Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative.
This standard is prepared in accordance with the rules given in GB/T 1.1-2009.
This standard has been redrafted and modified in relation to ISO 15848-1:2015 Industrial valves - Measurement, test and qualification procedures for fugitive emissions - Part 1: Classification system and qualification procedures for type testing of valves.
Technical differences have been made with respect to ISO 15848-1:2015, and corresponding technical differences and their reasons are as follows:
a) the adjustments of technical deviations are made for the normative references in this standard so as to adapt to the technical conditions of China. The adjustments are mainly reflected in Clause 2 "Normative references", with the specific adjustments as follows:
ISO 5208 has been replaced by GB/T 13927, which is modified in relation to the international standard (see 5.1.1);
EN 13185:2001 has been deleted (the necessary content has been elaborated in the standard);
GB/T 21465 has been added for reference (see Clause 3).
b) some terms in Clause 3 of ISO 15848-1:2015, already specified in GB/T 21465, have been deleted, and the terms and definitions of "static test" and "mechanical cycle test" appearing in the text have been added.
c) the abbreviation "Mair" in Clause 4 of ISO 15848-1:2015 which is not used in this standard has been deleted, and CC and other abbreviations that appeared in this standard have been added.
d) the allowable values and parameters with Pa·m3·s-1 as the unit for leak rate in Table 1, A.1.7, A.2.7, Table C.1 and Table C.2 of ISO 15848-1:2015 have been converted to meet the practical needs of China.
e) description on valve product marking in the 6.6 of ISO 15848-1:2015 "ISO FE...-ISO 15848-1" has been changed to "GB FE...-GB/T 40079", and test pressure unit "bar" has been converted to the pressure unit "MPa" to meet the practical needs of China.
The following editorial changes are made in this standard:
——the standard name is changed to "Classification system and qualification procedures for fugitive emission type testing of valves".
——the standards ISO 15848-1:2015+Al: 2017 are included.
——the original references have been deleted, as the original standard only cited some concepts, which have been expressed in this standard.
This standard was proposed by China Machinery Industry Federation.
This standard is under the jurisdiction of National Technical Committee on Valve of Standardization Administration of China (SAC/TC 188).
Classification system and qualification procedures for fugitive emission type testing of valves
1 Scope
This standard specifies the type test requirements for valves used for fugitive fluids, as well as classification system and qualification procedures for fugitive emission type testing of valves.
It specifies testing procedures for evaluation of external leakage of valve stem seals (or shaft) and body joints of isolating valves and control valves intended for application in volatile air pollutants and hazardous fluids.
End connection joints, vacuum application, effects of corrosion, and radiation are excluded from this standard.
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition (including any amendments) applies.
GB/T 13927 Industrial valves - Pressure testing
GB/T 21465 Terminology for valves
3 Terms and Definitions
For the purposes of this document, the terms and definitions given in GB/T 21465, as well as the following definitions, apply.
3.1
body seals
any seal in pressure containing part except stem (or shaft) seals
3.2
concentration
ratio of test fluid volume to the gas mixture volume measured at the leak source(s) of the test valve
Note: the unit of concentration is a dimensionless unit (volume per million or volume fraction is 1×10-6), expressed in ppmv.1 ppmv = 1 mL/m3 = 1 cm3 /m3.
3.3
control valve
power operated device which changes the fluid flow rate in a process control system
Note: The device consists of a valve connected to an actuator that is capable of changing the position of a closure member in the valve in response to a signal from the controlling system.
3.4
fugitive emission
chemical or mixture of chemicals, in any physical form, which represents an unanticipated or spurious leakage from equipment on an industrial site
3.5
leakage
loss of the test fluid through the stem (or shaft) seal or body seal(s) of a test valve under the specified test conditions
Note: Leakage is generally expressed as a concentration or a leak rate.
3.6
leak rate
mass flow rate of the test fluid per unit length
Note: The leak rate can be expressed in milligrams per second millimeter (mg·s-1·mm-1) through stem seal system or volumetric flow rate of the test fluid, expressed in millibar liters per second millimeter (mbar·L·s-1·mm-1) through stem seal system.
