固定隔墙的自重应按永久荷载考虑,当隔墙位置可灵活自由布置时,非固定隔墙的自重应取不小于1/3的每延米长墙重(kN/m)作为楼面活荷载的附加值(kN/m2)计入,且附加值不应小于1.0kN/m2。 5.1.2 医院建筑、物资仓库、商业仓库等特殊建筑楼面均布活荷载的标准值及其组合值系数、频遇值系数和准永久值系数的取值,可采用表5.1.2的规定。 表5.1.2 特殊建筑楼面均布活荷载标准值及其组合值、频遇值和准永久值系数 项次 类别 标准值(KN/m2) 组合值系数ψc 频遇值系数ψf 准永久值系数ψq 1 医院建筑 (1)手术室(设3000型、3008型万能手术床及3001型骨科手术台) (2)CT室 (3)核磁共振室 (4)消毒室 1602型消毒柜 2616型治疗台及3704型椅 (5)血库(设D-101型冰箱) (6)产房(设3009型产床) (7)X光室 30MA移动式X光机 200MA诊断X光机 200KV治疗机 X光存片室 (8)口腔科 201型治疗台及电动脚踏升降椅 205型、206型治疗台及3704型椅 3.0 8.0 8.0 6.0 5.0 5.0 2.5 2.5 4.0 3.0 5.0 3.0 4.0 0.7 0.8 0.8 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.9 0.7 0.7 0.6 0.8 0.8 0.8 0.8 0.8 0.6 0.6 0.6 0.6 0.9 0.6 0.6 0.5 0.8 0.8 0.8 0.8 0.8 0.5 0.5 0.5 0.5 0.8 0.5 0.5 2 商业仓库 (1)储存笨重商品 (2)储存容重较大商品 (3)储存容重较轻商品 (4)储存轻泡商品 (5)综合商品仓库 (6)各类库房的底层地面 30.0 20.0 15.0 8.0 15.0 20.0 0.9 0.9 0.8 0.8 0.8 0.8 0.8 0.8 3 物资仓库 (1)金属库 (2)机电产品库 一、二类机电产品 三类机电产品 车库 (3)化工、轻工物资库 一、二类化工、轻工物资 三类化工、轻工物资 (4)建筑材料库 120.0 35.0 5.0 4.0 35.0 18.0 20.0 0.9 0.9 0.8 注:1 第1项当医疗设备型号于表中不符时,应按实际情况采用; 2 第2项商品包装容重分类按附录A.2确定,(1)~(3)、(5)、(6)条考虑了起重量1000kg以内的叉车作业; 3 第3项物资分类按附录A.3确定,(2)三类机电产品活荷载适用于货架情况,堆码情况标准值不小于9.0 kN/m2;(3)三类化工、轻工物资库及(4)建筑材料库活荷载适用于楼面计算,地面计算的情况标准值不小于30.0kN/m2。 5.1.3 设计楼面梁、墙、柱及基础时,本规范表5.1.1中楼面活荷载标准值的折减系数取值不应小于下列规定: 1 设计楼面梁时: 1) 第1(1)项当楼面梁从属面积超过25m2时,应取0.9; 2) 第1(2)~7项当楼面梁从属面积超过50m2时,应取0.9; 3) 第8项对单向板楼盖的次梁和槽形板的纵肋应取0.8,对单向板楼盖的主梁应取0.6,对双向板楼盖的梁应取0.8; 4) 第9~13项应采用与所属房屋类别相同的折减系数。 2 设计墙、柱和基础时: 1) 第1(1)项应按表5.1.3规定采用; 2) 第1(2)~7项应采用与其楼面梁相同的折减系数; 3) 第8项的客车,对单向板楼盖应取0.5,对双向板楼盖和无梁楼盖应取0.8; 4) 第9~13项应采用与所属房屋类别相同的折减系数。 注:楼面梁的从属面积应按梁两侧各延伸二分之一梁间距的范围内的实际 面积确定。. 