![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
Technical standard for chimney engineering 1 General rules 1.0.1 This standard is formulated according to relevant laws and regulations in order to standardize and guide the design, construction and acceptance of chimneys, ensure personal health, life and property safety and ecological environment safety, and meet the basic needs of chimney engineering construction. 1.0.2 This standard is applicable to the design, construction and acceptance of newly-built concrete chimneys, FRP chimneys, steel chimneys, brick chimneys and other single tube chimneys, single liner chimneys and multi-liner chimneys, as well as the reinforcement and anti-corrosion reconstruction of existing chimneys. 1.0.3 In addition to the requirements of this standard, the design, construction and acceptance of chimneys shall also meet the requirements of relevant current national standards. 2 Terms 2.0.1 chimney high-rise structure for discharging flue gas 2.0.2 dry chimney chimney for discharging flue gas with relative humidity less than 60% and temperature not below 90℃ 2.0.3 humid chimney chimney for discharging flue gas with relative humidity greater than 60% and temperature above 60℃ but below 90℃ 2.0.4 wet chimney chimney for discharging flue gas with saturated relative humidity and temperature not above 60℃ 2.0.5 self-supporting chimney chimney with its shaft forming a stable structure, without any additional support 2.0.6 guyed chimney chimney with the shaft and the cable forming a stable system 2.0.7 framed steel chimney steel chimney with its own vertical load mainly borne by the liner, horizontal load mainly borne by the steel frame 2.0.8 single tube chimney ordinary chimney with lining and insulation directly supported on the bracket of the shell or with lining directly stuck on the shell 2.0.9 single liner chimney chimney with a liner set in the shell 2.0.10 multi-liner chimney chimney with two or more liners sharing an outer shell or a frame 2.0.11 liner exhaust tube in the shell of single liner chimney and multi-liner chimney 2.0.12 lining self-bearing structure supported on the shell bracket in sections or the casting body directly attached to the shell via anchor bars distributed on the shell, which is used for protecting the insulation or the shell 2.0.13 shaft parts above the chimney foundation, including the shell, insulation, lining, etc. 2.0.14 shell outermost structure of chimney shaft, which is the load-bearing part of the whole shaft 2.0.15 insulation structure placed between the shell and the lining, to ensure that the heating temperature of the shell does not exceed the specified maximum temperature 2.0.16 self-supporting liner exhaust tube mainly bearing compressive stress in vertical direction and supported by outer barrel in horizontal direction under