3.7
local leakage
measurement of the test fluid leakage using a sniffer probe at the leak source point
3.8
mechanical cycle of control valve
for linear/rotary control valves, test cycles performed at 50% of stroke/angle with an amplitude of ± 10% of full stroke/angle
3.9
mechanical cycle of isolating valve
motion of a valve obturator moving from fully closed position to fully opened position, and returning to fully closed position
3.10
isolating valve
valve intended for use principally in the closed or open position which can be power actuated or manually operated
3.11
performance class
level of the performance composed of tightness class, endurance class and temperature class of a test valve
Note: The performance classes are defined in Clause 6.
3.12
room temperature
temperature in the range of +5°C to +40°C prior to the test
3.13
stem seal
shaft seal
component(s) installed around the valve stem (or shaft) to avoid leakage of internal fluids to atmosphere
3.14
test pressure
pressure used for testing the valve
Note: Unless otherwise specified, test pressure is the rated pressure specified at the test temperature and the shell material of a test valve in the relevant standards.
3.15
test temperature
fluid temperature selected for the test as measured inside the test valve
Note: The test temperature is given in Table 5.
3.16
thermal cycle
change of the temperature from the room temperature to the specified test temperature and return to room temperature
3.17
total leakage
collection of leakage of the test fluid at the leak source using an encapsulation method
3.18
type test
test conducted to establish the performance class of a valve
3.19
static test
test conducted under the specified temperature and test pressure to test the sealing performance of the valve stem without operating the valve
3.20
mechanical cycle test
test conducted under the specified temperature and test pressure to test the sealing performance of the valve stem by completing a specified number of switching (or adjustment) operations on the valve
4 Abbreviations
For the purposes of this document, the following abbreviations apply.
AH: fugitive emission Class A with Helium.
AM: fugitive emission Class A with Methane.
BH: fugitive emission Class B with Helium.
BM: fugitive emission Class B with Methane.