表5.1.3 活荷载按楼层的折减系数 墙、柱、基础计算截面以上的层数 1 2~3 4~5 6~8 9~20 >20 计算截面以上各楼层活荷载总和的折减系数 1.00 (0.90) 0.85 0.70 0.65 0.60 0.55 注:当楼面梁的从属面积超过25m2时,应采用括号内的系数。 5.1.4 设计墙、柱时,本规范表5.1.1中第8项的消防车活荷载可按实际情况考虑;设计基础时可不考虑消防车荷载。 5.1.5 楼面结构上的局部荷载可按本规范附录C的规定,换算为等效均布活荷载。 5.2 工业建筑楼面活荷载 5.2.1 工业建筑楼面在生产使用或安装检修时,由设备、管道、运输工具及可能拆移的隔墙产生的局部荷载,均应按实际情况考虑,可采用等效均布活荷载代替。对设备位置固定的情况,可直接按固定位置对结构进行计算,但应考虑因设备安装和维修过程中的位置变化可能出现的最不利效应。工业建筑楼面堆放原料或成品较多、较重的区域,应按实际情况考虑;一般的堆放情况可按均布活荷载考虑或等效均布活荷载考虑。 注:1 楼面等效均布活荷载,包括计算次梁、主梁和基础时的楼面活荷载,可分别按本规范附录C的规定确定; 2 对于一般金工车间、仪器仪表生产车间、半导体器件车间、棉纺织车间、轮胎准备车间和粮食加工车间,当缺乏资料时,可按本规范附录D采用。 5.2.2 工业建筑楼面(包括工作平台)上无设备区域的操作荷载,包括操作人员、一般工具、零星原料和成品的自重,可按均布活荷载2.0kN/m2考虑。在设备所占区域内可不考虑操作荷载和堆料荷载。生产车间的楼梯活荷载,可按实际情况采用,但不宜小于3.5kN/m2。生产车间的参观走廊活荷载,可采用3.5kN/m2。 5.2.3 工业建筑楼面活荷载的组合值系数、频遇值系数和准永久值系数除按本规范附录D中给出的以外,应按实际情况采用;但在任何情况下,组合值和频遇值系数不应小于0.7,准永久值系数不应小于0.6。 5.3 屋面活荷载 5.3.1 房屋建筑的屋面,其水平投影面.上的屋面均布活荷载的标准值及其组合值系数、频遇值系数和准永久值系数的取值,不应小于表5.3.1的规定。 表5.3.1 屋面均布活荷载标准值及其组合值系数、频遇值系数和准永久值系数 项次 类别 标准值(kN/m2) 组合值系数ψc 频遇值系数ψf 准永久值系数ψq 1 不上人的屋面 0.5 0.7 0.5 0.0 2 上人的屋面 2.0 0.7 0.5 0.4 3 屋顶花园 3.0 0.7 0.6 0.5 4 屋顶运动场 3.0 0.7 0.6 0.4 5 有太阳能板的屋面 2.5 0.7 0.6 0.5 注:1 不上人的屋面,当施工或维修荷载较大时,应按实际情况采用;对不同类型的结构应按有关设计规范的规定采用,但不得低于0.3kN/m2; 2 当上人的屋面兼作其他用途时,应按相应楼面活荷载采用; 3 对于因屋面排水不畅、堵塞等引起的积水荷载,应采取构造措施加以防止; 必要时,应按积水的可能深度确定屋面活荷载; 4 屋顶花园活荷载不应包括花圃土石等材料自重; 5 有太阳能板的屋面活荷载有资料时可按实际采用。 5.3.2 屋面直升机停机坪荷载应按下列规定采用: 1 屋面直升机停机坪荷载应按局部荷载考虑,或根据局部荷载换算为等效均布荷载考虑。局部荷载标准值应按直升机实际最大起飞重量确定,当没有机型技术资料时,可按表5.3.2的规定选用局部荷载标准值及作用面积。 表5.3.2 屋面直升机停机坪局部荷载标准值及作用面积 类型 最大起飞重量(t) 局部荷载标准值(kN) 作用面积 轻型 2 20 0.20m×0.20m 中型 4 40 0.25m×0.25m 重型 6 60 0.30m×0.30m 2 屋面直升机停机坪的等效均布荷载标准值不应低于5.0kN/m2。 