![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative. GB/T 18442 consists of the following seven parts under the general title Static vacuum insulated cryogenic pressure vessels: ——Part 1: General requirements; ——Part 2: Materials; ——Part 3: Design; ——Part 4: Fabrication; ——Part 5: Inspection and testing; ——Part 6: Safety protection; ——Part 7: Rules of pressure strengthening for inner vessels. This is Part 3 of GB/T 18442. This part is developed in accordance with the rules given in GB/T 1.1-2009. This part replaces GB/T 18442.3-2011 Static vacuum insulated cryogenic pressure vessel - Part 3: Design, with respect to which, the following main technical changes have been made: ——the normative references are modified; ——two terms and definitions, i.e., calculation pressure and sealing-off vacuum degree are deleted; six terms and definitions, i.e., effective volume, filling rate, specified filling rate, holding time, static evaporation rate and sealing-off vacuum degree, are added; ——the general requirements for design are modified according to the requirements of TSG 21; ——the requirements for design documents are added, and specific requirements for the contents of design documents, general design drawing and those to be indicated in pipeline system drawing are proposed; ——the requirements for design loads are modified and the loads are classified according to the load properties; ——the requirements of exemption criteria for fatigue analysis are modified; ——the requirements for allowable stress of materials are modified; the allowable stress or design stress intensity of corresponding materials are respectively specified by adopting overall design, overall design analysis and stress analysis of local structure; for nonmetallic materials, the safety coefficient for determining the allowable stress of materials is specified; ——the design temperatures of inner vessel and outer jacket are modified; ——the requirements for minimum design metal temperature are added; ——the requirements for design pressure of the inner vessel under external pressure are modified; ——the requirements for outer jacket under internal pressure are modified; ——the requirements for corrosion allowance are modified; ——the requirements for tank thickness are added, and the negative deviation of steel in Edition 2011 is canceled; ——the requirements for filling rate are modified, and the principles for determining the maximum filling rate, specified filling rate and initial filling rate are proposed; —— the indexes such as static evaporation rate, leakage rate of vacuum annular space, outgassing and leakage rate of vacuum annular space and sealing-off vacuum degree of cryogenic vessels with high vacuum multilayer insulation are modified, the static evaporation rate index of liquefied natural gas (methane) is added, and the requirement that the sealing-off vacuum degree in Table 5 is recommended in Edition 2011 is canceled; ——the requirements for tank leakage test are added; ——the arrangement requirements for adsorbent in vacuum annular space are modified; ——the design requirements for tank are modified. ——the design requirements for welded structure are added; ——the design requirements for annular space bracing and tank support are modified; ——the design requirements for the connection between structural parts and the tank are added; ——the design requirements for insulation are modified; ——the design requirements for pressure build coils are modified; ——the design requirements for vaporizer are added; ——the design requirements for pipeline system are modified; the requirements for design pressure and test pressure of external pipeline are added; ——Annex A "Risk assessment report" is added. This part was proposed by and is under the jurisdiction of the National Technical Committee on Boilers and Pressure Vessels of Standardization Administration of China (SAC/TC 262). The previous editions of this part are as