Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative.
GB/T 10230 consists of the following two parts under the general title Tap-changer:
——Part 1: Performance requirements and test methods;
——Part 2: Application guide.
This part is Part 1 of GB/T 10230.
This part is developed in accordance with the rules given in GB/T 1.1-2009.
This part replaces GB/T 10230.1-2009 Tap-changers - Part 1: Performance requirements and test methods and the following main technical changes have been made with respect to GB/T 10230.1-2007:
——The terms and definitions of vacuum type on-load tap-changer and no arcing on-load tap-changer are added (see clause 3);
——The load test requirements and test methods for vacuum type on-load tap-changer are added (see clause 5);
——The partial discharge test requirements and test methods for tap-changers are modified (see clauses 5 and 7);
——The insulation withstand voltage test values in Tables 3 and 5 are adjusted (see clauses 5 and 7).
This part is modified in relation to IEC 60214-1: 2014 Tap-changers - Part 1: Performance requirements and test methods.
This part includes technical changes with respect to IEC 60214-1:2014. The clauses and subclauses concerned are identified by a vertical single line (|) located in the blank on its external margin of the page. These technical changes and reasons are listed in Annex A.
The following editorial changes have been made in this part:
——3.5 in IEC is adjusted as 3.6 in this part, and the contents of the note are adjusted.
——3.6 in IEC is adjusted as 3.7 in this part, and the contents of the note are adjusted;
——The Note 3 in IEC, Table 1 is deleted;
——The "Note 2: It is unnecessary to subject the tap-changer without separate liquid compartment or gas compartment to tightness test” is added in 5.2.1;
——The "Note 3: Reference may be made to GB/T 14048.1 and GB/T 7251.1 for the selection of test leads” is added in 5.2.2;
——The "Note: The short-circuit current multiple of the on-load tap-changers for distribution transformer is the reciprocal of the short-circuit impedance of the distribution transformer” is added in 5.2.4;
——Table 3 in IEC, 5.2.8.1 is moved to 5.2.8.3;
——"Note: see Annex H for working principle and characteristics of arcing-free tap-changer" is added in 5.2.9;
——The content of note in IEC, 6.1.12 is deleted;
——The second paragraph in IEC, 6.2.1 is changed from the text to the content of the note;
——The "Note: The short-circuit current multiple of the de-energized tap-changers for distribution transformer is the reciprocal of the short-circuit impedance of the distribution transformer” is added in 7.2.3;
——7.3.2 and 7.3.2 of IEC are adjusted as 7.3.2 and 7.3.3 of this part;
—— In 8.2.1, the second paragraph of IEC is changed from text to note; and "Note: See Annex J for the technical requirements of controller (or display)” is added;
——Annexes A, B, C, D, and E of IEC are adjusted as Annexes B, C, F, E (with E.4 compensation method and E.5 resonance method added) and D respectively, and Annex G to Annex J are added;
——The bibliography is readjusted.
This part was proposed by China Electrical Equipment Industry Association.
This part is under the jurisdiction of SAC/TC 44 National Technical Committee on Transformers of Standardization Administration of China.
The previous edition of this part are as follows:
——GB 10230.1-1988 and GB/T 10230.1-2007.
Tap-changers -
Part 1: Performance requirements and test methods
1 Scope
This part of GB/T 10230 specifies the terms and definitions, service conditions, technical requirements for on-load tap-changers, technical requirements for motor-drive mechanisms for on-load tap-changers, technical requirements for de-energized tap-changers, technical requirements for motor-drive mechanisms for de-energized tap-changers, nameplates, de-energized tap-changer warning label, and manufacturers operating instructions.
This part applies to on-load tap-changers of both resistor and reactor types, de-energized tap-changers, and their motor-drive mechanisms.
This part applies to tap-changers immersed in mineral insulating oil according to GB 2536 but may also be used for tap-changers with air or gas insulation or immersed in other insulating liquids insofar as conditions are applicable.
This part applies mainly to on-load tap-changers with arcing contacts but may also be used for no arcing on-load tap-changers (such as electronic switching) insofar as conditions are applicable.
This part applies to the tap-changers for power and distribution transformers of all types and also to reactors.
This part does not apply to tap-changers for traction transformers and traction reactors, and capacity-regulating tap-changers for capacity-regulating transformers.
