![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative. This standard is developed in accordance with the rules given in GB/T 1.1-2009. This standard replaces GB/T 3045-2003 Abrasive grains - Chemical analysis of silicon carbide, and the following main technical changes have been made with respect to GB/T 3045-2003: ——the applicable scope is modified (see Clause 1 of this standard; Clause 1 of Edition 2003); ——the preparation method for specimen is modified and improved (see 3.1 and 4.2 of this standard; Clause 3 of Edition 2003); ——the method is modified and improved for determining the silicon dioxide by spectrophotometry, and the method is added for determining the silicon dioxide by potassium fluosilicate volumetric (see 3.2.2 of this standard; Clause 4 of Edition 2003); ——the method is modified and improved for determining silica by spectrophotometric, and the method is added for determining silica by the gas volumetric (see 3.3.2 of this standard; Clause 5 of Edition 2003); ——the method is added for determining the free and total carbon by infrared absorption (see 3.4.2 and 4.3.2 of this standard); ——the determination is added for loss on acid treatment (LAT) of specimen (see 3.5 of this standard); ——the method is added for determining the ferric oxide and aluminium oxide by atomic absorption spectrometry (AAS) (see 3.7.2 and 3.8.2 of this standard); ——the method is modified and improved for determining the calcium oxide and magnesium oxide by atomic absorption spectrometry (AAS) (see 3.9.2 of this standard; Clause 12 of Edition 2003); ——the method is added for determining the ferric oxide, aluminium oxide, calcium oxide, and oxidation magnesium by inductively coupled plasma-atomic emission spectrometry (ICP-AES) method (see 3.10 of this standard). This standard has been redrafted and modified in relation to ISO 9286: 1997 Abrasive grains and crude - Chemical analysis of silicon carbide. This standard is changed largely from ISO 9286: 1997 in structure; the comparison between this standard and ISO 9286: 1997 in clause and subclause numbers is listed in Annex A. Technical deviations between this standard and ISO 9286: 1997 and their reasons are as follows: ——the adjustments of technical difference are made for the normative references in this standard so as to adapt to the technical conditions in China. The adjustment is mainly reflected in Clause 2 "Normative references" with the specific adjustments as follows: ● ISO 9138:1993 has been replaced by GB/T 4676 which is modified in relation to the international standard; ——in ISO 9286:1997, the silicon dioxide is determined by the potassium fluosilicate volumetric method, the silica is determined by the gas volumetric method; in this standard, in addition to modifying the use of the above-mentioned methods, the spectrophotometry is also added, in order to adapt to the detection of low-content specimens; ——in ISO 9286:1997, the free carbon and total carbon are determined by gravimetric absorption or coulometric method; in this standard, in addition to modifying the use of the gravimetric