follows: ——GB/T 18442.3-2011; ——GB 18442-2001. Static vacuum insulated cryogenic pressure vessels - Part 3: Design 1 Scope This part of GB/T 18442 specifies the basic requirements such as design documents, design parameters, performance parameters and structural design for the design of static vacuum insulated cryogenic pressure vessels (hereinafter referred to as "cryogenic vessels"). This part is applicable to cryogenic vessels that simultaneously meet the following conditions: a) cryogenic vessel with the working pressure of inner vessel not less than 0.1MPa; b) cryogenic vessel with the geometric volume not less than 1m3; c) cryogenic vessel with the insulation mode of vacuum powder insulation, vacuum composite insulation or high vacuum multilayer insulation; d) cryogenic vessel storing refrigerated liquefied gas contents with standard boiling point not lower than -196℃. This part is not applicable to cryogenic vessels that meet the following conditions: a) cryogenic vessel with the inner vessel and outer jacket made of non-ferrous metal or non-metallic materials; b) cryogenic vessel with spherical structure; c) cryogenic vessel with stacked insulation; d) transportable cryogenic vessel; e) cryogenic vessel storing refrigerated liquefied gas contents with standard boiling point lower than -196℃; f) cryogenic vessel storing toxic gas as specified in GB 12268; g) cryogenic vessel with special requirements such as national defense military equipment. 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. GB/T 150-2011 (All parts) Pressure vessels GB/T 1448 Fiber-reinforced plastics composites - Determination of compressive properties GB/T 1450.1 Fiber-reinforced plastics composites - Determination of interlaminar strength GB/T 9341 Plastics - Determination of flexural properties GB/T 18442.1 Static vacuum insulated cryogenic pressure vessels - Part 1: General requirements GB/T 20801.3-2006 Pressure piping code - Industrial piping - Part 3: Design and calculation GB/T 20801.5 Pressure piping code - Industrial piping - Part 5: Inspection and testing GB/T 24511 Stainless steel and heat resisting steel plate, sheet and strip for pressure equipments GB/T 26929 Terminology for pressure vessels GB/T 31481 Guidance for gas/materials compatibility of cryogenic vessels HG/T 21574 Standard for design and selection of chemical equipment lifting lugs BJ 4732 Steel pressure vessels - Design by analysis NB/T 47041 Vertical vessels supported by skirt NB/T 47065.1 Vessel supports - Part 1: Saddle support NB/T 47065.2 Vessel supports - Part 2: Leg support NB/T 47065.4 Vessel supports - Part 4: Bracket support TSG 21 Supervision regulation on safety technology for stationary pressure vessel 3 Terms and definitions For the purposes of this document, the terms and definitions given in GB/T 150, GB/T 18442.1 and GB/T 26929 as well as the following apply. 3.1 effective volume maximum liquid volume of refrigerated liquefied gas that is allowed to be filled in a cryogenic vessel in use 3.2 filling rate ratio of the liquid volume of the refrigerated liquefied gas filled in a cryogenic vessel to the geometric volume of the inner vessel 3.3 specified filling rate ratio of the liquid volume to the geometric volume of the inner vessel where the filled liquid volume reaches the highest liquid level specified in the design during cryogenic vessel filling 3.4 holding time time taken for the inner vessel to rise from the ambient atmospheric pressure to the set pressure of the safety discharge device when replenishing liquid to the specified filling rate after the internal refrigerated liquefied gas reaches thermal equilibrium with the external ambient temperature under atmospheric pressure and then closing the gas valve, where the refrigerated liquefied gas is filled according to the specified filling rate; it is converted into the time under the standard atmospheric pressure (1.013 25×105Pa) at the set ambient temperature (20℃) Note: the unit is hour (h). 