![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
This standard is drafted according to the rules provided in Q/CNNC JA2-2013. This standard is prepared according to the basic requirements for radioactive solid waste containers and additional requirements for high level radioactive solid waste packages specified in EJ 1186-2005 "Characterization of Radioactive Waste Forms and Packages" and by reference to the recommendations for waste packages and containers in IAEA-TECDOC-1515 "Development of Specification for Radioactive Waste Package (October, 2006)". This standard was proposed by China National Nuclear Corporation. This standard is under the jurisdiction of Institute for Standardization of Nuclear Industry (ISNI). Drafting organization of this standard: China Nuclear Power Engineering Co., Ltd. Chief drafters of this standard: Yuan Kun, Zhang Wei, Deng Guoqing, Sun Donghui, Jin Yao and Yan Yingchun. ENTERPRISE STANDARD OF CHINA NATIONAL NUCLEAR CORPORATION 中国核工业集团公司企业标准 Q/CNNC JD 12-2016 Container for High level Radioactive Solid Waste 高水平放射性固体废物容器 1 Scope This standard specifies containers directly containing high-level radioactive solid wastes (hereinafter referred to as the "container") in terms of specification, technical requirements, performance inspection method and acceptance rules, etc. This standard is applicable to containers directly containing high-level radioactive solid wastes and is not applicable to shielding container, transport container and (or) outer packaging container. 2 Normative References The following documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition (including any amendments) applies to this document. GB 150 Pressure Vessels GB/T 1804 General Tolerances - Tolerances for Linear and Angular Dimensions without Individual Tolerance Indications GB 9133 Classification of Radioactive Waste GB 14500 Regulations for Radioactive Waste Management EJ 1186 Characterization of Radioactive Waste Forms and Packages NB/T 47003.1 Steel Welded Atmospheric Pressure Vessels NB/T 47013 Nondestructive Testing of Pressure Equipment NB/T 47014 Welding Procedure Qualification for Pressure Equipment 3 Terms and Definitions For the purposes of this document, the following terms and definitions apply. 3.1 High-level radioactive solid waste Radioactive solid wastes (except ɑ waste) which contain radioactive substances whose the activity concentration of radioactive nuclide and heat release rate meet any one of the following conditions: a) Containing radioactive nuclide with the half-life greater than 5a and less than or equal to 30a, of which the heat release rate is greater than 2kW/m3 or the activity concentration is greater than 4×1011Bq/kg. b) Containing radioactive nuclide with the half-life greater than 30a, of which the activity concentration is greater than 4×1016Bq/kg or the heat release rate is greater than 2kW/m3. High-level radioactive solid wastes mainly include solidified body of high level radioactive liquid wastes generated by nuclear fuel reprocessing, spent nuclear fuel prepared to be directly processed and other solid wastes with corresponding radioactive level. 