absorption method, infrared absorption and loss on ignition method are added to determine free carbon, and infrared absorption method is added to determine total carbon; ——the triacid treatment gravimetric method is added to determine silicon carbide in this standard; ——the method is added to determine the contents of ferric oxide, aluminium oxide, calcium oxide, and magnesium oxide by inductively coupled plasma-atomic emission spectrometry; ——the determination is added for other chemical components in silicon carbide crude; ——Annex A to the international standard is deleted, as it only indicates other methods that may be used, which are already partly provided in the text of this standard; ——Annex B to the international standard is deleted, it specifies the tolerance of silicon carbide chemical analysis due to changes in testing technology, which is specified in the text of this standard. The following editorial modifications have been made in this standard: ——the standard name is revised as Conventional abrasive - Chemical analysis of silicon carbide. This standard was proposed by China Machinery Industry Federation. This standard is under the jurisdiction of the National Technical Committee 139 on Grinding Material and Grinding Apparatus of Standardization Administration of China (SAC/TC 139). The previous editions of this standard are as follows: ——GB/T 3045-1989, GB/T 3045-2003. Conventional abrasive - Chemical analysis of silicon carbide 1 Scope This standard specifies the determination methods of silicon dioxide, free silicon, free carbon, loss on acid treatment, total carbon, silicon carbide, ferric oxide, aluminium oxide, calcium oxide and magnesium oxide in silicon carbide abrasives and crudes. This standard is applicable to the determination of chemical composition of abrasives and crudes with silicon carbide content of not less than 95 %. 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition (including any amendments) applies. GB/T 4676 Abrasive grains - Sampling and splitting (GB/T 4676-2003, ISO 9138: 1993, MOD) 3 Analysis of surface impurities This clause is applicable to the analysis of surface impurities in the original particle size state of abrasive or after the crude is crushed to a certain particle size. 3.1 Preparation of sample 3.1.1 Abrasives with original particle size state Take the sample according to GB/T 4676 and divide it to 50 g ~ 60 g, dry it in an oven at (110 ± 5) ℃ for 1 h, take it out, put it in a desiccator, and then cool it for later use. 3.1.2 Crudes Take statistically representative crudes according to GB/T 4676, crush them until they can completely pass through a 2 mm sieve, mix well, and divide them into 50 g ~ 60 g by quartering. Continue to grind with a steel mortar until all pass through a 355 μm sieve. Attract out the iron brought in during the crushing by a magnet with an attraction of 9.8 N ~ 14.7 N. Mix well, put it into a specimen bag, dry it in the oven at 105 ℃ ~ 110 ℃ for 1 h, take it out, put it into the desiccator, and cool it for later use. If there are strict requirements for the