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
GB/T 1094.7 Power transformers - Part 7: Loading guide for oil-immersed power transformers (GB/T 1094.7-2008; IEC 60076-7: 2005, MOD)
GB 2536 Fluids for electrotechnical applications - Unused mineral insulating oils for transformers and switchgear (GB 2536-2011; IEC 60296: 2003, MOD)
GB/T 2900.95 Electrotechnical terminology - transformers,voltage regulators and reactors (GB/T 2900.95-2015; IEC 60050-421: 1990, NEQ)
GB/T 4109 Insulated bushings for alternating voltages above 1,000V (GB/T 4109-2008; IEC 60137 Ed.6.0, MOD)
GB/T 4208 Degrees of protection provided by enclosure(IP code) (GB/T 4208-2017; IEC 60529: 2013, IDT)
GB/T 7354 High-voltage test techniques - Partial discharge measurements (GB/T 7354-2018; IEC 60270: 2000, MOD)
GB/T 10230.2 Tap-changers - Part 2: Application guide (GB/T 10230.2-2007; IEC 60214-2: 2004, MOD)
GB/T 16927.1 High-voltage test techniques - Part 1: General definitions and test requirements (GB/T 16927.1-2011; IEC 60060-1: 2010, MOD)
3 Terms and definitions
For the purposes of this document, the terms and definitions given in GB/T 2900.95 and the following apply.
3.1
on-load tap-changer; OLTC
device for changing the tap connections of a winding, suitable for operation while the transformer is energized or on load
Note: On-load tap-changers are sometimes called load tap-changers (LTC).
3.2
non-vacuum type on-load tap-changer
on-load tap-changer with contacts that break and make the load and circulating currents and where the arcing takes place in a liquid or gas, the tap-changer itself being placed in liquid or gas
This definition does not apply to no arcing on-load tap-changers.
3.3
vacuum type on-load tap-changer
on-load tap-changer where vacuum interrupters (vacuum tube) break and make the load and circulating currents, the tap-changer itself being placed in a different medium such as liquid or gas
3.4
no arcing on-load tap-changer
on-load tap-changer without generation of arcing when breaking and making the load and circulating currents (such as electronic type or thyristor mechanical hybrid type), the tap-changer itself being placed in a different medium such as liquid or gas
3.5
tap selector
device designed to carry, but not to make or break, current, used in conjunction with a diverter switch to select tap connections
3.6
diverter switch
switching device used in conjunction with a tap selector to carry, make and break currents in circuits which have already been selected
Note: The tap-changer composed of diverter switch and tap selector is also called combined on-load tap-changer.
3.7
selector switch
switching device capable of carrying, making and breaking current, combining the duties of a tap selector and a diverter switch
Notes:
1 In non-vacuum type selector switches the selection of tap connections (tap selector duty) and the diversion of the through-current (diverter switch duty) are carried out by the same contacts.
2 In vacuum type selector switches the selection of tap connections (tap selector duty) and the diversion of the through-current (diverter switch duty) are carried out by different contacts.
3 Selector switches are also called compound on-load tap-changers.
3.8
de-energized tap-changer; DETC
device for changing the tap connections of a winding, suitable for operation only while the transformer is de-energized
Notes:
1 DETC are sometimes called OCTC.
2 DETC are sometimes abbreviated as DTC。
3.9
change-over selector
device designed to carry, but not to make or break, current, used in conjunction with the tap selector or selector switch to enable its contacts and the connected taps to be used more than once when moving from one extreme position to the other
3.10
coarse change-over selector
change-over selector connecting the tap winding to either the main winding or the coarse winding or parts thereof
3.11
reversing change-over selector
change-over selector connecting either end of the tap winding to the main winding
3.12
transition impedance
resistor or reactor consisting of one or more units bridging the tap in use and the tap next to be used, for the purpose of transferring load from one tap to the other without interruption or appreciable change in the load current, at the same time limiting the circulating current for the period that both taps are used
Note: For reactor type tap-changers, the transition impedance (reactor) is commonly called a preventive auto transformer. Reactor type tap-changers normally use the bridging position as a service position (mid-point or centre tapped reactor tap-changers) and, therefore, the reactor is designed for continuous operation.