3.2 Container for high-level radioactive solid waste Containers filled with high-level radioactive solid waste directly, which are containment boundary of high-level radioactive wastes. Containers such as shielding container and transport container may be added outside as required in case of transportation and disposal. 3.3 Contents Wastes which are filled into containers. 3.4 Integrity No breakage of containment boundary after normal operation of waste container after packaging and falling accidents, with the purpose of ensuring the containment safety function of container to contents. Relatively large deformation is allowed, however, the deformation degree shall not influence follow-up operation of the container. 4 Container Size for High-level Radioactive Solid Waste Containers for high-level radioactive solid wastes are classified into Type HD-I, Type HD-II and Type HD-III according to different uses. The boundary dimensions and allowable deviation shall be in accordance with those specified in Table 1. Table 1 Boundary Dimensions and Allowable Deviation of Containers for High-level Radioactive Solid Wastes Type External diameter mm Diameter deviation mm Minimum wall thickness mm Total heighta mm Height deviation mm Nominal volume L HD-I 430 ±2 3 1338 ±2 170 HD-II 570 ±2 3 900 ±2 200 HD-III 710 ±2 3 1080 ±2 400 Type HD-I is applicable to high-level radioactive vitrification products or other applicable high-level radioactive solid wastes; Type HD-II is applicable to applicable high-level radioactive solid wastes other than those belong to Type HD-I or Type HD-III; Type HD-III is applicable to high-level radioactive waste filter element or other applicable large high-level radioactive solid wastes. a Total height in the table includes container head cover; however, it excludes the partial protruded part of container used for connection with other equipment. 5 Technical Requirements for Container 5.1 Basic requirements 5.1.1 The containment of radioactivity and operability of container within 100a (before processing) design lifetime shall be ensured after the container is filled with wastes. 5.1.2 The containers shall meet other relevant requirements specified in GB 14500 and EJ 1186. 5.2 Contents suitable for filling 5.2.1 The performance of container contents shall meet the relevant requirements of high-level radioactive solid wastes specified in GB 9133 and EJ 1186. 5.2.2 The container contents shall not contain free liquid. 5.2.3 The reserved space of container after wastes filling shall be able to ensure that the container will not cause unfavorable impacts on its strength and structure on account of factors such as radiation decomposition of contents, degradation of organic matter and heat release temperature change. 5.3 Material requirements 5.3.1 The container material shall be adapted to the characteristics of filled contents and the working environment conditions of container, and shall meet relevant requirements of steel standards. 