determination of ferric oxide, separate samples shall be prepared for the determination of ferric oxide according to the following methods: take statistically representative crudes, crush them until they all pass through the 2 mm sieve, mix well, and divide them into 50 g ~ 60 g by quartering. Then grind it by a corundum mortar until all pass through a 500 μm sieve, mix well, and divide it into 20 g ~ 25 g by quartering. Continue to grind it by the corundum mortar until all pass through the 355 μm sieve, mix well, put it into a sample bag, dry it in the oven at 105 ℃ ~ 110 ℃ for 1 h, take it out, put it into the desiccator, and cool it for later use. 3.2 Determination of silicon dioxide 3.2.1 Spectrophotometry 3.2.1.1 Principle Treat the specimen with sodium chloride - hydrochloric acid - hydrofluoric acid to dissolve silicon dioxide, add ammonium molybdate to generate silicomolybdic heteropoly acid, and then use 1, 2, 4- acid reducing agent to reduce the silicomolybdic heteropoly acid to molybdenum blue, and determine its absorbance at the wavelength of 700 nm. 3.2.1.2 Reagents or materials Unless otherwise specified, only the recognized analytical reagents and distilled water or deionized water or water with equivalent purity shall be used during the analysis. 3.2.1.2.1 Hydrochloric acid: (1+1), (1+4). 3.2.1.2.2 Aqueous ammonia (1+4): Dilute concentrated aqueous ammonia (with the density of 0.90 g/cm3) with water at a volume ratio of 1:4 and it shall be freshly prepared. 3.2.1.2.3 Hydrofluoric acid: (1+1). 3.2.1.2.4 Sodium chloride solution (10%). 3.2.1.2.5 Aluminium chloride solution (45%): Weigh 90 g of aluminium chloride hexahydrate, dissolve it in water, and dilute it to 200 mL with water. 3.2.1.2.6 Ammonium molybdate solution (5%): Weigh 5 g of ammonium molybdate and dissolve it in water, dilute it to 100 mL with water, stand it for 24 h and then filter for use; if precipitation appears, it shall not be used. 3.2.1.2.7 Tartaric acid solution (10%). 3.2.1.2.8 1, 2, 4-acid solutions (0.15%): Weigh 0.15 g of 1,2.4-acid (1-amino-2-naphthol-4-sulfonic acid), dissolve it in 20 mL of sodium sulfite solution (7%) and then mix it with 180 mL of sodium sulfite solution (10%). The shelf life of this solution is two weeks. 3.2.1.2.9 P-nitrophenol indicator (0.2% ethanol solution): Weigh 0.2 g of p-nitrophenol and dissolve it in 95% ethanol and dilute it to 100 mL with ethanol. 3.2.1.2.10 Silicon dioxide standard solution: 0.05 mg/mL. Weigh 0.100 0 g of silicon dioxide (high purity reagent) which has been ignited at 1,000 ℃ and place it in a platinum crucible, carefully mix with 2 g of anhydrous sodium carbonate (reference reagent), cover it with 0.5 g of anhydrous sodium carbonate (reference reagent), put into a high-temperature furnace and melt at 850 ℃ ~ 900 ℃ for 20 min, take it out, cool it, clean the outer wall of the crucible, leach the mixture out with hot water into a polyethylene beaker, transfer to a 1,000 mL volumetric flask after cooling, dilute to the scale with water and shake well, and immediately move into a clean and dry plastic bottle for storage. 