CC: mechanical-cycle classes for control valves.
CH: fugitive emission Class C with Helium.
CM: fugitive emission Class C with Methane.
CO: mechanical-cycle classes for isolating valves.
FE: fugitive emission.
GB: National Standard of the People's Republic of China.
RT: room temperature.
SSA: stem seal adjustment.
tRT(100°C): test temperature is 100°C, the valve is qualified at tRT.
Foreword i
1 Scope
2 Normative references
3 Terms and Definitions
4 Abbreviations
5 Type tests
5.1 Test conditions
5.2 Test procedure
6 Performance classes
6.1 Classification criteria
6.2 Tightness classes
6.3 Endurance classes
6.4 Temperature classes
6.5 Examples of class designation
6.6 Examples of marking
7 Reporting
8 Extension of qualification to untested valves
Annex A (Normative) Total leak rate measurement
Annex B (Normative) Sniffing method
Annex C (Informative) Leak rate conversion (helium)
阀门逸散性试验分类和鉴定程序
1 范围
本标准规定了逸散性介质用阀门的型式试验要求,以及逸散性试验分类和鉴定程序。
本标准适用于介质将会产生挥发性污染气体或危险性流体介质的截断阀和控制阀,规定了阀杆密封及阀体密封部位外漏评定的试验程序。
本标准不适用于阀门端部连接处泄漏,以及真空、腐蚀和辐射工况。
2 规范性引用文件
下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T 13927 工业阀门 压力试验
GB/T 21465 阀门 术语
3 术语和定义
GB/T 21465界定的以及下列术语和定义适用于本文件。
3.1
阀体密封 body seals
阀门上除了阀杆密封以外的任何承压部位的密封。
3.2
浓度 concentration
在试验阀门泄漏源上被测量出的试验介质体积和气体混合物体积的比率。
注:浓度的单位是一个无量纲单位(百万分体积含量或体积分数为1×10-6),以ppmv表示。
1ppmv=1mL/m3=1cm3/m3。
3.3
控制阀 control valve
过程控制系统中能改变流体流量的动力操作装置。
注:该装置由阀门及其连接的执行机构组成。其中,执行机构可根据控制系统信号改变阀门启闭件的位置。
3.4
逸散性 fugitive emission
工业场所设备发生的非预期或不易察觉的,任何物理形态的任意化学品或化学品混合物的泄漏。
3.5
泄漏 leakage
在规定试验条件下,所发生的通过被试验阀门的阀杆或阀体密封处逸出试验介质的过程。
注:一般用浓度或泄漏率表示。
3.6
泄漏率 leak rate
单位长度内试验介质泄漏的速率。
主:可用试验介质的质量流量表示,单位为毫克每秒毫米(mg·s-1·mm-1);也可用试验介质的体积流率表示,单位为毫巴升每秒毫米(mbar·L·s-1·mm-1)。
3.7
局部泄漏 local leakage
在泄漏源处采用吸枪测量试验介质泄漏。
3.8
控制阀的机械循环 mechanical cycle of control valve
直线/旋转运动的控制阀,在阀门行程50%的位置,保持振幅量为±10%全行程的运动过程。
3.9
截断阀的机械循环 mechanical cycle of isolating valve
阀门启闭件从全关位置运动到全开位置,然后回到全关位置的运动过程。
3.10
截断阀 isolating valve
在使用时,基本处于开启或关闭状态,可使用动力驱动或手动驱动的阀门。
3.11
性能等级 performance class
由密封等级、耐久等级、温度等级组成的试验阀门的性能水平。
注:具体分级准则规定详见第6章。
3.12
室温 room temperature
试验前,控制在+5℃~+40℃的试验环境温度。
3.13
阀杆密封 stem seal
阀轴密封 shaft seal
为防止阀门内部介质泄漏到大气中所安装在阀杆或阀轴周围的部件。
3.14
试验压力 test pressure
试验阀门使用的压力。
注:除有其他特殊规定,一般根据相关标准规定的壳体材料在相应温度下的额定压力。
3.15
试验温度 test temperature
阀门内部试验流体的温度。
注:温度范围可以按照表5选择。
3.16