the action of deadweight load 2.0.17 suspended liner exhaust tube mainly bearing tensile stress in vertical direction and supported by outer barrel in horizontal direction under the action of gravity load 2.0.18 confining bed acid-resistant mortar layer outside the brick liner, used to seal the flue gas and prevent or reduce the leakage of flue gas 2.0.19 flue part of the flue gas exhaust system, used to guide flue gas into the chimney 2.0.20 vortex shedding cross-wind resonance phenomenon occurs when the vortex shedding frequency generated by airflow passing through the chimney surface is equal to or close to the natural vibration frequency of the structure 2.0.21 critical wind speed for vortex shedding minimum wind speed when the chimney is exposed to cross-wind resonance 2.0.22 lock in wind speed range in which vortex shedding is generated when the vortex shedding frequency of the wind is equal to or close to the natural vibration frequency of the structure 2.0.23 strake (vane) vibration damping device for reducing vortex shedding response by suppressing the regular vortex shedding of wind 2.0.24 fiber reinforced plastic (FRP) liner liner with fiber and its products as reinforcement and synthetic resin as matrix, which is manufactured, connected and installed in sections by mechanical winding molding process 2.0.25 reactive flame-retardant resin resin that contains flame-retardant elements such as chlorine, bromine and phosphorus in its main chain, and can make the cured FRP materials have the properties of difficult ignition and self-extinguishing after leaving the fire without adding or adding a small amount of auxiliary flame-retardant materials such as antimony trioxide. This kind of resin is not flame retardant in liquid state 2.0.26 matrix resin part in FRP material 2.0.27 limited oxygen index (LOI) minimum oxygen concentration (volume percent fraction) required to maintain balanced combustion of the test piece in the mixed gas of nitrogen and oxygen under specified conditions 2.0.28 flame-spread rating index value measured by standard method for FRP laminate with thickness of 3mm ~ 4mm, resin content of 70% ~ 75% and reinforced by glass fiber chopped strand mats 2.0.29 winding angle included angle between the length direction of the fiber bundle or belt wound on the mandrel and the meridian or bus of the mandrel 2.0.30 reinforcement fiber material added into resin matrix, which can significantly improve the mechanical properties of composite products 2.0.31 heat-deflection temperature (HDT) temperature at which the resin casting specimen produces the specified deformation amount under the specified static load according to the tube supported beam model in the specified liquid heat transfer medium heating at a constant rate 2.0.32 glass transition temperature temperature (Tg) corresponding to