1 mL of this solution contains 0.1 mg silicon dioxide. Pipette 50 mL of the above 0.1 mg/mL silica solution into a 100 mL volumetric flask containing 10 mL of hydrochloric acid (1+4), dilute to the scale with water and shake well, and this solution is silicon dioxide standard solution. 1 mL of this solution contains 0.05 mg silicon dioxide. 3.2.1.2.11 Blank solution: Add 1 mL of sodium chloride solution (3.2.1.2.4), 3 mL of (1+1) hydrochloric acid (3.2.1.2.1), 3 mL of hydrofluoric acid (3.2.1.2.3) and 12 mL of aluminium chloride solution (3.2.1.2.5) into a polytetrafluoroethylene beaker, mix well, transfer it into a 100 mL plastic volumetric flask, dilute to the scale with water and shake well. 3.2.1.3 Apparatuses Visible spectrophotometer. 3.2.1.4 Test procedure 3.2.1.4.1 Determination Weigh about 0.2 g of specimen, to the nearest of 0.000 1 g. Place the sample into the polytetrafluoroethylene beaker, add 1 mL of sodium chloride solution (3.2.1.2.4), 3 mL of (1+1) hydrochloric acid (3.2.1.2.1) and 3 mL of hydrofluoric acid (3.2.1.2.3), heat it on a water bath at 80°C ~ 90°C for 15 min ~ 20 min, cool it, and add 12 mL of aluminium chloride solution (3.2.1.2.5), mix well, transfer to a 100 mL plastic flask, dilute to the scale and shake well, and leave to stand (the micro powder specimen may be dry filtered), pipette the upper 10 mL of clarified liquid into a 100 mL plastic volumetric flask, add water until the solution volume reaches 50 mL, add 2 drops ~ 3 drops of p-nitrophenol indicator (3.2.1.2.9), neutralize with aqueous ammonia (3.2.1.2.2) until the solution is yellow, immediately add 5mL of (1+4) hydrochloric acid (3.2.1.2.1), then add 5 mL of ammonium molybdate solution (3.2.1.2.6), and stand for 15 min. Add 10 mL of tartaric acid solution (3.2.1.2.7) and 5 mL of 1, 2, 4-acid solutions (3.2.1.2.8), dilute it to the scale with water and shake well, and stand for 30 min. Determine the absorbance at the wavelength of 700 nm using a 1 cm cuvette with water as the reference solution. Carry out the blank test using the same method. After subtracting the absorbance obtained from the blank test, obtain the mass of silicon dioxide from the working curve. 3.2.1.4.2 Construction of working curve Pipette 10 mL of blank solution (3.2.1.2.11) into eight 100 mL volumetric flasks, and then add 0.00 mL, 0.50 mL, 1.00 mL, 2.00 mL, 4.00 mL, 6.00 mL, 8.00 mL and 10.00 mL of silicon dioxide standard solution (3.2.1.2.10) with the microburet respectively, then operate it according to the method in 3.2.1.4.1, determine the absorbance. Correspond to the corresponding mass of silicon dioxide and construct the working curve after subtracting the absorbance measured from the blank solution. 3.2.1.5 Test data processing Calculate the mass fraction of silicon dioxide, ω(SiO2), using the Equation (1): (1) where, m1——the mass of the specimen, g; m2——the value of the mass of silicon dioxide obtained from the working curve in the specimen solution taken after subtracting that obtained from the blank test , g; V1——the total volume of test solution, mL; V2——the volume of test solution taken, mL; Round the calculation result to two decimal places. 