5.3.2 The mechanical performance of material shall meet the design and service requirements as well as the specific requirements in reference design standards. 5.3.3 The strength of material shall be able to bear the maximum load combinations under various operation conditions of container; see 5.4.1 for various load combinations. The toughness of material shall be able to withstand the maximum impact load possibly borne by the container. 5.3.4 The material shall be able to bear the maximum temperature under all the operation conditions. The material with high-temperature resistance (1,100℃) and good oxidation resistance shall be considered for Type HD-I containers which are filled with melted glass directly. 5.3.5 The material shall be well compatible with contents and service environment and have corrosion resistance required for design life; the test method and acceptance criteria for corrosion resistance shall be specified in design documents of the container. 5.3.6 The material shall be provided with good cold or thermal forming process and welding performance. 5.3.7 The austenitic stainless steel material is recommended in this standard. 5.4 Structure requirements 5.4.1 The design load of container structure shall consider the maximum load combination under normal operation condition and accident condition of the container; the minimum wall thickness shall meet those specified in Table l. The loads possibly borne by the container include (but not limited to): a) Internal pressure, external pressure or maximum internal and external pressure difference of the container (with consideration of internal pressure changes of the container caused by gas possibly generated due to material degradation or decomposition within container or dropping of environment temperature); b) Mass of the container and contents; c) Thermal load (thermal stress generated by temperature gradient or temperature change); d) Impact load (normal condition and accident condition); e) Combined action of the above-mentioned loads on the container. 5.4.2 The shape and size of container shall be able to ensure the center temperature of container content is lower than design temperature limit under storage conditions and keep the physical and chemical performance of content wastes. 5.4.3 The internal structure of container shall be simple and convenient for wastes and fixed medium filling and compacting. 5.4.4 The external structure of container shall be convenient for operations such as remote-controlled transportation, storage, stacking, retrieval and seal welding, and shall match with the shielding, transportation, storage and processing container; the external surface structure shall be considered being difficult to be polluted and easy to be cleaned. 5.4.5 The structure design of container shall be beneficial to prevent concentration of various stresses, reduce geometrical discontinuity in structure and reduce the number of welded joints as much as possible. In the design, verified mechanical calculation software may be used for simulated analysis and calculation, so as to ensure integrity of container can be ensured under various operation conditions of the container. 