3.13
preventive auto transformer
auto transformer (or centre tapped reactor) used in on-load tap-changing and regulating transformers, or step voltage regulators to limit the circulating current when operating on a position in which two adjacent taps are bridged, or during the change of tap between adjacent positions
3.14
equalizer winding
winding on the same magnetic circuit as the excitation and tap winding of a reactor type regulating transformer with approximately half the number of turns of each tap section
3.15
drive mechanism
means by which the drive to the tap-changer is actuated
Note: The mechanism may include an independent means of storing energy to control the operation.
3.16
set of contacts
pair of individual fixed and moving contacts or a combination of such pairs operating substantially simultaneously
3.17
diverter switch and selector switch main contacts (resistor type tap-changer)
set of through-current carrying contacts which usually by-passes the main switching contact and only commutates any current (sparking often occurs)
3.18
diverter switch and selector switch main switching contacts (resistor type tap-changer)
set of contacts which has no transition resistor between the transformer winding and the contacts and makes and breaks current (arcing will occur)
Note: In case of vacuum type tap-changers, these contact systems are replaced by vacuum interrupters (vacuum tube).
3.19
diverter switch and selector switch transition contacts (resistor type tap-changer)
set of contacts which is connected in series with a transition resistor and makes or breaks current (arcing will occur)
Note: In case of vacuum type tap-changers, these contact systems are replaced by vacuum interrupters (vacuum tube).
3.20
transfer contacts (reactor type tap-changer)
set of contacts that makes or breaks current
Note: Where by-pass contacts are not provided, the transfer contact is a continuous current-carrying contact.
3.21
by-pass contacts (reactor type tap-changer)
set of through-current carrying contacts that commutates the current to the transfer contacts without any arc (sparking may occur)
3.22
bridging position
position of a reactor type tap-changer with the selector and transfer contacts being on two adjacent taps and with the output terminal being electrically in the middle between two adjacent taps
3.23
non-bridging position
position of a reactor type tap-changer with the selector and transfer contacts being on the same tap
3.24
circulating current
that part of the current that flows through the transition impedance at the time when two taps are momentarily bridged during a tap-change operation for a resistor type tap-changer or when bridged in an operating position for a reactor type tap-changer
Note: The circulating current is due to the voltage difference between the taps.
3.25
switched current
prospective current to be broken during switching operation by each set of main switching or transition contacts (resistor type tap-changer) or transfer contacts (reactor type tap-changer) incorporated in the diverter switch or the selector switch
3.26
recovery voltage
power-frequency voltage which appears across each set of main switching or transition contacts (resistor type tap-changer) or transfer contacts (reactor type tap-changer) of the diverter switch or selector switch after these contacts have broken the switched current
3.27
tap-change operation
complete sequence of events from the initiation to the completion of a tap-change from one service tap position to an adjacent position
3.28
cycle of operation
movement of the tap-changer from one end of its range to the other end and then return to its original position
3.29
rated insulation level
withstand values of the impulse and applied voltages to earth, and where appropriate between earth and phase, and between those parts where insulation is required
3.30
rated through-current
Ir
current flowing through a tap-changer towards the external circuit, which the apparatus is capable of transferring from one tap to the other at the relevant rated step voltage and which can be carried continuously while meeting the requirements of this part
3.31
maximum rated through-current
Irm
highest rated through-current for which the tap-changer is designed for and all the current related tests are based on
3.32
rated step voltage
Uir
for each value of rated through-current, the highest permissible voltage between terminals which are intended to be connected to successive taps of the transformer
3.33
relevant rated step voltage
highest step voltage permitted in connection with a given rated through-current
3.34
maximum rated step voltage
Uirm
highest value of the rated step voltage for which the tap-changer is designed
3.35
rated frequency
frequency of the alternating current for which the tap-changer is designed
3.36
number of inherent tap positions
highest number of tap positions for half a cycle of operation for which a tap-changer can be used according to its design
Note: The term “tap positions” is generally given as the ± value of the relevant number, for example, ±11 positions. They are in principle also valid for the motor-driven mechanism. When using a “number of tap positions” in connection with a transformer, this always refers to the number of service tap positions of the transformer.
3.37
number of service tap positions
number of tap positions for half a cycle of operation for which a tap-changer is used in the transformer
Note: The term “tap positions” is generally given as the ± value of the relevant number, for example, ±11 positions. They are in principle also valid for the motor-driven mechanism. When using a “number of tap positions” in connection with a transformer, this always refers to the number of service tap positions of the transformer.