3.2.2 Potassium fluosilicate volumetric method 3.2.2.1 Principle Heat and dissolve the silicon dioxide in hydrofluoric acid - potassium fluoride solution and hydrochloric acid solution to form potassium fluosilicate (K2SiF6) precipitation, hydrolyze it in boiling water and titrated with a 0.1 mol/L sodium hydroxide standard solution, and then calculate the silicon dioxide content from the volume of the sodium hydroxide standard solution consumed. The chemical equations are as follows: SiO2+2KF+4HF→K2SiF6↓+2H2O K2SiF6+4NaOH→2KF+4NaF+SiO2+2H2O Note: The presence of elemental silicon will not affect the determination. If silicates and/or silicides are present, there may be a reaction leading to higher SiO2 results. Therefore, it must be checked as to whether this method is applicable in such cases. Foreword i 1 Scope 2 Normative references 3 Analysis of surface impurities 3.1 Preparation of sample 3.2 Determination of silicon dioxide 3.3 Determination of free silicon 3.4 Determination of free carbon 3.5 Determination of loss on acid treatment (LAT) 3.6 Determination of silicon carbide 3.7 Determination of ferric oxide 3.8 Determination of aluminium oxide 3.9 Determination of calcium oxide and magnesium oxide 3.10 Determination of ferric oxide, aluminium oxide, calcium oxide and magnesium oxide by inductively coupled plasma-atomic emission spectrometry (ICP-AES) 4 Determination of silicon carbide in abrasives and crudes (indirect method) 4.1 Principle 4.2 Preparation of sample 4.3 Determination of total carbon 4.4 Determination of free carbon 4.5 Test data processing 4.6 Allowable error 5 Other methods of analysis 6 Test report Annex A (Informative) Structural changes between this standard and ISO 9286: 普通磨料 碳化硅化学分析方法 1 范围 本标准规定了碳化硅磨料及结晶块中二氧化硅、游离硅、游离碳、酸处理失量、总碳、碳化硅、三氧化二铁、三氧化二铝、氧化钙、氧化镁的测定方法。 本标准适用于碳化硅含量不小于95%的磨料及结晶块的化学成分测定。 2规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 4676 普通磨料 取样方法(GB/T 4676—2003,ISO 9138:1993,MOD) 3表面杂质分析 本章适用于磨料原始粒度状态或结晶块破碎至一定粒度后表面杂质的分析。 3.1 样品制备 3.1.1原始粒度状态磨料 按照GB/T 4676进行取样并缩分至50 g~60 g,于(110±5)℃下的烘箱中干燥1 h,取出,放入干燥器中,冷却备用。 3.1.2结晶块 按照GB/T 4676取具有统计代表性的结晶块,破碎至完全通过2 mm筛网,混匀,用四分法分至50 g~60 g。继续用钢研钵研细至全部通过355 μm筛网。用吸力9.8 N~14.7 N的磁铁吸出粉碎中带入的铁质。然后混匀,装入试样袋,于105℃~110℃的烘箱中干燥1 h,取出,放入干燥器中,冷却备用。 如果对三氧化二铁的测定有严格要求,则应按下列方法另行制样用以测定三氧化二铁:取具有统计代表性的结晶块,破碎至完全通过2 mm筛网,混匀,用四分法分至50 g~60 g。再用刚玉研钵研细至全部通过500 μm筛网,混匀,用四分法缩分至20 g~25 g。继续用刚玉研钵研细至全部通过355 μm筛网,混匀,装入试样袋,于105℃~110℃的烘箱中干燥1 h,取出,放入干燥器中,冷却备用。 3.2二氧化硅的测定 3.2.1分光光度法 3.2.1.1 原理 试样用氯化钠-盐酸-氢氟酸处理,使二氧化硅溶解,加钼酸铵使硅酸离子形成硅钼杂多酸,用1,2,4-酸还原剂将其还原成硅铝蓝,于700 nm波长处测定其吸光度。 3.2.1.2试剂或材料 除非另有说明,在分析中仅使用确认为分析纯的试剂和蒸馏水或去离子水或相当纯度的水。 3.2.1.2.1盐酸:(1+1)、(1+4)。 3.2.1.2.2氨水(1+4):取浓氨水(密度0.90 g/cm3)与水按体积比1:4稀释,现配现用。 3.2.1.2.3氢氟酸:(1+1)。 3.2.1.2.4氯化钠溶液(10%)。 3.2.1.2.5氯化铝溶液(45%):称取90 g六水合氯化铝溶于水中,用水稀释至200 mL。 3.2.1.2.6钼酸铵溶液(5%):称取5 g钼酸铵溶于水中,用水稀释至100 mL,放置24 h后过滤使用;若出现沉淀,应停止使用。 3.2.1.2.7酒石酸溶液(10%)。 3.2.1.2.8 1,2,4-酸溶液(0.15%):称取0.15 g 1,2.4-酸(1-氨基-2-萘酚-4-磺酸)溶于20 mL亚硫酸钠溶液(7%)中,然后与180 mL亚硫酸钠溶液(10%)混合。此溶液的使用期为两周。 