5.4.6 The design of container head cover shall be convenient for remote-controlled welding with container cylinder after waste filling; all the welding, test, inspection, quality and other requirements of this weld (the last weld for welding at container service site) shall be specified in design documents. 5.4.7 The hoisting structure of container shall consider non-protruding structure to make it does not bear overlarge impact load directly under various operation conditions, such as falling, and to ensure integrity of the container. 5.4.8 The structure of container shall be easily processed and manufactured and feature in material saving, cost reduction and storage space narrowing. 5.5 Processing and manufacturing requirements 5.5.1 General requirements The processing and manufacturing herein include the last weld after waste filling and container sealing. The manufacturing of container shall meet not only the requirements of this standard, but also the relevant requirements of design drawing. In the manufacturing, the method to reduce material thickness, such as embossed stamp, shall not be adopted on the material of container cylinder as the material processing confirmation mark. 5.5.2 Forming requirements The forming requirements for cylinder and shell of the container are in accordance with those specified in GB 150; where there are special requirements, the requirements higher than standard may be proposed. 5.5.3 Limit deviation requirements for linear size of machined and un-machined surfaces The limit deviation for linear size of machined and un-machined surfaces shall meet the requirements of Class m and Class c in GB/T 1804. 5.5.4 Welding requirements 5.5.4.1 Preparation before welding The requirements of preparation before welding and welding environment specified in GB 150 shall be met. 5.5.4.2 Welding procedure requirements The welding procedure qualification before welding of container shall be carried out in accordance with those specified in NB/T 47014. The storage life of documents such as welding procedure qualification report, welding procedure specification, welding record and welder identification marker shall be at least 10a. 5.5.4.3 Boundary dimension and appearance requirements of welded joint surface The welded joint of container shall meet those specified in GB 150; where there are special requirements, the requirements higher than standard may be proposed. 5.5.4.4 Repairing requirements of welded joint Where the welded joints of container need repairing, the repairing and welding procedure shall be in accordance with 5.5.4.2; the same part shall not be repaired for more than two times. 