3.5 static evaporation rate percentage of the mass loss of refrigerated liquefied gas due to natural evaporation within 24h after the cryogenic vessel is kept still to reach thermal equilibrium under the specified filling rate to the mass of refrigerated liquefied gas under the effective volume of the inner vessel, which is converted into the evaporation rate under the standard atmospheric pressure (1.013 25×105Pa) at set ambient temperature (20℃) 3.6 annular space vacuum degree absolute pressure of gas in annular space of cryogenic vessel 3.7 sealing-off vacuum degree vacuum degree where the pressure of the vacuum annular space is relatively stable at normal temperature after vacuumizing the tank annular space and closing the vacuumizing interface 3.8 leakage rate of vacuum annular space amount of gas leaking into the vacuum annular space in unit time 3.9 outgassing rate of vacuum annular space amount of gas released by the material in vacuum annular space, the vessel wall surface, etc. in unit time 3.10 outgassing and leakage rate of vacuum annular space sum of leakage rate of vacuum annular space and outgassing rate of vacuum annular space 4 General requirements 4.1 The design of cryogenic vessels shall not only meet the requirements of this part, but also comply those specified in TSG 21 and GB/T 150.3. 4.2 The design unit shall, in strict accordance with the design conditions of the cryogenic vessel provided by the design entrusting party, comprehensively consider all relevant factors, failure modes and sufficient safety allowance to ensure that the cryogenic vessel has sufficient strength, rigidity, stability and corrosion resistance. Meanwhile, the strength requirements for welded joints between the main stressed members such as annular space bracings, supports and lifting lugs of cryogenic vessels and the tanks shall be considered to ensure the safety of cryogenic vessels within the design service life. 4.3 The arrangement of tanks, pipelines, safety accessories, instruments and handling accessories shall meet the requirements of use and safety. 4.4 The basic contents of the risk assessment report shall meet the requirements of Annex A. See Annex B for thermodynamic data of common refrigerated liquefied gases. 5 Design documents 5.1 The design documents of cryogenic vessels shall at least include the following items: a) risk assessment report, including the main failure modes and risk control at the design, fabrication and use stages; b) design specifications, including the main physical and chemical properties (number, name, category and saturated vapor pressure and density corresponding to the working temperature, etc.) and hazardous characteristics of filling contents, content limits for restricted components and harmful impurities of the mixed contents, the compatibility with tank materials; moreover, the selection of design specifications and standards, principles for determination of main design structures and main design parameters as well as the selection of materials, safety accessories, instruments, handling accessories and pressure build coils shall also be included; c) design calculation sheet, including the calculation of tank strength, rigidity, external pressure stability, structural strength stress analysis report (where necessary), volume, heat transfer, safe discharge volume and capacity of overpressure capacity device as well as the strength calculation of annular space bracing and tank support, etc.; d) design drawings, at least including general drawing, inner vessel drawing, pipeline system drawing and flow chart, etc.; the basic condition drawing for cryogenic vessel shall also be provided where necessary; e) technical conditions for fabrication, including main fabrication process requirements, inspection and test methods, etc.; f) instructions for installation, use and maintenance, including main technical performance parameters, characteristics of filled contents, specifications and connection methods of safety accessories, instruments and handling accessories, operation instructions, maintenance instructions, precautions for use, necessary warnings and emergency measures. 