3.2.1.2.9对硝基苯酚指示剂(0.2%乙醇溶液):称取0.2 g对硝基苯酚溶于95%乙醇中,用乙醇稀释至100 mL。 3.2.1.2.10二氧化硅标准溶液:0.05 mg/mL。 称取经1 000℃灼烧过的二氧化硅(高纯试剂)0.100 0 g于铂坩埚中,与无水碳酸钠(基准试剂)2 g仔细混匀,再覆盖无水碳酸钠(基准试剂)0.5 g,送入高温炉中于850℃~900℃熔融20 min,取出,冷却,洗净坩埚外壁,在聚乙烯烧杯中用热水浸出,冷却后转入1 000 mL容量瓶中,用水稀释至刻度,摇匀,立即移入清洁干燥的塑料瓶中贮存。1 mL此溶液中含二氧化硅0.1 mg。 用移液管移取上述0.1 mg/mL二氧化硅溶液50 mL于预先盛有10 mL盐酸(1+4)的100 mL容量瓶中,用水稀释至刻度,摇匀,即为二氧化硅标准溶液。1 mL此溶液中含二氧化硅0.05 mg。 3.2.1.2.11 空白溶液:于聚四氟乙烯烧杯中加入氯化钠溶液(3.2.1.2.4)1 mL、(1+1)盐酸(3.2.1.2.1)3 mL、氢氟酸(3.2.1.2.3)3 mL、氯化铝溶液(3.2.1.2.5)12 mL,混匀,移入100 mL塑料容量瓶中,用水稀释至刻度,摇匀。 3.2.1.3仪器设备 可见分光光度计。 3.2.1.4试验步骤 3.2.1.4.1 测定 称取约0.2 g试样,精确到0.000 1 g。将样品放入聚四氟乙烯烧杯中,加入氧化钠溶液(3.2.1.2.4)1 mL、(1+1)盐酸(3.2.1.2.1)3 mL、氢氟酸(3.2.1.2.3)3 mL.在80℃~90℃水浴上加热15 min~20 min,冷却,加入氯化铝溶液(3.2.1.2.5)12 mL,混匀,移入100 mL塑料容量瓶中,稀释至刻度,摇匀,静置后(微粉试样可进行干过滤)用移液管移取上部澄清液10 mL于100 mL塑料容量瓶中,加水至溶液体积为50 mL,加入对硝基苯酚指示剂(3.2.1.2.9)2滴~3滴,用氨水(3.2.1.2.2)中和至溶液呈黄色,立即加入(1+4)盐酸(3.2.1.2.1)5 mL,然后加入钼酸铵溶液(3.2.1.2.6)5 mL,放置15 min。加入酒石酸溶液(3.2.1.2.7)10 mL,1,2,4-酸溶液(3.2.1.2.8)5 mL,加水稀释至刻度,摇匀,放置30 min。用1 cm的比色皿于波长700 nm处,用水作参比液测定其吸光度。用同样方法作空白试验。减去空白试验的吸光度后,于工作曲线上查出二氧化硅的质量。 3.2.1.4.2工作曲线的绘制 吸取空白溶液(3.2.1.2.11)10 mL分别放入8个100 mL容量瓶中,再用微量滴定管依次分别加入二氧化硅标准溶液(3.2.1.2.10)0.00 mL、0.50 mL、1.00 mL、2.00 mL、4.00 mL、6.00 mL、8.00 mL、10.00 mL,以下按3.2.1.4.1方法操作,测定其吸光度,减去空白溶液吸光度后,与相应的二氧化硅质量相对应,绘制成工作曲线。 3.2.1.5试验数据处理 二氧化硅的质量分数用w(SiO2)表示,按式(1)计算: (1) 式中: m1——试样质量的数值,单位为克(g); m2——分取试样溶液中扣除空白后自工作曲线上查得的二氧化硅质量的数值,单位为克(g); V1——试验溶液总体积的数值,单位为毫升(mL); V2——分取试液的体积的数值,单位为毫升(mL)。 计算结果表示到小数点后两位。 3.2.2氟硅酸钾容量法 3.2.2.1 原理 二氧化硅在氢氟酸-氟化钾和盐酸溶液中加热溶解,生成氟硅酸钾(K2SiF6)沉淀,沸水水解,以0.1 mol/L氢氧化钠标准溶液滴定,根据消耗氢氧化钠标准溶液的体积计算出二氧化硅的含量。化学反应式如下所示: SiO2+2KF+4HF→K2SiF6↓+2H2O K2SiF6+4NaOH→2KF+4NaF+SiO2+2H2O 注:单质硅存在不影响测定。如果硅酸盐和/或硅化物存在,它们反应会导致SiO2结果偏高,因此需检查这种方法是否合适。 3.2.2.2试剂或材料 3.2.2.2.1盐酸:(1+1)。 3.2.2.2.2氟化钾-氢氟酸溶液:称取125 g氟化钾溶于800 mL氢氟酸(质量分数不小于40%)中。 3.2.2.2.3氯化钾溶液(10%)。 3.2.2.2.4氢氧化钠标准滴定溶液:[c(NaOH)=0.1 mol/L]。 称取氢氧化钠4 g溶于新煮沸冷却后的水中,加入少许氯化钡,稀释至1 L,放置,干过滤于塑料瓶中备用。 标定:称取经于105℃~110℃烘箱中烘干1 h的邻苯二甲酸氢钾(基准试剂或高纯试剂)约0.6 g,精确至1 mg,共3份,分别放入3个250 mL锥形瓶中,加入新煮沸冷却后的水100 mL,摇动使其溶解,加入酚酞指示剂2滴~3滴,用配制好的氢氧化钠溶液滴定至溶液呈微红色,并保持30 s。同时做空白试验。 氢氧化钠标准溶液的浓度C(NaOH),数值以摩尔每升(mol/L)表示,按式(2)计算: (2) 式中: m——邻苯二甲酸氢钾的质量的准确数值,单位为克(g); V1——氢氧化钠溶液的体积的数值,单位为毫升(mL); V0——空白试验时氢氧化钠溶液的体积的数值,单位为毫升(mL); M——邻苯_二甲酸氢钾摩尔质量的数值,单位为克每摩尔(g/mol)[M(KHC8H4O4)=204.22]。 3.2.2.2.5酚酞指示剂:1%乙醇溶液。 3.2.2.2.6 石蕊试纸。 3.2.2.3试验步骤 称取约1 g试样,精确到0.000 1 g,置于100 mL塑料烧杯中,加入15 mL氟化钾-氢氟酸溶液(3.2.2.2.2),5 mL盐酸溶液(3.2.2.2.1),在(50±5)℃水浴上加热2.5 h。冷却后,用塑料漏斗以中速定量滤纸过滤,用氯化钾溶液(3.2.2.2.3)冲洗滤纸及沉淀,直至洗液遇蓝色石蕊试纸不变色。把沉淀连同滤纸一起转入300 mL锥形瓶中,加入刚煮沸的热水约100 mL,加10滴酚酞指示剂,用0.1 mol/L氢氧化钠标准溶液滴定至溶液刚变红色。同时做空白试验。 3.2.2.4试验数据处理 二氧化硅的质量分数用w(SiO2)表示,按式(3)计算: (3) 式中: c——氢氧化钠标准溶液的浓度,单位为摩尔每升(mol/L); m——试样质量的数值,单位为克(g); V——氯氧化钠标准溶液的体积的数值,单位为毫升(mL); V0——空白试验时氢氧化钠标准溶液的体积的数值,单位为毫升(mL); M——二氧化硅摩尔质量的数值,单位为克每摩尔(g/mol)[M( SiO2)=15.02]。 计算结果表示到小数点后两位。 3.2.3 允许误差 允许误差应符合表1规定。 表1 含量范围/% 允许误差/% 同一试验室 不同试验室 ≤0.25 ±0.02 ±0.03 >0.25~0.50 ±0.03 ±0.04 >0.50~1.50 ±0.06 ±0.08 >1.50~3.50 ±0.10 ±0.12 3.3游离硅的测定 3.3.1分光光度法 3.3.1.1 原理 试样用硝酸钠-硝酸-氢氟酸处理,使二氧化硅及表面硅溶解,用硅钼蓝吸光光度法测得其含量减去二氧化硅的含量换算而得。 3.3.1.2试剂或材料 3.3.1.2.1 盐酸:(1+4)。 3.3.1.2.2硝酸:(1+1)。 3.3.1.2.3氢氟酸:(1+1)。 3.3.1.2.4氨水(1+4):取浓氨水(密度0.90 g/cm3)与水按体积比1:4稀释,现配现用。 