热循环 thermal cycle
温度从室温到指定试验温度,再返回室温的循环。
3.17
总泄漏 total leakage
在泄漏源周围,用密闭措施收集到的试验介质的泄漏总量。
3.18
型式试验 type test
评估试验阀门性能等级的试验。
3.19
静态试验 static test
在指定温度和试验压力下,不对阀门进行操作,仅测试阀杆密封性能的试验。
3.20
机械循环试验 mechanical cycle test
在指定温度和试验压力下,对阀门进行指定次数的开关(或调节)操作,操作完毕后测试阀杆密封性能的试验。
4 缩略语
下列缩略语适用于本文件。
AH:以氦气作为试验介质,逸散测试结果满足密封A级(fugitive emission Class A with Helium)
AM:以甲烷作为试验介质,逸散测试结果满足密封A级(fugitive emission Class A with Methane)
BH:以氦气作为试验介质,逸散测试结果满足密封B级(fugitive emission Class B with Helium)
BM:以甲烷作为试验介质,逸散测试结果满足密封B级(fugitive emission Class B with Methane)
CC:控制阀耐久等级(mechanical-cycle classes for control valves)
CH:以氦气作为试验介质,逸散测试结果满足密封C级(fugitive emission Class C with Helium)
CM:以甲烷作为试验介质,逸散测试结果满足密封C级(fugitive emission Class C with Methane)
CO:截断阀耐久等级(mechanical-cycle classes for isolating valves)
FE:逸散性(fugitive emission)
GB:中华人民共和国国家标准
RT:室温(room temperature)
SSA:阀杆密封部位调整(stem seal adjustment)
tRT(100℃):逸散性泄漏试验温度等级为RT(室温)级别,试验温度100℃(test temperature is 100℃,the valve is qualified at tRT)
5 型式试验
5.1 试验条件
5.1.1 试验阀门要求
确保试验阀门组装完整。
试验阀门应从常规生产阀门中随机挑选。阀门应通过GB/T 13927或其他相关标准规定的常规试验,且应在涂漆前进行试验。
为测量阀杆密封系统泄漏所做的额外密封揩施是允许的,但确保不影响阀门密封性能。
确保阀门内部干燥,无润滑剂。保持试验设备与阀门的清洁度,无水、无油、无尘。试验前可以更换填料;如需更换,应在阀门制造商的指导下进行。
如果试验阀门配有可调阀杆密封,应在试验前根据制造商的说明书进行调整,并记录在第7章要求的试验报告中。
阀门制造商可根据阀门实际情况选择合适的执行机构。
5.1.2 试验介质
试验介质为体积纯度不低于97%的氦气或者为体积纯度不低于97%的甲烷气体,在整个试验过程中应使用同一种试验介质。
5.1.3 试验温度
阀门的机械循环应在室温下或分段在室温和选定的温度(不同于室温)下进行(见5.2.4.1)。
每次泄漏检测都需要记录测试温度。
5.1.4 温度测量
应根据图1测量试验阀门三个部位的温度,并记录在测试报告中。
a)测量点1用于确定试验温度。
b)测量点2作为参考温度。如使用保温材料,应详细记录在试验报告中。
c)测量点3用于确定阀门外部近阀杆密封部位的温度,作参考之用。
d)测量点4是一个可选温度点。在测量点1无法实现时,可以使用测量点4代替(使用加热元件伸入盲法兰加热阀门的情况除外)。
应在测量点1、2、3(4)上所有的温度达到稳定后,才能进行泄漏检测,温度示意图见图2和图3,测量点3至少稳定10min后才能检测泄漏。
应控制各温度点的变化不超过±5%。
说明:
1——测量点1:流体通道的温度测量点(T1);
2——测量点2:阀体的温度测量点(T2);
3——测量点3:填料函部位的温度测量点(T3);
4——测量点4:可代替测量点1的流体通道的温度测量点(T1)。
图1 温度测量位置示意图
说明:
Ttest——试验温度,℃; t——时间;
T1——流道温度,测量点1的稳定温度; t0——测量点3温度达到稳定时的时间点;
T2——阀体温度,测量点2的稳定温度; t0+10min——开始机械循环的时间点。
T3——填料函温度,测量点3的稳定温度;
图2 温度稳定示意图(从阀门内部加热或降温时)
说明:
Ttest——试验温度,℃; t——时间;
T1——流道温度,测量点1的稳定温度; t0——测量点3温度达到稳定时的时间点;
T2——阀体温度,测量点2的稳定温度; t0+10min——开始机械循环的时间点。
T3——填料函温度,测量点3的稳定温度;
图3 温度稳定示意图(从阀门外部加热或降温时)
5.1.5 泄漏测量
5.1.5.1 阀杆密封部位检漏
检测泄漏时,阀门应处在部分开启位置,并在阀杆静止状态下进行。
总泄漏检测方法(真空法或包裹法)依据附录A进行。
局部泄漏检测方法(吸枪法)依据附录B进行。
5.1.5.2 阀体密封部位检漏
根据附录B所述步骤,利用吸枪法进行局部泄漏检测。
试验前,对阀门连接端进行泄漏检测和评估,确保阀体密封评估结果不受影响。