5.2 The general design drawing shall at least cover the following information: a) product name, model, vessel type, safety technical specifications and product standards for design and fabrication; b) working conditions, including working pressure, working temperature and content characteristics (toxicity, explosion hazard degree, oxidation, etc.); c) design conditions, including design temperature, minimum design metal temperature, design load (including pressure load and other loads to be considered), contents (composition), welded joint coefficient, corrosion allowance, natural conditions (ambient temperature, seismic fortification intensity, basic wind pressure or wind speed, basic snow pressure, etc.), and the limited content of corrosion contents shall also be indicated for those vulnerable to stress corrosion; d) designations and standards of materials for main pressure elements, outer jackets and pipelines of inner vessels; e) main characteristic parameters, including the geometric volume of the inner vessel of the cryogenic vessel, specified filling rate, geometric volume of annular space, dead weight of the cryogenic vessel and the weight of contents, etc.; f) the required thickness, nominal thickness and minimum forming thickness of the seal head and cylinder of inner vessel, and the nominal thickness and minimum forming thickness of the seal head and cylinder of outer jacket; g) overall dimensions; h) design service life of the cryogenic vessel; i) requirements for pressure test and leakage test; j) fabrication requirements, including non-destructive testing requirements, heat treatment requirements (where necessary), surface cleaning and treatment requirements, nitrogen or inert gas replacement requirements, outer jacket surface treatment and coating requirements, etc.; k) tank insulation mode, vacuum insulation performance index and annular space vacuum performance index, etc.; l) specifications, performance parameters and connection methods of tank safety accessories, instruments and handling accessories; m) nozzle orientation, specifications, connecting flange standards, etc.; n) position of product nameplate; o) packaging, transportation and installation requirements. 5.3 The pipeline system drawing shall at least cover the following information: a) standards for the design and fabrication of pipeline system; b) design parameters, including design temperature, design pressure, welded joint coefficient, etc.; c) designations, standard numbers, specifications, etc. of materials for the pressure elements of pipelines; d) models, specifications, performance parameters, connection methods, nozzle orientation, etc. of safety accessories (including pipeline overpressure discharge devices), instruments and handling accessories; e) requirements for non-destructive testing; f) requirements for pressure test; g) requirements for leakage test. 6 Loads 6.1 General requirements The cryogenic vessels shall be able to withstand mechanical loads (including pressure load, gravity load, inertia force load and dynamic load) and thermal stress load under various conditions that may occur during normal operation and empty tank transportation, and the most severe combination of these loads shall be considered. The structural fatigue failure due to pressure fluctuation, etc. of the inner vessel within the design service life shall also be considered at the same time. 6.2 Design loads of inner vessel 6.2.1 The following pressure loads shall be considered: a) the internal pressure, external pressure or maximum differential pressure; b) the static pressure of liquid column generated by the content filled to the specified filling rate, which is calculated according to the density of content at the boiling point at standard atmospheric pressure. 