5.5.5 Surface treatment requirements The external surface of container shall be polished; the surface roughness shall be lower than Ra1.6μm; the roughness of weld shall be polished lower than Ra1.6μm. 5.5.6 Non-destructive testing requirements 5.5.6.1 Non-destructive testing methods and requirements of raw materials, parts and components The non-destructive testing methods and requirements of raw materials, parts and components of the container shall be in accordance with corresponding requirements of NB/T 47013. 5.5.6.2 Non-destructive testing method and qualified requirements of welded joint The non-destructive testing of welded joint of the container shall be carried out in accordance with the requirements and methods of design drawing. The testing standard shall be in accordance with those specified in NB/T 47013; the radiographic testing not lower than Grade II is regarded as qualified and the penetration testing of Grade I is regarded as qualified. 5.5.6.3 Testing requirements of repair welding area The repair welding shall be carried out after the unallowable defects (if any) are removed; after repair welding, this part shall be retested with former testing method. 5.6 Requirements for last weld after container sealing 5.6.1 The seal weld after waste filling and container sealing is not completed within the container manufacturer; however, the welding procedure qualification, welding test and non-destructive testing of this weld within the manufacturer shall be carried out according to the design requirements and automatic welding procedure adopted by the using unit in the process of type identification test in the manufacturer. The welding, test, inspection, quality and other requirements of this weld shall be proposed in design documents of the container. 5.6.2 The using unit of container shall carry out welding procedure qualification, welding test, non-destructive testing and test welding to this weld according to the design requirements before wastes filling; if the design requirements are met, the welding may be carried out officially according to the same welding procedure qualified after wastes filling. 5.6.3 For non-destructive testing of this weld, the qualification of welded joint shall be carried out according to the requirements of NB/T 47013 in the process of type identification test in the manufacturer and seal welding test by the using unit of container before waste filling. The testing qualified requirements are as specified in 5.5.6.2. The seal weld after waste filling may not be subjected to non-destructive testing, and its testing method shall be specified in design documents of the container. Foreword I 1 Scope 2 Normative References 3 Terms and Definitions 4 Container Size for High-level Radioactive Solid Waste 5 Technical Requirements for Container 6 Inspection Method of Container 7 Type Identification Test and Acceptance Requirements of Container 8 Ex-factory Inspection Rules of Container Products 9 Marks 10 Packaging, Storage and Transportation of Container Products 11 Product Quality Assurance Bibliography 中国核工业集团公司企业标准 Q/CNNC JD 12—2016 高水平放射性固体废物容器 2016—05—04发布 2016—06—01实施 中国核工业集团公司 发布 前言 本标准按照Q/CNNC JA 2—2013给出的规则起草。 