5.1.5.3 泄漏检测记录
泄漏检测结果应记人报告中,见第7章。
5.2 试验程序
5.2.1 安全要求
试验使用的高压气体存在潜在的危险性,需要做好安全防护。如果使用甲烷(CH4),则需要结合使用的温度和压力,评估甲烷气体的可燃点。
5.2.2 试验设备
试验设备应满足以下要求:
a)施加试验压力,确保试验压力在公称压力±5%以内;
b)对阀门进行机械循环;
c)加热或冷却试验阀门,保温范围为试验温度的±5%,且温度差不应超过15℃,温度变化期间不得进行开关循环;
d)测量和记录时间、压力、温度、泄漏和阀门机械循环的持续时间;
e)测量和记录阀门开关的驱动力或扭矩;
f)如果适用,测量和记录阀杆密封系统的载荷。
5.2.3 阀杆密封部位调整(SSA)
5.2.3.1 阀杆密封调整次数
型式试验过程中,如果阀杆泄漏超出表1或表3规定的密封等级,按图4、图5和图6进行的每个评估阶段只允许对阀杆密封进行一次机械调整(如下示例)。
最大重新紧固力或扭矩应在型式试验前确定。
示例:
CC1/CO1,最多调整1次。
CC2/CO2,最多调整2次。
CC3/CO3,最多调整3次。
5.2.3.2 阀杆密封调整后试验失败处理
若阀杆密封在按要求调整后,检测结果仍不能达到要求的密封等级,或不能继续进行机械循环操作,试验应终止。根据情况,可降低密封等级和耐久等级后再对试验阀门进行评估。
5.2.3.3 阀杆密封调整次数记录
在报告中记录阀杆密封调整总次数,并按“SSA1”“SSA2”“SSA3”等性能等级进行标识。
5.2.4 试验描述
5.2.4.1 总则
试验要求如下所列。
a)试验阀门按制造商的要求安装固定在试验台上。
b)阀杆应竖直向上安装。如要求非竖直方向,则以阀杆水平方向安装。
c)试验开始前,根据生产厂家说明书对阀门所有密封件进行适当调整。对于阀杆密封用填料的阀门,需要在试验开始前和每次阀杆密封调整后,测量和记录填料压板螺栓的旋紧扭矩,如果有调整,每次调整后的扭矩也应进行记录。
d)目标循环次数及机械循环和热循环的组合应根据图4、图5和图6规定的耐久等级来选择。
e)分别单独测量阀杆密封部位与阀体密封部位,如果阀门不允许,分别按附录A和附录B同时测量两个部位的总漏率。
f)除了按5.2.4.2和5.2.4.3提出的操作方法外,也可以按照生产厂家提出的其他办法进行阀门的操作,需要在报告中记录阀门开启、关闭和停顿的时间。采取的循环方法至少应能代表阀门的实际使用工况。
g)试验开始和结束时,或者在阀杆密封系统调整之后,测量和记录阀门开启扭矩和关闭扭矩。
5.2.4.2 截断阀的机械循环
除非制造商另有规定,试验阀门机械循环的最小密封力或力矩为0.6MPa压差的空气或惰性气体产生的力或力矩。
不需要对上密封进行机械循环和试验。
5.2.4.3 控制阀的机械循环
阀杆是线性运动的,线速度范围在1mm/s~5mm/s;阀杆是旋转运动的,角速度范围在1°/s~5°/s。
执行机构操作阀门,应只承受作用在阀杆上的压力和摩擦力(力矩),该值应记录下来。
5.2.4.4 室温下首次试验(试验1)
试验程序如下所列:
a)使用试验介质对阀门进行加压,加压压力应根据相关标准规定;
b)试验压力稳定后,需要从阀杆密封和阀体密封部位测量泄漏量,试验方法根据附录A和附录B进行;
c)在试验报告中记录试验结果。
5.2.4.5 室温下机械循环试验(试验2)
试验程序如下所列:
a)在室温下,阀门在保持试验压力的情况下进行机械循环;
b)机械循环完毕,按附录A操作方法,仅对阀杆密封进行测试;
c)在报告中记录试验结果;
d)如果耐久等级是CO1和CC1,按图4和图6重复测试。
5.2.4.6 试验温度下静态试验(试验3)
试验程序如下所列:
a)使用试验介质对阀门进行加压,加压到相关标准规定的对应温度的试验压力。同时,应注意加压过程中的安全风险;
b)试验压力稳定后,调整阀门温度到选择的试验温度,确保试验压力不超过相应标准规定值;
c)当试验温度稳定在±5%的范围内且最大不超过15℃后,根据附录A对阀杆部位进行密封测试;
d)在报告中记录试验结果;
e)如果耐久等级是CO1和CC1,按图4和图6重复测试。
5.2.4.7 试验温度下机械循环试验(试验4)
试验程序如下所列:
a)在试验温度下,阀门在保持试验压力的情况下进行机械循环;
b)机械循环完毕,只需要对阀杆密封进行测试,操作方法按照附录A;
c)在报告中记录试验结果;
d)如果耐久等级是CO1和CC1,按图4和图6重复测试。
5.2.4.8 室温下的中间静态试验(试验5)
试验程序如下所列:
a)调节阀门温度至室温,不准许对阀门进行人为冷却或加温;
b)当阀门温度稳定后,只需要对阀杆密封进行测试,操作方法按照附录A;
c)在报告中记录试验结果。
5.2.4.9 室温下的最终试验(试验6)
试验程序如下所列:
a)调节阀门温度至室温,不准许对阀门进行人为冷却或加温;
b)当阀门温度稳定后,需对阀杆密封和阀体密封部位进行测试,操作方法分别按附录A和附录B;
c)在报告中记录试验结果。
5.2.4.10 试验后检验
试验成功完成后,需要对阀门进行解体并对所有密封元件进行目视检测,记录明显的磨损以及其他重要的发现,供参考。
5.2.4.11 合格评定要求
试验后的阀门应满足以下2个条件才能满足要求:
——试验程序的每一步都满足目标性能等级要求;
——经验证,所有的泄漏检测结果都低于或者等于目标性能等级的规定值。