6.2.2 The following gravity loads shall be considered: a) the dead weight of inner vessel and the gravity loads of the accessories attached thereto, such as insulation materials and annular space pipelines; b) the gravity load of content contained in the inner vessel under normal working conditions or pressure test conditions. 6.2.3 The dynamic loads caused by the followings shall be considered: a) the impact force of liquid flow on the inner vessel where filled with liquid; b) the impact load caused by sharp fluctuation of content pressure; c) the seismic load. 6.2.4 For the thermal stress load, at least the uneven strain load caused by temperature gradient and the pipeline reactive force caused by thermal expansion or cold contraction of the inner vessel and annular space pipeline under the following conditions shall be considered: a) the load borne by the inner vessel at the bracing point during the cooling from the ambient temperature to the working temperature. b) the reactive force applied to the inner vessel by the pipeline due to thermal expansion or cold contraction of the inner vessel and annular space pipeline, and at least the following three conditions shall be considered: 1) pre-cooling condition: the inner vessel and the outer jacket are in hot state, but the annular space pipeline is in cold state; 2) filling and discharging conditions: the inner vessel and the annular space pipeline are in cold state, but the outer jacket is in hot state; 3) liquid storage condition: the annular space pipeline and the outer jacket are in hot state, but the inner vessel is in cold state. c) where the annular space is heated and vacuumized during tank fabrication , since the inner vessel and the outer jacket are at different temperatures, the loads at the following joints shall be considered: 1) the thermal stress load of inner vessel at the bracing point; 2) the thermal stress load applied by annular space pipeline to the joint of inner vessel. 6.2.5 During the empty tank transportation, the inertia force load borne by the annular space bracing structure is converted into equivalent static force according to the following requirements, with the maximum mass being the sum of the mass of inner vessel and its accessories: a) direction of motion: maximum mass multiplied by twice of gravitational acceleration; b) horizontal direction perpendicular to the direction of motion: maximum mass multiplied by gravitational acceleration; c) vertically upward: maximum mass multiplied by gravitational acceleration; d) vertically downward: maximum mass multiplied by twice of gravitational acceleration. 6.3 Design loads of outer jacket 6.3.1 For the pressure load, loads caused by internal pressure or external pressure shall be considered. 6.3.2 The gravity load (the dead weight of tank and accessories such as external pipelines, ladders and platforms) borne by the tank support under normal working conditions and that of contents contained in the inner vessel under normal working conditions or test conditions shall be considered. The supporting counterforce borne by the outer jacket at the joint with the support is equal to the gravity load borne by the support. 6.3.3 For the thermal stress load, the load applied to the outer jacket by the annular space pipeline under the conditions of b) and c) in 6.2.4 shall be considered. 6.3.4 For the inertia force load, at least the loads applied to the outer jacket by the transportation support or lifting lug under the following conditions of a) and b) shall be considered: a) during empty tank transportation, the inertia force load borne by the cryogenic vessel transportation support is equal to the mass of vessel with empty tank multiplied by the inertia force load coefficients in different directions specified in 6.2.5; b) during empty tank hoisting, the load coefficient of the inertia force load borne by the lifting lug of tank shall meet the requirements of HG/T 21574; c) the inertia force borne by the joint between the tank and the transportation support or lifting lug is equal to the supporting counterforce of the transportation support or lifting lug. 6.3.5 Dynamic loads such as wind load, seismic load and snow load shall be considered. 