3.38
type test
test made on a tap-changer which is representative of other tap-changers, to demonstrate that these tap-changers comply with the specified requirements not covered by the routine tests: a tap-changer is considered to be representative of others if it is built to the same drawings using the same techniques and same materials
Notes:
1 In general a type test can be carried out on a tap-changer or the components of a tap-changer or a family of tap-changers or components.
2 A family of tap-changers is a number of tap-changers based on the same design and having the same characteristics, with the exception of the insulation levels to earth and possibly between phases, the number of steps and in the case of OLTCs the value of the transition impedance.
3 Design variations that are clearly irrelevant to a particular type test would not require that type test to be repeated.
4 Design variations that cause a reduction in values and stresses relevant to a particular type test do not require a particular type test if accepted by the purchaser and the manufacturer.
3.39
routine test
test to which each individual tap-changer is subjected
Note: In general a routine test can be carried out on a tap-changer or the components of a tap-changer.
3.40
motor-drive mechanism
driving mechanism which incorporates an electric motor and a control circuit
3.41
step-by-step control of a motor-drive mechanism
device for stopping the motor-drive mechanism after completion of a tap-change, independently of the operating sequence of the control switch
3.42
tap position indicator
device for indicating the tap position of the tap-changer
3.43
tap-change in progress indicator
device for indicating that the motor-drive mechanism is running
3.44
limit switches
device for preventing operation of the tap-changer beyond either end position, but allowing operation in the opposite direction
3.45
mechanical end stop
device which physically prevents operation of the tap-changer beyond either end position, but allows operation in the opposite direction
3.46
parallel control devices
control device to move, in the case of parallel operation of several transformers with taps, all tap-changers to the required position and to avoid divergence of the respective motor-drive mechanisms
Note: Such devices would be necessary also in the case of single-phase transformers forming a three-phase bank when each single-phase tap-changer is fitted with its own motor-drive mechanisms.
3.47
emergency tripping device
device for stopping the motor-drive mechanism at any time in such a way that a special action has to be performed before the next tap-change operation can be started
3.48
overcurrent blocking device
device for preventing or interrupting operation of the motor-drive mechanism for the period in which an overcurrent exceeding a pre-set value is flowing in the transformer winding
Note: Where diverter or selector switches are actuated by spring energy systems, interruption of the operation of the motor-drive mechanism will not prevent operation of the diverter or selector switch if the spring release has been actuated.
3.49
restarting device
device designed to restart the motor-drive mechanism after an interruption of the supply voltage to complete a tap-change operation already initiated
3.50
operation counter
device for indicating the number of tap-changes accomplished
3.51
manual operation of a motor-drive mechanism
operation of the tap-changer manually by a device, blocking at the same time operation by the electric motor
3.52
motor-drive cubicle
cubicle that houses the motor-drive mechanism
3.53
protective device against running-through
device that stops the motor-drive mechanism in case of a failure of the step-by-step control circuit which would cause the motor-drive mechanism to run through several tap positions
3.54
class I tap-changer
tap-changer only suitable for use at the neutral point of windings
3.55
class II tap-changer
tap-changer suitable for use at any position in the windings other than the neutral point of windings
3.56
in-tank tap-changer
tap-changer mounted inside the main transformer tank and immersed in the insulating liquid of the transformer
Note: See GB/T 10230.2 for further details.
3.57
compartment type tap-changer
tap-changer with its own housing mounted outside the main transformer tank and immersed in its own insulating liquid
Note: See GB/T 10230.2 for further details.
3.58
gas immersed tap-changer
tap-changer mounted inside the main tank of the gas filled type transformer or in a container outside the main tank and immersed in the insulating gas
Note: Usually the insulating gas is SF6 .
3.59
air insulated tap-changer
tap-changer where the insulation medium is the air at atmospheric pressure
Note: This kind of tap-changer is usually mounted to a dry-type transformer and does not need its own container, which is simply called dry-type tap-changer.