本标准是根据EJ 1186--2005《放射性废物体和废物包的特性鉴定》中对放射性固体废物容器的基本要求和对高放固体废物包的附加要求,参照国际原子能机构出版的第1515号技术报告《放射性废物包装技术要求的制定》(IAEA-TECDOC-1515 Development of Specification for Radioactive Waste Package,October,2006)中对废物包装容器的推荐意见编写的。 本标准由中国核工业集团公司提出。 本标准由核工业标准化研究所归口。 本标准起草单位:中国核电工程有限公司。 本标准主要起草人:袁坤、张威、邓国清、孙东辉、金瑶、颜迎春。 高水平放射性固体废物容器 1 范围 本标准规定了直接盛装高水平放射性固体废物的容器(以下简称容器)的规格、技术要求、性能检验方法和验收规则等。 本标准适用于直接盛装高水平放射性固体废物的容器,不适用于屏蔽容器、运输容器和(或)外包装。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB 150 压力容器 GB/T 1804 一般公差 未注公差的线性和角度尺寸公差 GB 9133 放射性废物的分类 GB 14500 放射性废物管理规定 EJ 1186 放射性废物体和废物包的特性鉴定 NB/T 47003.1 钢制焊接常压容器 NB/T 47013 承压设备无损检测 NB/T 47014 承压容器焊接工艺评定 3 术语和定义 下列术语和定义适用于本文件。 3.1 高水平放射性固体废物 含放射性物质,放射性核素的活度浓度及释热率符合下列任意条件的放射性固态废弃物(ɑ废物除外): a)含有半衰期大于5a,小于或等于30a的放射性核素,其释热率大于2kW/m3或放射性活度浓度大于4X1011Bq/kg。 b)含有半衰期大于30a的放射性核素,其放射性活度浓度大于4X1016Bq/kg,或释热率大于2kW/m3。 主要包括乏燃料后处理产生的高放废液的固化体、准备直接处置的乏燃料及相应放射性水平的其它固体废物。 3.2 高放固体废物容器 直接盛装高水平放射性固体废物的容器,是高放废物的包容边界。运输和处置时,根据需要可在外面增加屏蔽容器、运输容器等。 3.3 内容物 装入容器内的废物体。 3.4 完整性 废物容器在封装后的正常操作及下落事故后包容边界不出现破裂,目的是保证容器对内容物的包容安全功能。允许有较大变形,但变形程度不得影响容器的后续操作。 4高放固体废物容器规格 高放固体废物容器按不同用途分为HID-I型、HD-II型和HD-III型三种规格。其外形尺寸和允许偏差应符合表1的规定。 表1 高放固体废物容器外形尺寸和允许偏差 型号 外直径 mm 直径偏差 mm 最小壁厚 mm 总高度a mm 高度偏差 mm 标称容积 L HD-I 430 ±2 3 1 338 ±2 170 HD-II 570 ±2 3 900 ±2 200 HD-III 710 ±2 3 1 080 ±2 400 HD-I型适用于高放玻璃固化产品或其它可适用的高放固体废物; HD-II型适用于除HD-I和HD-III所述高放固体废物外的其它可适用的高放固体废物; HD-III型适用于高放废过滤器芯或其它可适用的大型高放固体废物。 a表中总高度包括容器顶盖,但不包括容器与其他设备对接用的局部突出部位。 5容器的技术要求 5.1 基本要求 5.1.1 容器在盛装废物后应保证在100a(处置前)设计寿期内对放射性的包容性和对容器的可操作性。 5.1.2满足GB 14500和EJ 1186中规定的其它相关要求。 5.2适用充填的内容物 5.2.1 容器内容物的性能应满足GB 9133和EJ 1186中对高放固体废物的相关要求。 5.2.2容器内容物中不得含有游离液体。 5.2.3容器填装废物后的预留空间量应能保证容器不会因内容物的辐射分解、有机物降解、释热温度变化等因素对容器强度和结构造成不利的影响。 5.3材料要求 5.3.1 容器材料与所盛装内容物的特性及容器所处的工作环境条件相适应,符合有关钢材标准要求。 5.3.2材料的力学性能应满足设计和使用要求,符合设计引用标准中的具体要求。 5.3.3材料强度应能承受容器各种工况下的最大载荷组合,各类载荷组合见5.4.1。材料韧性应能抵抗容器可能承受的最大冲击载荷。 5.3.4材料应能承受所有工况下的最高温度。对直接注入熔融玻璃的HD-I型容器材料应考虑选用耐高温(1100℃)、且抗氧化性能好的材料。 5.3.5材料应与内容物和使用环境具有良好的相容性,并具有满足设计寿命要求的耐腐蚀性能,容器设计文件应规定腐蚀性能试验方法和验收准则。 5.3.6材料应具有良好的冷、热成型工艺和焊接性能。 5.3.7本标准推荐选用奥氏体不锈钢材料。 5.4结构要求 5.4.1 容器结构设计载荷应考虑容器正常运行工况和事故工况下的最大载荷组合,最小壁厚应满足表l中的要求。容器可能承受的载荷包括(但不限于): a) 容器内压、外压或最大内外压差(考虑容器内可能因材料降解或分解产生气体,或所处环境温度下降而引起的容器内压力变化); b)容器及内容物质量; c)热载荷(由温度梯度或温度变化产生的热应力); d)冲击载荷(正常工况和事故工况); e)上述载荷在容器上的组合作用。 5.4.2 容器形状和大小应确保在贮存条件下容器内容物的中心温度低于设计温度限制,保持内容物废物体的物理、化学性能。 5.4.3 容器内部结构应简单,便于废物和固定介质装填密实。 5.4.4 容器外部结构,应方便遥控搬运、存放、堆码、回取和封盖焊接等操作,并能与其屏蔽、运输、贮存和处置容器相匹配;外表面结构应考虑不易被污染且易于去污。 5.4.5 容器结构设计应有利于防止各类应力集中,尽可能减少结构上的几何不连续,尽可能减少容器焊接接头数量。设计可使用经过验证的力学计算软件进行仿真分析计算,保证容器在各类工况下,均能保证容器的完整性。 5.4.6 容器顶盖的设计应便于装填废物后与容器筒体进行遥控焊接,该焊缝作为容器使用现场施焊的最后一道焊缝,其焊接、试验、检验及质量等要求均应在设计文件中予以规定。 5.4.7 容器吊装结构,应考虑采用非外伸结构形式,使其在跌落等各类工况中不直接承受过大冲击载荷,保证容器完整性。 5.4.8 容器结构应易于加工制造、节省材料、减少成本、减少贮存空间。 5.5 加工制造要求 5.5.1 一般要求 此处的加工制造包括容器盛装废物加盖后的最后一道焊缝。容器的制造除应符合本标准的规定外,还应符合设计图纸相关要求。制造中不得在容器筒体材料上采用硬印等减薄材料厚度的方法作为材料加工确认标记。 5.5.2 加工成形要求 容器的筒体与壳体成形的要求按GB 150中的规定,有特殊要求时可以提出高于标准中的要求。 5.5.3 机械加工表面和非机械加工表面线性尺寸极限偏差要求 机械加工表面和非机械加工表面的线性尺寸的极限偏差应符合GB/T 1804中m级和c级规定的要求。 5.5.4 焊接要求 5.5.4.1 焊前准备 应满足GB 150中的焊前准备及施焊环境要求。 5.5.4.2 焊接工艺要求 容器施焊前的焊接工艺评定应按NB/T 47014的规定进行。焊接工艺评定报告、焊接工艺规程、施焊记录及焊工识别标记等文件的保存期不少于10a。 