6.3.6 For vertical cryogenic vessels, the load borne by the annular space bracing and the supporting counterforce of the outer jacket at the bracing shall be considered where the tank is in a horizontal position under the fabrication, transportation and hoisting conditions. 6.4 Exemption criteria for fatigue analysis 6.4.1 Fatigue analysis may be exempted where all requirements of any one of 6.4.2, 6.4.3 or 6.4.4 are met. Otherwise, the inner vessel shall be designed for fatigue analysis according to JB 4732. 6.4.2 For inner vessels with number of cycles less than or equal to 106, fatigue analysis may be exempted if the designed cryogenic vessel has comparable shape and load conditions with respect to the cryogenic vessel successfully used, and has been operated for a long enough time and proved by use experience. However, special attention shall be paid to the adverse effects incurred due to the following conditions: a) the inner vessel is of non-integral structure, such as that the opening is reinforced by reinforcing ring or fillet weld joint is adopted; b) significant thickness variation is available between adjacent components of the inner vessel; c) connectors and connecting pipes at the transition area of formed seal head. 6.4.3 Where the inner vessel is made of austenitic stainless steel, the total number of the following cycles shall not exceed 4,000: a) the expected (design) number of cycles for the full-range pressure cycle including filling and discharging; b) the expected (design) number of cycles of the working pressure cycle in which the pressure fluctuation range of the inner vessel exceeds 50% of the design pressure; c) the effective number of metal temperature difference fluctuations between any two adjacent points including pipelines, of which the calculation method meets the relevant requirements of JB 4732; d) the number of temperature fluctuation cycles of components (including welds) composed of materials with different thermal expansion coefficients in case of (α1-α2)ΔT>0.000 34, wherein, α1 and α2 are the average thermal expansion coefficients of two materials respectively, and ΔT is the temperature fluctuation range during operation. 6.4.4 Where the corresponding exemption conditions for fatigue analysis specified in JB 4732 are met. Foreword i 1 Scope 2 Normative references 3 Terms and definitions 4 General requirements 5 Design documents 6 Loads 7 Temperature 8 Pressure 9 Welded joint coefficient 10 Allowable stress 11 Corrosion allowance 12 Tank thickness 13 Filling rate 14 Vacuum insulation performance index 15 Vacuum performance of annular space 16 Pressure test 17 Leakage test 18 Structural design Annex A (Normative) Risk assessment report Annex B (Informative) Thermodynamic data of common refrigerated liquefied gases 固定式真空绝热深冷压力容器 第3部分:设计 1 范围 GB/T 18442的本部分规定了固定式真空绝热深冷压力容器(以下简称“深冷容器”)设计的设计文件、设计参数、性能参数及结构设计等基本要求。 本部分适用于同时满足以下条件的深冷容器: a)内容器工作压力不小于0.1 MPa; b)几何容积不小于1 m3; c)绝热方式为真空粉末绝热、真空复合绝热或高真空多层绝热; d)储存介质为标准沸点不低于-196℃的冷冻液化气体。 本部分不适用于下列范围的深冷容器: a)内容器和外壳材料为有色金属或非金属的; b)球形结构的; c)堆积绝热方式的; d)移动式的; e)储存标准沸点低于-196℃冷冻液化气体介质的; f)储存介质按GB 12268规定为毒性气体的; g)国防军事装备等有特殊要求的。 2规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 150—2011(所有部分)压力容器 GB/T 1448 纤维增强塑料压缩性能试验方法 GB/T 1450.1 纤维增强塑料层间剪切强度试验方法 GB/T 9341 塑料 弯曲性能的测定 GB/T 18442.1 固定式真空绝热深冷压力容器 第1部分:总则 GB/T 20801.3—2006压力管道规范 工业管道 第3部分:设计和计算 GB/T 20801.5压力管道规范 工业管道 第5部分:检验与试验 GB/T 24511 承压设备用不锈钢和耐热钢钢板和钢带 GB/T 26929 压力容器术语 GB/T 31481 深冷容器用材料与气体的相容性判定导则 HG/T 21574化工设备吊耳设计选用规范 JB 4732钢制压力容器 分析设计标准 NB/T 47041 塔式容器 NB/T 47065.1 容器支座 第1部分:鞍式支座 NB/T 47065.2容器支座 第2部分:腿式支座 NB/T 47065.4容器支座 第4部分:支承式支座 TSG 21 固定式压力容器安全技术监察规程 3术语和定义 GB/T 150、GB/T 18442.1和GB/T 26929界定的以及下列术语和定义适用于本文件。 