3 屋面直升机停机坪荷载的组合值系 数应取0.7,频遇值系数应取0.6,准永久值系数应取0。 5.3.3 不上人的屋面均布活荷载,可不与雪荷载和风荷载同时组合。 5.4 屋面积灰荷载 5.4.1 设计生产中有大量排灰的厂房及其邻近建筑时,对于具有一定除尘设施和保证清灰制度的机械、冶金、水泥等的厂房屋面,其水平投影面上的屋面积灰荷载标准值及其组合值系数、频遇值系数和准永久值系数,应分别按表5.4.1-1和表5.4.1-2采用。 表5.4.1-1 屋面积灰荷载标准值及其组合值系数、频遇值系数和准永久值系数 项次 类别 标准值(kN/m2) 组合值系数ψc 频遇值系数ψf 准永久值系数ψq 屋面无挡风板 屋面有挡风板 挡风板内 挡风板外 1 机械厂铸造车间(冲天炉) 0.50 0.75 0.30 0.9 0.9 0.8 2 炼钢车间(氧气转炉) — 0.75 0.30 3 锰、铬铁合金车间 0.75 1.00 0.30 4 硅、钨铁合金车间 0.30 0.50 0.30 5 烧结室、一次混合室 0.50 1.00 0.20 6 烧结厂通廊及其他车间 0.30 — — 7 水泥厂有灰源车间(窑房、磨房、联合贮库、烘干房、破碎房) 1.00 — — 8 水泥厂无灰源车间(空气压缩机站、机修间、材料库、配电站) 0.50 — — 注:1 表中的积灰均布荷载,仅应用于屋面坡度α不大于25°;当α大于45°时,可不考虑积灰荷载;当α在25°~45°范围内时,可按插值法取值; 2 清灰设施的荷载另行考虑; 3 对第1~4项的积灰荷载,仅应用于距烟囱中心20m半径范围内的屋面;当邻 近建筑在该范围内时,其积灰荷载对第1、3、4项应按车间屋面无挡风板的采用,对2项应按车间屋面挡风板外的采用。 表5.4.1-2 高炉邻近建筑的屋面积灰荷载标准值 及其组合值系数、频遇值系数和准永久值系数 高炉容积(m3) 标准值(kN/m2) 组合值系数ψc 频遇值系数ψf 准永久值系数ψq 屋面离高炉距离(m) ≤50 100 200 <255 255~620 >620 0.50 0.75 1.00 — 0.30 0.50 — — 0.3 1.0 1.0 1.0 注:1 表5.4.1-1中的注1和注2也适用本表; 2 当邻近建筑屋面离高炉距离为表内中间值时,可按插入法取值。 5.4.2 对于屋面上易形成灰堆处,当设计屋面板、檩条时,积灰荷载标准值宜乘以下列规定的增大系数: 1 在高低跨处两倍于屋面高差但不大于6.0m的分布宽度内取2.0。 2 在天沟处不大于3.0m的分布宽度内取1.4。 5.4.3 积灰荷载应与雪荷载或不上人的屋面均布活荷载两者中的较大值同时考虑。 |
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 |
服务热线:400-001-5431 | 电话:010-8572 5110 | 传真:010-8581 9515 | Email: bz@bzfyw.com | |
版权所有: 北京悦尔信息技术有限公司 2008-2020 京ICP备17065875号-1 51La |
本页关键词: |
DBJ 15-101-2014, DBJ/T 15-101-2014, DBJT 15-101-2014, DBJ15-101-2014, DBJ 15, DBJ15, DBJ/T15-101-2014, DBJ/T 15, DBJ/T15, DBJT15-101-2014, DBJT 15, DBJT15 |