3.60
highest voltage for equipment
Um
highest r.m.s. phase-to-phase voltage in a three-phase system for which a tap-changer is designed with respect to its insulation
Foreword i
1 Scope
2 Normative references
3 Terms and definitions
4 Service conditions
5 Technical requirements for on-load tap-changers
6 Requirements for motor-drive mechanisms for on-load tap-changers
7 Technical requirements for de-energized tap-changers
8 Technical requirements for motor-drive mechanisms for de-energized tap-changers
9 Nameplate
10 De-energized tap-changer warning label
11 Manufacturers operating instructions
Annex A (Informative) Technical differences between this part and IEC 60214-1: 2014 and their reasons
Annex B (Normative) Supplementary information on switching duty relating to resistor type tap-changers
Annex C (Normative) Supplementary information on switching duty relating to reactor type tap-changers
Annex D (Informative) Example of a synthetic test circuit for service duty test of vacuum type tap-changers
Annex E (Informative) Simulated AC test circuits for service duty and breaking capacity tests
Annex F (Normative) Method for determining the equivalent temperature of the transition resistor using power pulse current
Annex G (Informative) Test voltage levels for on-load tap-changer and off-circuit tap-changer in IEC 60214-1:
Annex H (Informative) Working principle of no arcing on-load tap-changers
Annex I (Informative) Special tests for on-load tap-changers
Annex J (Informative) Performance requirements and test methods for electronic controllers (displays)
Bibliography
Figure 1 Short-circuit test current (r.m.s. value) as a multiple of the maximum rated through-current (on-load tap-changer)
Figure 2 Time sequence for the application of test voltage (on-load tap-changer)
Figure 3 Short-circuit test current as a multiple of the maximum rated through-current (de-energized tap-changer)
Figure 4 Time sequence for the application of test voltage (de-energized tap-changer)
Figure 5 Warning label
Figure B.1 Examples of current and voltage vectors for resistor type tap-changers
Figure C.1 Operating sequence of reactor type tap-changers with selector switch
Figure C.2 Current and voltage vectors for reactor type tap-changers with selector switch
Figure C.3 Operating sequence of reactor type tap-changers with selector switch and equalizer windings
Figure C.4 Current and voltage vectors for reactor type tap-changers with selector switch and equalizer windings
Figure C.5 Operating sequence of a reactor type tap-changer with diverter switch and tap selector
Figure C.6 Current and voltage vectors for reactor type tap-changers with diverter switch and tap selector
Figure C.7 Operating sequence of a reactor type tap-changer with vacuum interrupter (vacuum tube) and tap selector
Figure C.8 Current and voltage vectors for reactor type tap-changers with vacuum interrupter (vacuum tube) and tap selector
Figure D.1 Synthetic test circuit for service duty test of vacuum type tap-changers
Figure D.2 Currents of the synthetic test circuit
Figure D.3 Example of the synthetic test for a switching operation with equal voltages for breaking and making duty
Figure E.1 Simulated test circuit - Transformer method
Figure E.2 Simulated test circuit - Resistance method
Figure E.3 Simulated test circuit - Opposition method
Figure E.4 Simulation of test circuit - Resonance method
Figure H.1 Thyristor series voltage regulation device
Figure H.2 Working principle diagram of electronic on-load tap-changer
Figure H.3 Working principle diagram of thyristor mechanical hybrid on-load tap-changer