3.3.1.2.5硝酸钠溶液:10%。 3.3.1.2.6空白溶液:于聚四氟乙烯烧杯中加入硝酸钠溶液(3.3.1.2.5)1 mL、(1+1)硝酸(3.3.1.2.2)3 mL、氢氟酸(3.3.1.2.3)3 mL、氯化铝溶液(3.2.1.2.5)12 mL,混匀,移入100 mL塑料容量瓶中,用水稀释至刻度,摇匀。 3.3.1.2.7其他试剂见3.2.1.2.5~3.2.1.2.10。 3.3.1.3 仪器设备 可见分光光度计。 3.3.1.4试验步骤 操作见3.2.1.4,但所加试剂氯化钠溶液(3.2.1.2.4)1 mL改为硝酸钠溶液(3.3.1.2.5)1 mL;(1+1)盐酸(3.2.1.2.1)3 mL改为(1+1)硝酸(3.3.1.2.2)3 mL。 3.3.1.5试验数据处理 硅的质量分数用w(SiF)表示,按式(4)计算: (4) 式中: m1——试样质量的数值,单位为克(g); m2——分取试样溶液中扣除空白后自工作曲线上查得的二氧化硅质量的数值,单位为克(g); V1——试验溶液总体积的数值,单位为毫升(mL); V2——分取试液的体积的数值,单位为毫升(mL); K——二氧化硅换算为硅的系数[ ]。 计算结果表示到小数点后两位。 3.3.2 气体容量法 3.3.2.1 原理 测定硅与热的氢氧化钠溶液反应时释放氢气的体积以定量表面硅的含量。化学反应式如下所示: Si+2NaOH+H2O→Na2SiO3+2H2↑ 3.3.2.2试剂或材料 3.3.2.2.1 氢氧化钠溶液(25%)。 3.3.2.2.2封闭液:在蒸馏水或去离子水中加几滴浓硫酸酸化使甲基橙微显色。 3.3.2.2.3砂浴电热板或电炉,功率可调。 3.3.2.2.4锥形瓶,100 mL。 3.3.2.2.5球形冷凝管,长约40 cm。 3.3.2.2.6 量气管,100 mL。 3.3.2.2.7 储气瓶,180 mL~200 mL。 3.3.2.2.8 水准瓶,200 mL~250 mL。 3.3.2.2.9气压表。 3.3.2.2.10温度计。 3.3.2.3仪器设备 硅测定装置,如图1。把100 mL锥形瓶直立在电热砂浴或电炉上,用橡胶塞使之与球形冷凝管相连,并确保气密性。用“T”型管把温度计置于冷凝水中,用管子穿过橡胶塞使球形冷凝器与量气管的顶端相连。用橡胶管将量气瓶的底端与盛有封闭液的调整瓶连接起来。 说明: 1——电热板; 2——锥形瓶; 3——球形冷凝管; 4——成角度的毛细管; 5——量气管; 6——附加储存器; 7——调整瓶。 图1 硅测定装置 3.3.2.4试验步骤 3.3.2.4.1 测量装置的准备和检查 检查测量装置的气密性,并用标样(如工业硅或金属硅)对测量装置校准后方可进行试样测定。 3.3.2.4.2零点及初始参数的确定 称取约5 g试样,精确到0.000 1 g,放置于锥形瓶中。如果产生的氢气体积超过量气管的容积,也就说明表面硅含量高,则适当减少称样量。 调整好量气管的起始刻度,让冷水在球形冷凝管中循环至少10 min,直到冷凝水温度恒定,波动在±1℃以内。如果冷凝水不能提供满足要求的恒定温度±1℃,则应在冷凝管环路中加上恒温装置。记下在最靠近量气管处的环境温度,精确到0.1℃。 3.3.2.4.3氢气的产生 往锥形瓶中加入40 mL氢氧化钠溶液(3.3.2.2.1),迅速把锥形瓶连接在球形冷凝管上,快速用调整瓶调节密封液使量气管液面在零位。不用改变调整瓶的位置,接通毛细管与球形冷凝管,并记下量气管内密封液的最初刻度,精确到0.1 mL,仔细调节量气管液面和调整瓶的位置后,加热锥形瓶使内部物质沸腾90 min,在加热和沸腾的过程中,保持量气管的热量不能散失,沸腾阶段完成后移开电热板。 3.3.2.4.4氢气体积的确定 用充满冷水的容器冷却仍和冷凝器相连的锥形瓶,根据需要经常换水使锥形瓶及瓶内物的温度降至开始分析时的环境温度。 核查锥形瓶和冷凝器的温度是否相同,然后调节调整瓶刻度和量气管刻度,记录下量气管液面。再记下环境温度和大气压,在整个分析过程中开始和结束时间环境温度差不能大于3℃。 3.3.2.5试验数据处理 硅的质量分数用w(SiF)表示,按式(5)计算: (5) 式中: m——试样质量的数值,单位为克(g); V——量气管中收集的氢气的体积,单位为毫升(mL); K——由氢气的体积换算成硅的质量的换算系数,单位为克每毫升(g/mL); [ ] f——把氢气体积换算到标准状态(温度为0℃,压力为1.013 MPa)时的因数。 f值可从气体校正表上查到.需考虑到指示温度和密封液体一h面的压力。 计算结果表示到小数点后两位。 3.3.3 允许误差 允许误差应符合表2规定。 表2 含量范围/% 允许误差/% 同一试验室 不同试验室 ≤0.25 ±0.02 ±0.03 2>0.25~0.50 ±0.03 ±0.04 >0.50~1.50 ±0.06 ±0.08 3.4游离碳的测定 3.4.1 燃烧吸收重量法 3.4.1.1 原理 F1200(P2500或#2500)及以粗的试样在850℃左右加热,5 min内碳化硅几乎不分解,而碳化硅表面游离的碳燃烧生成二氧化碳,用苏打石灰吸收管吸收,由其增重即可求得游离碳的量。 F1200(P2500或#2500)以细的试样在650℃左右加热,5 min内碳化硅几乎不分解。而碳化硅表面游离的碳燃烧生成二氧化碳用苏打石灰吸收管吸收,由其增重即可求得游离碳的量。 3.4.1.2试剂及材料 3.4.1.2.1硫酸:密度1.84 g/cm3。 3.4.1.2.2苏打石灰:颗粒状。 3.4.1.2.3无水氯化钙:颗粒状。 3.4.1.2.4氢氧化钾溶液(40%):称取40 g氢氧化钾溶于水中,用水稀释至100 mL。 3.4.1.2.5玻璃棉:清洁干燥。 3.4.1.3 仪器设备 碳测定装置,见图2。 说明: 1——氧气瓶; 2——气压表; 3——流量计; 4——洗气瓶[以氢氧化钾溶液(3.4.1.2.4)装入瓶中约三分之一]; 5、12——浓硫酸洗气瓶[以浓硫酸(3.4.1.2.1)装入瓶内约三分之一]; 6——管式炉; 7——热电偶; 8——温控表; 9——氯化钙管(内装无水氯化钙、管口塞以玻璃棉); 10、11——苏打石灰(或烧碱石棉)和氯化钙吸收管(管内分别装入苏打石灰三分之二和无水氯化钙三分之一)。 图2碳测定装置示意图 3.4.1.4试验步骤 3.4.1.4.1 F1200(P2500或#2500)及以粗的试样的测定 将管式炉的温度升至850℃±10℃,按图2连接好装置,确保其密封性。通氧(300 mL/min)15 min后,称量二氧化碳吸收管(10、11)的质量。称取1 g~2 g试样,精确到0.000 1 g,置于经高温灼烧过的瓷舟中,放入管式炉的高温处,迅速连好接头,通氧(300 mL/min)5 min,关闭吸收管活塞及氧气开关,取下二氧化碳吸收管(10、11)称量,精确到0.000 1 g,称取的增重相当于吸收的二氧化碳量。 3.4.1.4.2 F1200(P2500或#2500)以细的试样的测定 将管式炉的温度升至650℃±10℃,按图2连接好装置,确保其密封性。通氧(300 mL/min)15 min后,称量二氧化碳吸收管(10、11)的质量。