5.5.4.3 焊接接头表面形状尺寸及外观要求 容器的焊接接头按GB 150中的规定,有特殊需要可提出高于标准的要求。 5.5.4.4 焊接接头返修要求 当容器焊接接头需返修时,共返修焊接工艺应按5.5.4.2进行,同一部位的返修次数不得超过2次。 5.5.5 表面处理要求 容器外表面应抛光处理,表面粗糙度应低于Ra1.6μm。 5.5.6 无损检测要求 5.5.6.1 原材料、零部件的无损检测方法及要求 容器的原材料、零部件的无损检测方法及要求按NB/T 47013相应规定执行。 5.5.6.2焊接接头无损检测方法及合格要求 容器焊接接头的无损检测应按设汁图纸的要求及方法进行。检测标准按NB/T 47013的规定,射线检测不低于II级为合格,渗透检测工级为合格。 5.5.6.3补焊区的检测要求 经检测如有不允许的缺陷时,应在缺陷清除干净后进行补焊,补焊后对该部分采用原检测方法重新检测。 5.6容器加盖后最后一道焊缝的要求 5.6.1 容器盛装废物加盖后的封焊焊缝不在容器制造厂内完成,但在制造厂进行型式鉴定试验过程中,应对该道焊缝按设计要求和使用单位所采用自动焊工艺,进行制造厂内的焊接工艺评定、焊接试验和无损检测。该焊缝的焊接、试验、检测和质量等要求均应在容器设计文件中提出。 5.6.2容器使用单位须在容器盛装废物前,按照设计要求对该道焊缝进行焊接工艺评定、焊接试验和无损检测和试焊,达到设计要求后方可正式在容器盛装废物后按照经评定合格的相同焊接工艺施焊。 5.6.3该焊缝的无损检测,应在制造厂容器型式鉴定试验和在容器使用单位容器盛装废物前的封盖焊接试验过程中,按NB/T 47013的规定进行焊接接头评定。检测合格要求同5.5.6.2中规定的要求。盛装废物后的封盖焊缝可不进行无损检测,其检验方法应在容器设计文件予以规定。 5.7容器产品质量的要求 5.7.1 容器产品尺寸及允差 容器产品尺寸及允差应满足表1和设计图纸的规定。 5.7.2容器产品的密封性能要求 制造完工的容器应按设计图纸的规定进行液压试验和(或)气密性试验。对设计图纸明确规定按常压容器试验要求进行时,容器应进行煤油渗漏试验和注水试验。 经液压试验和(或)气密封试验后,容器无渗漏、无可见变形、试验过程中无异常响声为合格。 经煤油渗漏和注水试验后,容器无渗漏、无可见变形为合格。 5.7.3容器产品的负载性能要求 容器产品按6.6负载试验后应无明显变形和破坏;按6.7堆码试验后容器不变形,容器堆码48 h后,码垛的总直线度在初始堆码直线度的基础上不得大于总高度的5‰。 5.7.4容器产品的抗跌落性能要求 经自由下落试验后,容器不得有贯穿性裂纹,且保持原有搬运特征。 6容器的检验方法 6.1外形尺寸检测 6.1.1 基本尺寸 基本尺寸用精度为1 mm的通用量具检测。 6.1.2封头形状偏差检验 封头形状基本尺寸用精度为1 mm的通用量具检测。 容器封头形状偏差检查时用弦长等于封头内径3/4Di的内样板检查封头内表面的形状偏差,检查时应使样板垂直于待测表面。 容器焊接接头环向形成的棱角c,用弦长等于1/6内径Di,且不小于300 mm的内样板或外样板检查。在轴向形成的棱角c,用长度不小于300mm的直尺检查。 6.1.3 壳体直线度的检查 通过中心线的水平和垂直面,即沿圆周0º,90º ,180º ,270º 四个部位拉Φ0.5 mm的细钢丝测量,测量位置应距容器纵焊缝中心线100 mm处。 6.2 液压试验 6.2.1 容器设计要求进行液压试验时,试验液体一般采用水,试验水的氯离子含量不得超过25mg/L。 6.2.2 经外观检验、尺寸检验和焊缝质量检验合格后,向容器内注水打压,试验压力为设计压力的1.5倍。 6.2.3 试验时容器顶部留出排气口,充液时将容器内的气体排尽。试验过程中应保持容器观察面的干燥。 6.2.4 试验时压力应缓慢上升,达到规定试验压力后,保压时间一般不少于30min。然后将压力降至规定试验压力的80%,并保持足够长的时间,对所有焊接接头和连接部位进行检查。如有渗漏,修补后重新试验。 6.2.5 试验完毕后,应将液体排尽并用压缩空气将内部吹干。 6.3 气密性试验 6.3.1 根据容器设计要求进行该项试验时,容器经液压试验合格后方可进行气密性试验。 6.3.2 试验所用气体应为干燥洁净的空气、氮气或其它惰性气体,气体温度不低于5℃。试验压力为设计压力的1.05倍。 6.3.3 试验时压力应缓慢上升,达到规定试验压力后保压10 min,然后降至设计压力。 6.3.4 对所有焊接接头和连接部位进行泄漏检查,也可浸入水中检查,经检查无泄漏,保压30 min为合格。如有泄漏,修补后重新进行液压试验和气密性试验。 6.3.5 常压容器的气密性试验根据NB/T 47003.1和图样的规定进行。 6.4 煤油渗漏试验 容器设计按NB/T47003.1进行设计并要求进行煤油渗漏试验时,将焊接接头能够检查的一面清理干净,涂以白粉浆,晾干后,在焊接接头另一面涂以煤油,使表面得到足够的浸润,经0.5 h后以白粉上没有油渍为合格。 6.5 注水试验 容器设计按NB/T47003.1进行设计并要求进行注水渗漏试验时,试验前应将焊接接头的外表面清除干净,并使之干燥。试验的持续时间应根据观察所需的时间决定,但不得少于1 h,试验中焊接接头应无渗漏。如有渗漏修补后重新试验。试验完毕应立即将水排净,并用压缩空气将内部吹干。 6.6 负载试验 按容器设计图纸规定的最大内容物载荷的125%试验载荷进行试验,2h后■视检查容器底部是否有明显变形。 6.7 堆码试验 将容器放置在坚固的平台上,容器内装密度为2800 kg/m3(可能盛装废包壳压缩物的容器内装密度为4000 kg/m3),均匀固体物质,充填系数为95%。堆码方式为正位直立,堆码层数为5层(对于HD-I型堆码层数为10)。每堆码一层,检测底部容器和中间容器的外形和直线度,直至堆码5层(对于HD-I型堆码层数为10)后,测定初始堆码总直线度。放置时间不得低于48h,然后观察每层容器是否有变形和测量容器堆码直线度。 6.8 自由下落试验 容器内装密度为2800 kg/m3(可能盛装废包壳压缩物的容器内装密度为4000 kg/m3),均匀固体物质,充填系数为95%。容器底部着地,垂直自由下落1次。试验用靶为上铺钢板的混凝土块,钢板和混凝土块的总质量至少应该是落在其上面试样的10倍。 对于盛装玻璃同化体的HD-I型容器的自由下落高度为11 m;其他型号容器的自由下落高度依照设施设计的最大起升设计高度,试验最低高度为1.2 m。 7容器型式鉴定试验和验收要求 7.1型式鉴定要求 7.1.1 容器型式鉴定试验按照容器设计要求的试验内容、方法进行,各项试验可在一个容器上进行,相同型式容器的鉴定试验容器数量不得少于3个。 7.1.2当容器设计和/或制造工艺变更时,必须重新进行该型式容器的型式鉴定试验,其试验要求和试验容器数量同上。 7.2鉴定试验检验和验收要求 7.2.1 容器型式鉴定试验检验要求按第5章和第6章相应的检验方法和要求进行。 7.2.2容器型式鉴定试验的检验项目对应检验方法和质量要求见表2。鉴定检验时在表2中C类、B类、A类各项检验项目的选取,根据容器设计文件规定的鉴定检验要求项进行。 