3.1 有效容积 effective volume 在使用状态下,深冷容器允许充装冷冻液化气体的液体最大液体体积。 3.2 充满率 filling rate 深冷容器充装冷冻液化气体的液体体积与内容器的几何容积之比。 3.3 额定充满率specified filling rate 深冷容器充装时,充装液体量达到设计规定最高液面时的液体体积与内容器几何容积之比。 3.4 维持时间holding time 按额定充满率充装冷冻液化气体,内部静置的冷冻液化气体在大气压力下与外部环境温度达到热平衡后,补液至额定充满率,且关闭气相阀门后,内容器从环境大气压力开始上升到安全泄放装置整定压力所经历的时间,且换算为标准大气压(1.013 25×105 Pa)和设定环境温度(20℃)下的时间。 注:单位为小时(h)。 3.5 静态蒸发率static evaporation rate 深冷容器在额定充满率下,静置达到热平衡后,24 h内自然蒸发损失的冷冻液化气体质量与内容器有效容积下冷冻液化气体质量的百分比,换算为标准大气压(1.013 25×105 Pa)和设定环境温度(20℃)状态下的蒸发率值。 3.6 夹层真空度annular space vacuum degree 深冷容器中夹层空间的气体绝对压力。 3.7 封结真空度sealing-off vacuum degree 罐体夹层抽真空结束并且封闭抽真空接口后,在常温下真空夹层压力相对稳定时的真空度。 3.8 真空夹层漏气速率leakage rate of vacuum annular space 单位时间内漏入真空夹层的气体量。 3.9 真空夹层放气速率 outgassing rate of vacuum annular space 真空夹层内材料、器壁表面等在单位时间内放出的气体量。 3.10 真空夹层漏放气速率 outgassing and leakage rate of vacuum annular space 真空夹层漏气速率与真空夹层放气速率之和。 4 一般要求 4.1 深冷容器的设计除应符合本部分的要求外,还应符合TSG 21和GB/T 150.3的规定。 4.2设计单位应严格依据设计委托方所提供的深冷容器设计条件,综合考虑所有相关因素、失效模式和足够的安全裕量,以保证深冷容器具有足够的强度、刚度、稳定性和耐腐蚀性。同时应考虑深冷容器的夹层支撑、支座、吊耳等主要受力构件与罐体的焊接接头的强度要求,确保深冷容器在设计使用年限内的安全。 4.3罐体、管路、安全附件、仪表及装卸附件的布置应满足使用和安全的要求。 4.4风险评估报告的基本内容应符合附录A的规定。常见冷冻液化气体热力学数据参见附录B。 5设计文件 5.1 深冷容器的设计文件应至少包括下列各项: a)风险评估报告,包括设计、制造及使用等阶段的主要失效模式和风险控制等; b)设计说明书,包括对充装介质的主要物理、化学性质(编号、名称、类别及与工作温度相对应的饱和蒸气压力与密度等),危险特性,混合介质的限制组分以及有害杂质的限制含量要求,与罐体材料相容性等作出说明,还应对设计规范与标准的选择、主要设计结构的确定原则、主要设计参数的确定原则、材料的选择、安全附件的选择、仪表及装卸附件的选择、自增压器等的选用作出说明; c)设计计算书,包括罐体强度、刚度、外压稳定性、结构强度应力分析报告(需要时)、容积、传热、安全泄放量、超压泄放装置的排放能力的计算、夹层支撑及罐体支座的强度计算等; d)设计图样,至少包括总图、内容器图、管路系统图及流程图等,必要时还应提供深冷容器基础条件图等; e)制造技术条件,包括主要制造工艺要求、检验与试验方法等; f)安装与使用维护说明书,包括主要技术性能参数、充装的介质特性、安全附件、仪表及装卸附件的规格和连接方式、操作说明、维护说明、使用应注意的事项、必要的警示性告知以及应急措施等。 5.2设计总图上应至少注明下列内容: a)产品名称、型号、容器类别,设计、制造所依据的安全技术规范和产品标准; b)工作条件,包括工作压力、工作温度、介质特性(毒性、爆炸危害程度、氧化性等); c)设计条件,包括设计温度、最低设计金属温度、设计载荷(包含压力载荷和其他应考虑的载荷)、介质(组分)、焊接接头系数、腐蚀裕量、自然条件(环境温度、地震设防烈度、基本风压或风速、基本雪压等),对有应力腐蚀倾向的还应注明腐蚀介质的限定含量; d)内容器主要受压元件、外壳壳体和管路的材料牌号与材料标准; e)主要特性参数,包括深冷容器内容器的几何容积、额定充满率、夹层的几何容积、深冷容器自重和盛装介质重量等; f)内容器封头与筒体的计算厚度、名义厚度和最小成型厚度,外壳封头与筒体的名义厚度和最小成型厚度; g)外形尺寸; h)深冷容器设计使用年限; i)耐压试验和泄漏试验要求; j)制造要求,包括无损检测要求、热处理要求(必要时)、对表面清洁处理的要求、氮气或惰性气体置换要求、外壳表面处理与涂敷的要求等; k)罐体绝热方式、真空绝热性能指标和夹层真空性能指标等; l)罐体安全附件、仪表和装卸附件的规格、性能参数和连接方式; m)管口的方位、规格、连接法兰标准等; n)产品铭牌位置; o)包装、运输和安装要求。 5.3管路系统图应至少注明以下内容: a)管路系统设计、制造所依据的标准; b)设计参数,包括设计温度、设计压力、焊接接头系数等; c)管路受压元件材料牌号以及材料标准号、规格等; d)安全附件(包括管路超压泄放装置)、仪表及装卸附件的型号、规格、性能参数、连接方式、管口方位等; e)无损检测要求; f)耐压试验要求; g)泄漏试验要求。 6 载荷 6.1 总体要求 深冷容器应能承受在正常操作和空罐运输等可能出现的各种工况条件下的机械载荷(含压力载荷、重力载荷、惯性力载荷和动力载荷)及热应力载荷,并考虑这些载荷可能发生的最苛刻的组合。同时,应考虑在设计使用年限内由于内容器压力波动等造成的结构疲劳失效。 6.2 内容器设计载荷 6.2.1压力载荷应考虑下列载荷: a)内压、外压或最大压差; b)储液量达到额定充满率时,介质产生的液柱静压力。液柱静压力按介质在标准大气压下沸点的密度进行计算。 6.2.2重力载荷应考虑下列载荷: a)内容器的自重以及附在内容器上的绝热材料、夹层管路等附件的重力载荷; b)正常工作条件下或耐压试验状态下,内容器盛装介质的重力载荷。 6.2.3动力载荷应考虑下列各项引起的载荷: a)内容器充液时,液体流动对内容器的冲击力; b)介质压力急剧波动引起的冲击载荷; c)地震载荷。 6.2.4热应力载荷至少应考虑下列工况下,由温度递变引起的不均匀应变载荷以及内容器与夹层管路的热膨胀或冷收缩所引起的管路反作用力: a)内容器从环境温度冷却到工作温度过程中,内容器在支撑点处承受的载荷。 b)由于内容器、夹层管路的热膨胀或冷收缩引起的管路施加于内容器的反作用力,并至少考虑下列3种工况: 1)预冷工况:内容器热状态,夹层管路冷状态,外壳热状态; 2)充装及出液工况:内容器、夹层管路均是冷状态,外壳热状态; 3)储存液体工况:内容器冷状态,夹层管路热状态,外壳热状态。 c)罐体制造过程中夹层加热抽真空时,由于内容器与外壳处于不同的温度,应考虑下列连接处的载荷: 1)内容器在支撑点处的热应力载荷; 2)夹层管路施加于内容器连接处的热应力载荷。 6.2.5空罐运输过程中,夹层支撑结构承受的惯性力载荷按下列要求转换成等效的静态力,最大质量取内容器及其附件质量之和: a)运动方向:最大质量乘以2倍重力加速度; b)与运动方向垂直的水平方向:最大质量乘以重力加速度; c)垂直向上:最大质量乘以重力加速度; d)垂直向下:最大质量乘以2倍重力加速度。 6.3外壳设计载荷 6.3.1 压力载荷应考虑由于内压或外压引起的载荷。 6.3.2重力载荷应考虑在正常工作条件下罐体支座承受的重力载荷(罐体和外部管路、扶梯、平台等附件的自重)以及在正常工作条件下或试验状态下内容器盛装的介质的重力载荷。在支座连接处外壳承受的支反力等于支座承受的重力载荷。 6.3.3热应力载荷应考虑6.2.4 b)、c)工况下,夹层管路施加于外壳的载荷。 6.3.4惯性力载荷至少应考虑下列a)和b)工况下运输支座或吊耳施加于外壳的载荷: a)空罐运输过程中,深冷容器运输支座承受的惯性力载荷等于其空罐时的质量乘以6.2.5规定的不同方向的惯性力载荷系数; b)计算空罐吊装时,罐体吊耳承受的惯性力载荷,载荷系数按照HG/T 21574的规定; c)罐体与运输支座或吊耳连接处所承受的惯性力等于运输支座或吊耳的支反力。 6.3.5 动力载荷应考虑风载荷、地震载荷和雪载荷等载荷的作用。 6.3.6对于立式深冷容器应考虑在制造、运输、吊装工况中,罐体处于卧置状态时,夹层支撑件承受的载荷以及外壳在支撑处的支反力。 6.4 疲劳分析的免除准则 6.4.1 满足6.4.2、6.4.3或6.4.4任一条的所有要求时,可免除疲劳分析。