the glass transition (i.e. when the resin casting specimen reaches a certain temperature at a certain temperature rising rate, it changes from a hard glassy brittle state to a flexible elastic state, and its physical parameters change discontinuously), which is the basis for determining the maximum working temperature of the resin, and its value is usually 15℃ ~ 25℃ higher than the heat-deflection temperature 2.0.33 hydraulic sliding form process of continuous construction with the embedded supporting rod of the shell (wall) as the supporting point, using the hydraulic jack to lift the working platform and sliding form 2.0.34 motor-driven ( hydraulic) promote form process of intermittent construction of inverted mould with the preformed hole or embedded supporting rod of the shell (wall) as the supporting point, using the motor or hydraulic jack to lift the working platform and sliding form 2.0.35 two-side sliding form process of carrying out hydraulic sliding form construction for the shell and the lining simultaneously 2.0.36 hydraulic jacking method for installing steel chimney or steel liner in segments from top to bottom by using hydraulic jacking equipment 2.0.37 hydraulic lifting method for installing steel chimney or steel liner in segments from top to bottom by using hydraulic lifting equipment 2.0.38 pneumatic jacking method for installing steel chimney or steel liner in segments from top to bottom by using pneumatic jacking equipment 2.0.39 assessed working life for existing chimney working life of existing chimneys estimated based on reliability assessment under specified conditions 2.0.40 design working life for strengthening of existing chimney working life of the strengthened chimney specified in the strengthening design, which can be used for intended purpose without re-inspection and identification 2.0.41 design working life for corrosion resistance of chimney working life of the chimney specified in the anti-corrosion design, which can be used for intended purpose under normal construction and maintenance conditions 3 Basic requirements 3.1 Design requirements 3.1.1 In this standard, the limit state design method based on probability theory is adopted, the reliability of structural members is measured by reliability index, and design expression of partial coefficient is adopted for structural calculation. 3.1.2 The limit state design of chimney structure and its accessory members shall include: 1 Limit state of bearing capacity: the chimney structure or accessory members reach the maximum bearing capacity, such as strength failure, local or overall instability, and excessive deformation making it unsuitable for continuous bearing, etc. 2 Serviceability limit state: chimney structure or accessory members reach the specified limit for normal working, such as the limits of deformation, crack and maximum heating temperature, etc. 3.1.3 The bearing capacity limit state shall be designed based on different design conditions, including basic combination, accidental combination and seismic combination of action effects. The serviceability limit state shall be designed according to the standard combination, frequent combination and quasi-permanent combination of action effects. 