7.2.3鉴定试验检验顺序按C类、B类、A类先后顺序进行。A类检查内容和顺序为:负载试验→堆码试验→密封性能试验→跌落试验。 注:密封性能试验应根据设计图纸要求在表2中第18至第21项中选择进行。 7.2.4鉴定检验不合格项处理,凡出现检验不合格项时,应对该项重新进行检测。若2次检测仍不合格则: a) 对发生在A类不合格项,则该不符合项须重新进行试验、检测直至合格为止: b) 对发生在B类不合格项应进行相应的处理后,再进行检测,检测仍不合格则判为不合格项; c) 对发生在C类不合格项,对不合格项增加2次重复检测,重复检测后仍不合格,则判为验收不合格项。 7.2.5鉴定试验验收规则,全部满足以下各条件,则判定该容器型式鉴定为合格: a)A类不合格项为零; b)B类不合格项不大于1项; c)C类不合格项不大于2项。 8容器产品出厂检验规则 8.1 出厂检验方法和要求 容器应采用经型式鉴定试验合格后的容器设计和相同的加工工艺进行正式批量生产。容器最终产品的出厂检验方法和要求按第5章和第6章规定执行。 8.2产品抽样和判定规则 8.2.1 容器产品出厂抽样检验数量按照容器合同规定,但至少应满足本章要求。 8.2.2按生产容器的批量抽样,抽样数量不小于批量的1%;生产批量小于300个容器,不得少于3个。 8.2.3抽样检测内容、检查方法及质量要求见表2。检验顺序按C类、B类、A类先后顺序进行。表2中C类、B类、A类各项检验项目的选取,根据容器设计文件规定的产品出厂检验要求项进行。 8.2.4抽样检测不合格判定准则,凡出现以下任何一项即判定为不合格: a)A类不合格有1项; b)B类和C类不合格项之和大于等于4项。 若抽检不合格,需加倍抽样检验,若仍不合格时,则须对产品逐个进行检测。 表2 容器检验验收项目表 序号 检验项目 A类 B类 C类 检验方法 质量要求 1 壁厚 —— —— √ 6.1 5.7.1 2 内高 —— —— √ 6.1 5.7.1 3 内径 —— —— √ 6.1 5.7.1 4 外高 —— —— √ 61 5.7.1 5 外径 —— —— √ 6.1 5.7.1 6 容器上封头 —— —— √ 6.1.2 5.5.2,5.7.1 7 容器底封头 —— —— √ 6.1.2 5.5.2,5.7.1 8 简体圆度 —— —— √ 6.1.1 5.5.2,5.7.1 9 容器直线度 —— —— √ 6.1.3 5.5.2,5.7.1 10 容器盖 —— —— √ 6.1.1 5.5.2,5.7.1 11 平整光滑、表面光洁度 —— —— √ 目测,6.1 5.5.5,5.7.1 12 焊缝质量、无损检测 —— √ —— 5.5.5,5.5.6 5.5.5,5.5.6 13 圆整、无毛刺、无刮痕 —— √ —— 目测 5.5.5 14 无机械损伤 —— √ —— 目测 5.5.5 15 无锈、无渣 —— √ —— 目测 5.5.5 16 负载试验 √ —— —— 6.6 5.7.3 17 堆码试验 √ —— —— 6.7 5.7.3 18 煤油渗漏试验 √ —— —— 6.4 5.7.2 19 注水试验 √ —— —— 6.5 5.7.2 20 液压试验 √ —— —— 6.2 5.7.2 21 气密性试验 √ —— —— 6.3 5.7.2 22 自由下落试验 √ —— —— 6.8 5.7.4 9 标识 9.1 数量和位置 在容器外表面,容器高度2/3以上和容器顶盖上的显著位置注明容器标识。筒体上标识应为3处,其在容器周向成120º分布,顶盖上标识应为一处。标识字体大小为3cm。 9.2 标识内容 容器型号、制造厂名称或代号、生产批号、顺序号。 9.3 质量要求 容器上的标识应耐辐照、耐久性好:不损伤容器性能;方便观察。 10 容器产品的包装、贮存、运输 10.1 包装要求 容器出厂前应进行清理,使其内外表面干净、干燥,容器盖与筒体盖上密封紧固后包装。其外包装应有利于搬运、运输及贮存过程中的防碰撞、减震、防潮、防雨和防锈蚀等,且其材料不得对容器材料造成损伤。 按相关的技术要求及相应国家标准的规定进行包装,包装应保证容器在运输、多次装卸和储存过程中保持其处于完好的质量状态,并有减振、防冲击、防污染的措施。 10.2 贮存要求 空容器在使用前宜正位堆放贮存,采取必要措施保证容器结构不变形或防止容器损坏。容器使用单位应编制容器贮存管理规程。 10.3运输要求 容器搬运、装卸时宜采用合适的吊运工具轻装轻放。运输时应采取适当措施,将容器紧固在运输工具上,并在容器间设置适当的缓冲隔离空间、材料或装置,以防碰撞、损坏。容器使用单位应编制容器运输管理规程。 11产品质量保证 容器的设计、制造、检验、运输和使用单位均应按国家相关规定和合同的要求,分别制定容器质量保证文件,进行相应的容器设计、采购、制造、检验、试验、运输、贮存等活动。 容器供货方需对容器设计、制造中的质量保证、质量控制记录进行管理和保存。所有记录应具有可追溯性。供货方应按合同要求及时向采购方提供规定的文件和记录,对所提供的文件的任何修改,必须遵照文件修改程序进行,并及时通知采购方。 供货方给采购方提交的文件至少应包括:材料质量证明书、产品质量合格证、焊工资格证、无损检测报告、验证性试验报告及合同规定的其它相关文件。 参考文献 1. Quality and Performance of COGEMA Universal Canisters for Vitrified High Waste, R. Do Quang, G.Mehlman, V. Petitjean, SGN, 1998 2. Development of Vitrified Waste Storage System, S. Namiki. Y. Tani, Ishikawajima-Harima Heavy Industries Co., Ltd., 1993 3. Development of Specifications for Radioactive Waste Packages, IAEA-TECDOC-1515, October 2006. 4. 《ASME 压力容器设计指南》第二版,[美]James R.Farr Maan H.Jawad, 郑津洋等译,化学工业出版社 |
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 |
服务热线:400-001-5431 | 电话:010-8572 5110 | 传真:010-8581 9515 | Email: bz@bzfyw.com | |
版权所有: 北京悦尔信息技术有限公司 2008-2020 京ICP备17065875号-1 51La |
本页关键词: |
Q/CNNC JD 12-2016, Q/CNNCT JD 12-2016, QCNNCT JD 12-2016, Q/CNNCJD12-2016, Q/CNNC JD 12, Q/CNNCJD12, Q/CNNCTJD12-2016, Q/CNNCT JD 12, Q/CNNCTJD12, QCNNCTJD12-2016, QCNNCT JD 12, QCNNCTJD12 |