否则,内容器应按照JB 4732进行疲劳分析设计。 6.4.2对于循环次数≤106的内容器,如所设计的深冷容器与已有成功使用经验的深冷容器具有可类比的形状与载荷条件,且经过了足够长时间的操作,并有使用经验证明的,可免除疲劳分析。但对下列情况所产生的不利影响应予特别注意: a)内容器采用了非整体结构,如开孔采用补强圈补强或角焊缝连接件; b)内容器相邻部件之间有显著的厚度变化; c)位于成型封头过渡区的连接件和接管。 6.4.3 内容器采用奥氏体型不锈钢材料时,下列各项循环次数的总和不超过4 000次: a)包括充装与出液在内的全范围压力循环的预计(设计)循环次数; b)内容器的压力波动范围超过50%设计压力的工作压力循环的预计(设计)循环次数; c)包括管路在内的任意相邻两点之间金属温差波动的有效次数,该有效次数的计算方法按JB 4732的相关规定; d)由热膨胀系数不同的材料组成的部件(包括焊缝),当(α1-α2)ΔT>0.000 34时的温度波动循环次数,其中α1、α2是两种材料各自的平均热膨胀系数,ΔT为工作时温度波动范围。 6.4.4 满足JB 4732规定的相应的疲劳分析免除条件。 7 温度 7.1 设计温度 7.1.1 内容器的设计温度应不低于元件金属在正常工况下可能达到的最高工作温度。 7.1.2外壳的设计温度应考虑环境温度和使用条件的影响,且不低于50℃。 7.1.3对各元件进行稳定性校核时,其设计温度考虑正常工作条件下及罐体加热抽真空时可能出现的最高温度。 7.2最低设计金属温度 7.2.1 内容器的最低设计金属温度应考虑正常工作条件下及检验、试验条件下介质最低工作温度对内容器金属温度的影响,且应不高于介质的沸点。 7.2.2 外壳的最低设计金属温度,应考虑使用地点大气环境低温以及使用条件(如外壳悬挂汽化器)对罐体外壳金属温度的影响,且不高于-20℃。 8 压力 8.1 设计压力 8.1.1 内容器的设计压力应按下列要求确定: a)内压不小于充装、出液工况的工作压力,且不小于设计温度下介质的饱和蒸气压力(表压); b)外压应不小于深冷容器在制造、运输、充装、出液、检验与试验或其他工况中可能出现的最大内外压力差。 8.1.2外壳的设计压力按下列要求确定: a)内压应不低于外壳防爆装置设定的排放压力,当采用真空粉末绝热时,还应考虑粉末充填时夹层可能出现的最大内压; b)外压不小于0.1 MPa。 8.2 计算压力 8.2.1 内容器受压元件的计算压力应不小于设计压力、液柱静压力与0.1 MPa之和。 8.2.2当液柱静压力小于设计压力的5%时,可忽略不计。 9焊接接头系数 9.1 内容器的焊接接头系数取1.0。 9.2外壳的焊接接头系数取0.85。 10 许用应力 10.1 当罐体承受压力载荷时,采用规则设计的罐体材料的许用应力按GB/T 150.2的规定选取,采用分析设计的罐体材料的设计应力强度按JB 4732的规定选取。 10.2采用规则设计的罐体,局部结构采用应力分析设计时,材料的设计应力强度按GB/T 150.2中对应材料的许用应力确定。 10.3 当罐体采用的材料在GB/T 24511中规定了Rp1.0值,且在设计文件中提出了钢板附加检验Rp1.0值时,可使用Rp1.0来确定材料的许用应力值。 10.4罐体夹层内支撑件、罐体支座(或裙座)、吊耳等受力构件,其许用应力不大于以下要求确定的值,且满足相应受力构件标准的要求,其最大应力强度或最大当量应力不超过0.75倍的材料常温屈服强度: a)具有明确屈服点的材料,其许用应力不大于材料标准常温下的屈服强度除以1.5; b)不具有明确屈服点的材料,其许用应力不大于材料标准常温下的0.2%规定塑性延伸强度除以1.5; c)低温用环氧玻璃钢等非金属材料(管、棒或板),其弯曲、压缩和剪切的许用应力值应为相应产品标准规定的常温下对应方向弯曲、压缩和剪切强度值除以安全系数,安全系数不小于4。试样弯曲、压缩和剪切的试验方法应分别符合GB/T 9341、GB/T 1448和GB/T 1450.1的规定。 10.5当地震载荷或风载荷与6.2中其他载荷相组合时,允许罐体承压元件和承力构件的设计应力不超过许用应力的1.2倍,其组合要求按相应标准的规定。 10.6螺栓材料在不同温度下的许用应力按GB/T 150.2和相应标准的规定选取。 11腐蚀裕量 11.1 深冷容器的腐蚀裕量应由设计者根据设计委托方提供的条件确定。 11.2对于有均匀腐蚀或磨损的元件,应根据深冷容器预期的设计使用年限和介质对材料的腐蚀速率(及磨损速率)确定腐蚀裕量。内容器为奥氏体型不锈钢材料时,一般不考虑均匀腐蚀。 11.3罐体各元件受到的腐蚀程度不同时,可采用不同的腐蚀裕量。 11.4碳素钢或低合金钢制外壳内表面一般不考虑腐蚀。当外壳外表面有可靠的防腐蚀措施时,可不考虑腐蚀裕量;当外壳外表面无可靠的防腐蚀措施时,其腐蚀裕量应不小于1 mm。 12 罐体厚度 12.1 罐体最小厚度的确定应考虑制造、运输、安装等因素的影响,内容器和外壳的壳体加工成型后不包括腐蚀裕量的最小厚度应符合下列要求: a)碳素钢、低合金钢制外壳,应不小于3 mm; b)奥氏体不锈钢制内容器和外壳,应不小于2 mm。 12.2罐体的设计厚度应不小于下列值的较大值: a)计算厚度与腐蚀裕量之和; b)按12.1确定的罐体最小厚度与腐蚀裕量之和。 13 充满率 13.1 最大充满率应符合下列规定: a)充装非易燃、易爆介质的深冷容器,在任何情况下可能达到的最大充满率应不大于98%; b)充装易燃、易爆介质的深冷容器,在任何情况下可能达到的最大充满率应不大于95%。 13.2额定充满率应符合下列规定: a)充装非易燃、易爆介质的深冷容器,额定充满率应不大于95%; b)充装易燃、易爆介质的深冷容器,额定充满率应不大于90%。 13.3在确定初始充满率时,应考虑深冷容器储存冷冻液化气体预期所需要的维持时间(包括可能遇到的长时间没有使用液体的情况)、最大充满率等因素,初始充满率应不超过额定充满率。 13.4深冷容器应设置溢流口。溢流口应根据设计使用工况设置一个或多个,并符合13.3的规定。 14真空绝热性能指标 14.1 常见冷冻液化气体介质的深冷容器的静态蒸发率应符合表1的规定。当设计委托方对维持时间有规定时,还应满足维持时间的要求。 14.2采用真空复合绝热方式的深冷容器,其静态蒸发率应满足表1中高真空多层绝热方式的指标要求。 表1静态蒸发率 几何容积 V/m3 静态蒸发率(上限值)/(%/d) 液氮 液氧 液氩 液化天然气(甲烷) 高真空多层绝热 真空粉末绝热 高真空多层绝热 真空粉末绝热 高真空多层绝热 真空粉末 绝热 高真空多层绝热 真空粉末 绝热 注:中间值采用内插法确定。 15夹层的真空性能 15.1 真空夹层的漏气速率应符合表2的规定。 15.2真空夹层的漏放气速率应符合表3的规定。 15.3常温下真空夹层的封结真空度应符合表4的规定。装有冷冻液化气体介质时,真空夹层的冷态真空度应不大于封结真空度的0.1倍。 15.4夹层真空性能一般满足5年真空使用年限的要求。 15.5采用真空复合绝热方式的深冷容器,夹层的真空性能要求应满足高真空多层绝热深冷容器的要求。 表2真空夹层漏气速率 几何容积V/m3 漏气速率/(Pa·m3/s) 高真空多层绝热 真空粉末绝热 表3真空夹层的漏放气速率 几何容积V/m3 漏放气速率/(Pa·m3/s) 高真空多层绝热 真空粉末绝热 表4 封结真空度 几何容积V/m3 真空度/Pa 高真空多层绝热 真空粉末绝热 16 耐压试验 16.1 耐压试验一般采用气压试验。 16.2 内容器与外壳组装前,内容器的耐压试验压力最低值的确定: a)液压试验按式(1)计算: pT=1.25(p+0.1) (1) b)气压试验按式(2)计算: pT=1.10(p+0.1) (2) 式中: pT——试验压力,单位为兆帕(MPa);当立式容器卧置液压试验时,试验压力应计入立式时的液柱静压力; p——设计压力,单位为兆帕(MPa)。 16.3 内容器与外壳组装完毕,且夹层形成真空后,内容器的耐压试验压力最低值的确定: a)液压试验按式(3)计算: pT=1.25(p+0.1)-0.1 (3) b)气压试验按式(4)计算: pT=1.10(p+0.1)-0.1 (4) 16.4当采用大于16.2或16.3规定的耐压试验压力时,在内容器耐压试验前,应校核各受压元件在试验条件下的应力水平。内容器壳体元件应校核最大总体薄膜应力,并满足下列条件: |
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 |
服务热线:400-001-5431 | 电话:010-8572 5110 | 传真:010-8581 9515 | Email: bz@bzfyw.com | |
版权所有: 北京悦尔信息技术有限公司 2008-2020 京ICP备17065875号-1 |
本页关键词: |
GB/T 18442.3-2019, GB 18442.3-2019, GBT 18442.3-2019, GB/T18442.3-2019, GB/T 18442.3, GB/T18442.3, GB18442.3-2019, GB 18442.3, GB18442.3, GBT18442.3-2019, GBT 18442.3, GBT18442.3 |