3.1.4 The safety grade and structural importance coefficient of chimneys shall meet the following requirements: 1 The safety grade of a chimney shall not be less than Grade II. When the chimney height is not less than 200m or the unit capacity is not less than 300MW, the safety grade of the chimney shall be Grade I. 2 The structural importance coefficient γ0 of a chimney shall not be less than those specified in Table 3.1.4. Table 3.1.4 Structural importance coefficient γ0 Foreword i 1 General rules 2 Terms 3 Basic requirements 3.1 Design requirements 3.2 Construction requirements 3.3 Acceptance requirements 4 Materials 4.1 Masonry 4.2 Concrete 4.3 Steel bar and steel product 4.4 Material thermal calculation index 5 Loads and actions 5.1 General requirements 5.2 Wind load 5.3 Platform live load and dust load 5.4 Ice load 5.5 Seismic action 5.6 Temperature action 5.7 Flue gas pressure calculation 6 Foundation 6.1 General requirements 6.2 Calculation of bearing capacity of foundation 6.3 Calculation of foundation deformation 6.4 Foundation stability calculation 6.5 Calculation of slab foundation 6.6 Pile foundation calculation 6.7 Structure regulations 6.8 Earthwork and foundation pit construction 6.9 Reinforcement engineering construction 6.10 Formwork construction 6.11 Concrete engineering construction 6.12 Construction quality inspection 7 Concrete chimney 7.1 General requirements 7.2 Additional bending moment calculation 7.3 Calculation of shell bearing capacity at ultimate limit state 7.4 Calculation of shell at serviceability limit state 7.5 Structure regulations 7.6 Reinforcement engineering construction 7.7 Formwork construction 7.8 Concrete engineering construction 7.9 Construction quality inspection 8 Steel liner and brick liner 8.1 General requirements 8.2 Calculation regulations 8.3 Self-supporting steel liner 8.4 Suspended steel liner 8.5 Brick liner 8.6 Design structure 8.7 Manufacture 8.8 Welding 8.9 Installation 8.10 Construction quality inspection 9 FRP liner 9.1 General requirements 9.2 Materials 9.3 Laminate design 9.4 Self-supporting FRP liner 9.5 Suspended FRP liner 9.6 Connection and stiffening 9.7 Design and detailing 9.8 Manufacture 9.9 Installation 9.10 Construction quality inspection 10 Steel chimney 10.1 General requirements 10.2 Framed steel chimney design 10.3 Self-supporting steel chimney 10.4 Guyed steel chimney 10.5 Installation 11 Brick chimney 11.1 General requirements 11.2 Calculation of