称取1 g~2 g试样,精确到0.000 1 g,置于经高温灼烧过的瓷舟中,放入管式炉的高温处,迅速连好接头,通氧(300 mL/min)5 min,关闭吸收管活塞及氧气开关.取下二氧化碳吸收管(10、11)称量。精确到0.000 1 g,称取的增重相当于吸收的二氧化碳量。 3.4.1.5试验数据处理 游离碳的质量分数用w(CF)表示,按式(6)计算: (6) 式中: m1——试样质量的数值,单位为克(g); m2——燃烧前吸收管质量的数值,单位为克(g); m3——燃烧后吸收管质量的数值.单位为克(g); K——二氧化碳换算为碳的系数[ ]。 计算结果表示到小数点后两位。 3.4.2红外吸收法 3.4.2.1 原理 F1200(P2500或#2500)及以粗的试样在850℃左右加热,5 min内碳化硅几乎不分解,而碳化硅表而游离的碳燃烧生成二氧化碳,二氧化碳气体进入吸收池,对相应的红外辐射进行吸收,由探测器转化为信号,经计算机处理输出结果。 F1200(P2500或#2500)以细的试样在650℃左右加热,5 min内碳化硅几乎不分解。而碳化硅表面游离的碳燃烧生成二氧化碳,二氧化碳气体进入吸收池,对相应的红外辐射进行吸收,由探测器转化为信号,经计算机处理输出结果。 3.4.2.2试剂或材料 3.4.2.2.1 氧气:高纯(质量分数大于99.5%)。 3.4.2.2.2高氯酸镁:试剂级,粒度为0.7 mm~1.2 mm,用于吸收水气。 3.4.2.2.3石英棉:0.5 mm~0.8 mm,优级。 3.4.2.2.4碱石棉:0.9 mm~2.0 mm,优级。 3.4.2.2.5标准样品:用于校准和验证的标准样品。 3.4.2.3仪器设备 3.4.2.3.1 碳测定仪:可控制温度和加热时间,利用红外吸收的原理检测游离碳含量。 3.4.2.3.2石英舟:按照所用仪器厂商的规定,能够耐高温燃烧,不产生含碳的化学物质,使空白值控制在特定范围内。 3.4.2.3.3进样钳。 3.4.2.3.4镊子。 3.4.2.4试验步骤 3.4.2.4.1 测定空白值 开机预热待仪器稳定后,仪器默认试样质量为1 g,将石英舟推进炉体内,进行空白分析。重复测定3次以上.取其平均值。如果仪器不能自动校准空白值,应从总结果中减去空白值。 3.4.2.4.2校准 称取适量的标准样品于石英舟中,按未知样品分析校准试样。重复测定3次及以上,进行校准。按照新的校准曲线测试标准样品,若测试结果与标准值接近,并在其允许的误差范围内,则可测试样品。否则需要重新校准。 3.4.2.4.3样品测定 3.4.2.4.3.1 F1200(P2500或#2500)及以粗的试样的测定 称取约1 g试样,精确到0.000 1 g,置于石英舟中,将石英舟送入仪器,按程序升温至850℃±10℃,在此温度下保温5 min,测定试样中碳含量。重复测定3次以上,取其平均值。 3.4.2.4.3.2 F1200(P2500或#2500)以细的试样的测定 称取约1 g试样,精确到0.000 1 g,置于石英舟中,将石英舟送入仪器,按程序升温至650℃±10℃,在此温度下保温5 min,测定试样中碳含量。重复测定3次以上,取其平均值。 3.4.2.5试验数据处理 游离碳的质量分数用w(CF)表示,按式(7)计算: (7) 式中: m——试样质量的数值,单位为克(g); D——试样红外吸收峰面积的数值; E——空白试验时红外吸收峰面积的数值; K——校准曲线系数值; 计算结果表示到小数点后两位。 注:由于大多数商业仪器直接计算百分含量,包括了对空白和样品重量的校正,因此分析者不用进行此类计算。 3.4.3灼烧减量法 3.4.3.1 原理 试样在650℃~750℃高温下灼烧,其表面的游离碳被氧化成二氧化碳逸去,失去的质量即为游离碳的含量。本方法适用于粒度号为F1200(P2500或#2500)及以粗且游离硅含量小于1.5%的试样中游离碳含量的测定。 3.4.3.2试验步骤 3.4.3.2.1磨粒尺寸大于或等于15μm或F400(P800或#700)及以粗试样的测定 称取约1 g样品,精确至0.000 1 g,置于已灼烧至恒重的铂金皿或瓷皿中,于750℃±10℃的高温炉中灼烧40 min,取出并放入干燥器内冷却至室温,称量。反复灼烧至恒量。 3.4.3.2.2磨粒尺寸小于15 μm或F500~F1 000(P1 000~P2500或#800~#2500)试样的测定 称取约1 g样品,精确至0.000 1 g,置于已灼烧至恒重的铂金皿或瓷皿中,于650℃±10℃的高温炉中灼烧5 min,取出并放入干燥器内冷却至室温,称量。反复灼烧至恒量。 3.4.3.3试验数据处理 游离碳的质量分数用w(CF)表示,按式(8)计算: (8) 式中: m1——试样质量的数值,单位为克(g); m2——灼烧后试样加皿的质量的数值,单位为克(g); m3——灼烧前试样加皿的质量的数值.单位为克(g)。 计算结果表示到小数点后两位。 3.4.4允许误差 允许误差应符合表3规定。 表3 含量范围/% 允许误差/% 同一试验室 不同试验室 ≤0.25 ±0.03 ±0.04 >0.25~0.50 ±0.04 ±0.05 >0.50~1.50 ±0.07 ±0.08 3.5 酸处理失量(LAT)的测定 3.5.1 原理 酸处理失量(LAT)可以理解为待分析样品被硫酸、氢氟酸和硝酸三酸混合物处理之后的损失物。本方法适用于碳化硅磨粒尺寸大于或等于15 μm或F400(P800或#700)及以粗试样测定。 3.5.2试剂或材料 3.5.2.1硫酸:密度1.84 g/cm3。 3.5.2.2硝酸:密度1.42 g/cm3。 3.5.2.3氢氟酸:质量分数不小于40%。 3.5.2.4盐酸:质量分数不小于37%。 3.5.2.5盐酸:(1+9)。 3.5.2.6聚四氟乙烯烧杯或铂坩埚。 3.5.2.7砂芯坩埚,孔径75μm。 3.5.3 试验步骤 称取约5 g试样,精确到0.000 1 g,放入铂皿中,加入20滴浓硫酸(3.5.2.1),30 mL氢氟酸(3.5.2.3),10 mL浓硝酸(3.5.2.2),于砂浴或电炉上蒸发至干。加入10 mL浓盐酸(3.5.2.4),在约60℃下加热30 min,用恒重的砂芯坩埚过滤,用(1+9)稀盐酸(3.5.2.5)洗涤3次,热水(90℃~100℃)洗涤2次,于110℃烘箱中烘干。冷却,称量,计算蒸发残余物质量。滤液转入250 mL容量瓶中,冷却,定容,混匀。此溶液A留作测定三氧化二铁、三氧化二铝、氧化钙、氧化镁。 |
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 |
服务热线:400-001-5431 | 电话:010-8572 5110 | 传真:010-8581 9515 | Email: bz@bzfyw.com | |
版权所有: 北京悦尔信息技术有限公司 2008-2020 京ICP备17065875号-1 51La |
本页关键词: |
GB/T 3045-2017, GB 3045-2017, GBT 3045-2017, GB/T3045-2017, GB/T 3045, GB/T3045, GB3045-2017, GB 3045, GB3045, GBT3045-2017, GBT 3045, GBT3045 |