horizontal section 11.3 Calculation of hoops 11.4 Calculation of circumferential bar 11.5 Calculation of vertical bar 11.6 Design structure 11.7 Construction 11.8 Construction quality inspection 12 Anticorrosion of chimney 12.1 General requirements 12.2 Selection of chimney materials as well as structures and types 12.3 Anticorrosion of brick chimney 12.4 Anticorrosion of single tube reinforced concrete chimney 12.5 Anticorrosion of brick liner for single liner chimney and multi-liner chimney 12.6 Anticorrosion of steel liner for single liner chimney and multi-liner chimney 12.7 Anticorrosion of steel chimney 12.8 Construction quality inspection 13 Chimney platform 13.1 General requirements 13.2 Platform design 13.3 Platform fabrication and installation 13.4 Construction quality inspection 14 Lining and insulation construction 14.1 General requirement 14.2 Brick lining (liner) and insulation 14.3 Lining of amorphous material 14.4 Construction quality inspection 15 Flue 15.1 General requirement 15.2 Underground flue 15.3 Overhead flue 15.4 Construction quality inspection 16 Aeronautical obstacle lamp and signs 16.1 General requirement 16.2 Distribution of obstacle lamps 16.3 Design requirements of aeronautical obstacle lamp 16.4 Construction quality inspection 17 Reinforcement and anti-corrosion renovation of existing chimneys 17.1 General requirement 17.2 Design principles of chimney reinforcement and anti-corrosion renovation 17.3 Selection of reinforcement and repair materials 17.4 Top hoisting of fiber reinforced plastic (FRP) liner 17.5 Construction quality inspection 18 Construction quality inspection of ancillary works 19 Winter construction 19.1 General requirement 19.2 Foundation 19.3 Brick chimney shell 19.4 Concrete chimney shell 19.5 Steel chimney (steel liner) and steel members 19.6 Single tube chimney lining 20 Construction safety 21 Chimney drying 22 Acceptance of engineering quality Annex A Vertical average additional stress coefficient of circular foundation Annex B Stability coefficient of welded cylinder section under axial compression Annex C Records on quality management and inspection of construction site Annex D Quality acceptance records of inspection lot Annex E Quality acceptance records of subitem works Annex F Quality acceptance record of subsection (sub-subsection) works Annex G Pre-acceptance records of unit (sub-unit) work quality Annex H Completion acceptance record of unit (sub-unit) work quality Explanation of wording in this standard List of quoted standards 1 总则 1.0.1 为规范和指导烟囱的设计、施工和验收,保障人身健康和生命财产安全、生态环境安全,满足烟囱工程建设基本需要,依据有关法律、法规,制定本标准。 1.0.2 本标准适用于新建混凝土烟囱、纤维增强塑料烟囱、钢烟囱、砖烟囱等单筒烟囱、套筒式烟囱和多管式烟囱的设计、施工和验收,适用于既有烟囱的加固与防腐改造。 1.0.3 烟囱的设计、施工和验收除应符合本标准的规定外,尚应符合现行国家有关标准的规定。 2 术语 2.0.1 烟囱 chimney 用于排放烟气的高耸构筑物。 2.0.2 干烟囱 dry chimney 排放相对湿度小于60%、温度不小于90℃的烟气的烟囱。 2.0.3 潮湿烟囱 humid chimney 排放相对湿度大于60%、温度大于60℃但小于90℃的烟气的烟囱。 2.0.4 湿烟囱 wet chimney 排放相对湿度为饱和状态、温度不大于60℃的烟气的烟囱。 2.0.5 自立式烟囱 self-supporting chimney 筒身在不加任何附加支撑的条件下,自身构成一个稳定结构的烟囱。 2.0.6 拉索式烟囱 guyed chimney 筒身与拉索共同组成稳定体系的烟囱。 2.0.7 塔架式钢烟囱 framed steel chimney 内筒主要承担自身竖向荷载,水平荷载主要由钢塔架承担的钢烟囱。 2.0.8 单筒式烟囱 single tube chimney 内衬和隔热层直接分段支承在筒壁牛腿上或内衬直接粘贴在筒壁上的普通烟囱。 2.0.9 套筒式烟囱 single liner chimney 筒壁内设置一个内筒的烟囱。 2.0.10 多管式烟囱 multi-liner chimney 两个或多个内筒共用一个外部筒壁或塔架组成的烟囱。 2.0.11 内筒 liner 套筒式和多管式烟囱筒壁内的排烟筒。 2.0.12 内衬 lining 分段支承在筒壁牛腿之,上的自承重结构或依靠分布于筒壁上的锚筋直接附于筒壁上的浇筑体,对隔热层或筒壁起到保护作用。 2.0.13 筒身 shaft 烟囱基础以上部分,包括筒壁、隔热层和内衬等部分。 2.0.14 筒壁 shell 烟囱筒身的最外层结构,是整个筒身承重部分。 2.0.15 隔热层 insulation 置于筒壁与内衬之间,使筒壁受热温度不超过规定的最高温度的结构。 2.0.16 自立式内筒 self-supporting liner 在自重荷载作用下,其竖向以承受压应力为主、水平方向依靠外筒支撑的排烟筒。 2.0.17 悬挂式内筒 suspended liner 在重力荷载作用下,其竖向以承受拉应力为主、水平方向依靠外筒支撑的排烟筒。 2.0.18 封闭层 connfining bed 砖内筒外部的耐酸砂浆层,用于封闭烟气,防止或减少烟气渗漏。 2.0.19 烟道 flue 排烟系统的一部分,用以将烟气导入烟囱。 2.0.20 涡激共振 vortex shedding 风流经烟囱表面产生的旋涡脱落频率与结构自振频率相等或相近时,产生的横风向共振现象。 2.0.21 临界风速 critical wind speed for vortex shedding 烟囱产生横风向共振时的最低风速。 2.0.22 锁住区 lock in 风的旋涡脱落频率与结构自振频率相等或相近时,产生涡激共振的风速范围。 2.0.23 破风圈 strake( vane) 通过抑制风的有规律的旋涡脱落来减少涡激共振响应的减振装置。 2.0.24 纤维增强塑料内筒 fiber reinforced plastic (FRP) liner 以纤维及其制品为增强材料、以合成树脂为基体材料,用机械缠绕成型工艺分段制造、连接和安装的一种内筒。 2.0.25 反应型阻燃树脂 reactive flame-retardand resin 分子主链中含有氯、溴、磷等阻燃元素,在不添加或少量添加辅助阻燃材料(如三氧化二锑)后,可使固化后的纤维增强塑料材料具有点燃困难、离火自熄的性能的树脂。这类树脂在液态时不具有阻燃性。 2.0.26 基体材料 matrix 纤维增强塑料材料中的树脂部分。 2.0.27 极限氧指数 limited oxygen index (LOI) 在规定条件下,试件在氮、氧混合气体中,维持平衡燃烧所需的最低氧浓度(体积百分含量)。 2.0.28 火焰传播速率 flame-spread rating 采用标准方法对厚度为3mm~4mm,且以玻璃纤维短切原丝毡增强、树脂含量为70%~75%的纤维增强塑料层合板所测定的一个指数值。 2.0.29 缠绕角 winding angle 缠绕在芯模上的纤维束或带的长度方向与芯模子午线或母线间的夹角。 2.0.30 增强材料 reinforcement 加入树脂基体中能使复合材料制品的力学性能显著提高的纤维材料。 2.0.31 热变形温度 heat- deflection temperature(HDT) 当树脂浇铸体试件在等速升温的规定液体传热介质中,按筒支梁模型,在规定的静荷载作用下,产生规定变形量时的温度。 2.0.32 玻璃化温度 glass transition temperature 当树脂浇铸体试件在一定升温速率下达到一定温度值时,从一种硬的玻璃状脆性状态转变为柔性的弹性状态,物理参数出现不连续的变化,这个现象称为玻璃化转变,所对应的温度为玻璃化温度(Tg),它是确定树脂最高使用温度的依据,其数值通常高于热变形温度15℃~25℃。 2.0.33 液压滑模 hydraulic sliding form 以筒(墙)壁预埋支撑杆为支点,利用液压千斤顶提升工作平台和滑动模板,连续施工的工艺。 2.0.34 电动(液压)提模 motor-driven ( hydraulic) promote form 以筒(墙)壁预留孔或预埋支撑杆为支点,利用电动机或液压千斤顶提升工作平台和模板,倒模间歇性施工的工艺。 2.0.35 双滑 two-side sliding form 同时进行筒壁和内衬液压滑模施工的工艺。 2.0.36 液压顶升法 hydraulic jacking 利用液压顶升设备进行钢烟囱或钢内筒从上至下逐段(节)安装的方法。 2.0.37 液压提升法 hydraulic lifting 利用液压提升设备进行钢烟囱或钢内筒从上至下逐段(节)安装的方法。 2.0.38 气顶倒装法 pneumatic jacking 利用气压顶升设备进行钢烟囱或钢内筒从上至下逐段(节)安装的方法。 2.0.39 烟囱评估使用年限 assessed working life for exist-ing chimney 可靠性评定所预估的既有烟囱在规定条件下的使用年限。 2.0.40 烟囱加固设计使用年限 design working life for strengthening of existing chimney 加固设计规定的烟囱加固后无须重新进行检测、鉴定,即可按其预定目的使用的年限。 2.0.41 烟囱防腐设计使用年限 design working life for cor-rosion resistance of chimney 防腐设计规定的烟囱在正常施工和维护条件下,即可按其预定目的使用的年限。 3 基本规定 3.1 设计规定 3.1.1 本标准采用以概率理论为基础的极限状态设计方法,以可靠指标度量结构构件的可靠度,采用分项系数的设计表达式进行结构计算。 3.1.2 烟囱结构及其附属构件的极限状态设计应包括: 1 承载能力极限状态:烟囱结构或附属构件达到最大承载力,如发生强度破坏、局部或整体失稳以及因过度变形而不适于继续承载等。 2 正常使用极限状态:烟囱结构或附属构件达到正常使用规,定的限值,如达到变形、裂缝和最高受热温度等规定限值等。 3.1.3 承载能力极限状态设计应根据不同的设计状况分别进行作用效应的基本组合、偶然组合和地震组合设计。正常使用极限状态应分别按作用效应的标准组合、频遇组合和准永久组合进行设计。 3.1.4 烟囱的安全等级与结构重要性系数应符合下列规定: 1 烟囱安全等级不应低于二级,当烟囱高度不小于200m或单机容量不小于300MW时,烟囱的安全等级应为一级。 2 烟囱的结构重要性系数γ0不应小于表3.1.4的规定。 表3.1.4 结构重要性系数γ0 结构重要性系数 对持久设计状况和短暂设计状况 对偶然设计状况和地震设计状况 安全等级 一级 二级 γ0 1.1 1.0 1.0 3.1.5 烟囱的抗震设防类别应符合现行国家标准《建筑工程抗震设防分类标准》GB 50223的规定,并应符合下列规定: 1 单机容量为300MW及以上或规划容量为800MW及以上的火力发电厂和地震时必须维持正常供电的重要电力设施的烟囱、烟道,抗震设防类别应划分为重点设防类; 2 高度不小于200m的烟囱,抗震设防类别应划分为重点设防类; 3 50万人口以上城镇的集中供热烟囱,抗震设防类别应划分为重点设防类; 4 其余各类烟囱最低抗震设防类别不宜低于标准设防类。 3.1.6 对于持久设计状况和短暂设计状况,烟囱承载能力极限状态设计应按下列作用效应基本组合中的最不利值确定: 1 持久设计状况: 1)套筒式与多管式烟囱的内筒支承平台的荷载效应设计值,应符合下式规定: (3.1.6-1) 2) 套筒式与多管式烟囱的内筒的效应设计值,应符合下式规定: (3.1.6-2) 2 短暂设计状况: 1) 单筒式烟囱、塔架式钢烟囱、套筒式与多管式烟囱的外筒,以及由风荷载、平台活荷载等可变荷载控制的荷载效应设计值,应符合下式规定: (3.1.6-3) 2) 由风荷载控制的套筒式与多管式烟囱的内筒的荷载效应设计值,应符合下式规定: (3.1.6-4) 式中:γ0——烟囱重要性系数,按本标准第3.1.4条的规定采用; ——第i个永久作用分项系数,按本标准第3.1.9条的规定采用; γPL——烟囱平台活荷载分项系数,按本标准第3.1.9条的规定采用; ——第l个可变作用(主导可变作用)分项系数,按本标准第3.1.9条的规定采用; ——第j个可变作用分项系数,按本标准第3.1.9条的规定采用; Gik——第i个永久作用的标准值; Qlk——第l个可变作用(主导可变作用)的标准值; Qjk——第j个可变作用的标准值; ——第i个永久作用标准值的效应; Swk——风荷载标准值的效应; ——第l个可变作用(主导可变作用)标准值的效应; ——第j个可变作用标准值的效应; SPLk——烟囱平台活荷载标准值的效应; ——第j个可变作用的组合值系数,按本标准第3.1.9条的规定采用; ψCPL——烟囱平台活荷载组合系数,按本标准第3.1.9条的规定采用; 、 ——第l个和第j个考虑烟囱设计使用年限的可变作用调整系数,按现行国家标准《建筑结构荷载规范》GB 50009的规定采用; γT——正常烟气温度作用分项系数,按本标准第3.1.9条的规定采用; ST——正常烟气温度作用标准值的效应; γCP——正常烟气温度作用工况下,烟气负压分项系数,按本标准第3.1.9条的规定采用; SCP——正常烟气温度作用工况下,烟气负压标准值的效应; γw——风荷载分项系数,按本标准表3.1.9的规定采用; Rd——烟囱或烟囱构件的抗力设计值,对于不同设计状况,应采用相应的抗力设计值。 3.1.7 对于烟气爆炸、事故温度等偶然设计状况,烟囱承载能力极限状态设计应符合下式规定: (3.1.7) 式中: ——按偶然荷载标准值Ad计算的荷载效应值; ——第一个可变荷载的频遇值系数; ——第j个可变荷载的准永久值系数。 注:烟气爆炸和事故温度下风荷载的频遇值系数取0.20。 3.1.8 对于需要抗震设防的烟囱,除应按本标准第3.1.5条、第3.1.6条极限承载能力计算外,尚应按下列地震设计状况进行抗震验算: 1 单筒烟囱及套筒式与多 管式烟囱的外筒: (3.l.8-1) 2 套筒式与多管式烟囱的内筒: (3.1.8-2) 式中:γRE——承载力抗震调整系数,砖烟囱取1.00;混凝土烟囱取0.90;钢烟囱取0.80;钢塔架应按塔柱、腹杆、支座斜杆和塔柱节点分别取0.85、0.80、0.90和1.00;当仅计算竖向地震作用时,各类烟囱和构件均应采用1.00;纤维增强塑料内筒按本标准第9章的有关规定执行; γEh——水平地震作用分项系数,按本标准表3.1.9的规定采用; γEv——竖向地震作用分项系数,按本标准表3.1.9的规定采用; SEhk——水平地震作用标准值的效应,按本标准第5.5节的规定进行计算; SEvk——竖向地震作用标准值的效应,按本标准第5.5节的规定进行计算; ——由地震作用、风荷载、日照和基础倾斜引起的附加弯矩效应,按本标准第7.2节的规定计算; SGE——重力荷载代表值的效应,重力荷载代表值取烟囱及其构配件自重标准值和各层平台活荷载组合值之和;活荷载的组合值系数应按表3.1.9的规定采用; ST——烟气温度作用效应; ψwE——风荷载的组合值系数,取0.20; ——由地震作用、风荷载、日照和基础倾斜引起的附加弯矩组合值系数,取1.00; γT——烟气温度作用分项系数; γGE——重力荷载分项系数,一般情况应取1.20;当重力荷载对烟囱承载能力有利时,取值不应大于1.00。 3.1.9 对于不同的设计状况,应按下列规定选用不同的荷载作用分项系数与组合值系数: 1 对于持久设计状况和短暂设计状况,作用效应基本组合的分项系数应按表3.1.9-1的规定采用。 表3.1.9-1 荷载分项系数 作用名称 分项系数 备注
|
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 |
服务热线:400-001-5431 | 电话:010-8572 5110 | 传真:010-8581 9515 | Email: bz@bzfyw.com | |
版权所有: 北京悦尔信息技术有限公司 2008-2020 京ICP备17065875号-1 |
本页关键词: |
GB/T 50051-2021, GB 50051-2021, GBT 50051-2021, GB/T50051-2021, GB/T 50051, GB/T50051, GB50051-2021, GB 50051, GB50051, GBT50051-2021, GBT 50051, GBT50051 |