Figure H.4 Basic circuit of thyristor auxiliary contact
Figure H.5 Working principle of double resistance transition thyristor mechanical hybrid on-load tap-changer
Table 1 Temperature of tap-changer environment
Table 2 Contact temperature-rise limits for on-load tap-changers
Table 3 Test voltage levels for on-load tap-changers
Table 4 Contact temperature-rise limits for de-energized tap-changers
Table 5 Test voltage levels for de-energized tap-changers
Table A.1 Technical differences between this part and IEC 60214-1: 2014 and their reasons
Table B.1 Duty of main and transition contacts for resistor type tap-changers (non-vacuum type)
Table B.2 Effect of load power-factor on circuit-breaking duty for resistor type tap-changers (non-vacuum type)
Table B.3 Duty of main contacts and transition contacts of resistor type tap-changers (vacuum type)
Table C.1 Duty of switching contacts for reactor type tap-changers with selector switch - Switching direction from P1 to P
Table C.2 Duty of switching contacts for reactor type tap-changers with selector switch and equalizer windings - Switching direction from P1 to P
Table C.3 Duty of switching contacts for reactor type tap-changers with diverter switch and tap selector - Switching direction from P1 to P
Table C.4 Duty of switching contacts for reactor type tap-changers with vacuum interrupter and tap selector - Switching direction from P1 to P
Table G.1 Test voltage levels for on-load tap-changer and off-circuit tap-changer in IEC 60214-1:
Table J.1 Environmental adaptability requirements of controllers (displays)
Table J.2 Electromagnetic compatibility requirements of controllers
Table J.3 Withstand voltage dig, short interruption and voltage variation requirements
Table J.4 Requirements for impulse withstand voltage of controllers (displays)
Table J.5 Electrical insulation clearance and creepage distance of controllers (displays)
分接开关
第1部分:性能要求和试验方法
1 范围
GB/T 10230的本部分规定了分接开关的术语和定义、使用条件、有载分接开关的技术要求、有载分接开关的电动机构技术要求、无励磁分接开关的技术要求、无励磁分接开关的电动机构技术要求、铭牌、无励磁分接开关警告标示和制造方使用说明书。
本部分适用于电阻式和电抗式有载分接开关、无励磁分接开关及它们的电动机构。
本部分适用于浸在符合GB 2536的矿物绝缘油中的分接开关。若条件合适,则也可以适用于气体绝缘或浸在其他绝缘液体中的分接开关。
本部分主要适用于带电弧触头的有载分接开关,若条件适用,则也可以适用于无弧的有载分接开关(例如:电子式转换)。
本部分适用于所有类型的电力变压器和配电变压器及电抗器用的分接开关。
本部分不适用于牵引变压器和牵引电抗器用分接开关、调容变压器用调容分接开关。
2规范性引用文件
下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T 1094.7 电力变压器 第7部分:油浸式电力变压器负载导则(GB/T 1094.7—2008,IEC 60076-7:2005,MOD)
GB 2536 电工流体 变压器和开关用的未使用过的矿物绝缘油(GB 2536—2011,IEC 60296:2003,MOD)
GB/T 2900.95 电工术语 变压器、调压器和电抗器(GB/T 2900.95—2015,IEC 60050-421:1990,NEQ)
GB/T 4109 交流电压高于1 000 V的绝缘套管(GB/T 4109—2008,IEC 60137 Ed.6.0,MOD)
GB/T 4208 外壳防护等级(IP代码)(GB/T 4208—2017,IEC 60529:2013,IDT)
GB/T 7354 高电压试验技术 局部放电测量(GB/T 7354—2018,IEC 60270:2000,MOD)
GB/T 10230.2分接开关 第2部分:应用导则(GB/T 10230.2—2007,IEC 60214-2:2004,MOD)
GB/T 16927.1 高电压试验技术 第1部分:一般定义及试验要求(GB/T 16927.1—2011,IEC 60060-1:2010,MOD)
3术语和定义
GB/T 2900.95界定的以及下列术语和定义适用于本文件。
3.1
有载分接开关on-load tap-changer;OLTC
适合在变压器励磁或负载下进行操作的用来改变绕组分接位置的一种装置。
注:有载分接开关有时也称作LTC。
3.2
非真空型有载分接开关 non-vacuum type on-noad tap-changer
触头通断负载与环流的电弧发生在液体或气体中的有载分接开关,且自身放置在液体或气体里。
注:本定义并不适用于无弧有载分接开关。
3.3
真空型有载分接开关 vacuum type on-Boad tap-changer
触头通断负载与环流的电弧发生在真空断流器(真空管)中的有载分接开关,且自身放置在如液体或气体的不同介质中。
3.4
无弧有载分接开关 no arcing on-load tap-changer
触头通断负载和环流时不产生燃弧的有载分接开关(例如电子式或晶闸管机械混合式),且自身放置在如液体或气体的不同介质中。
3.5
分接选择器tap selector
能承载电流但不能接通或开断电流的一种装置,它与切换开关配合使用,以选择分接连接位置。
3.6
切换开关diverter switch
与分接选择器配合使用,在已选电路中承载、接通和开断电路中电流的一种装置。
注:切换开关和分接选择器组成的分接开关也称为组合式有载分接开关。
3.7
选择开关 selector switch
把分接选择器和切换开关的功能结合在一起,能承载、接通和开断电流的一种开关装置。
注1:在非真空型选择开关中分接连接位置的选择(分接选择器任务)和通过电流的转换(切换开关任务)都是由相同的触头进行。
注2:在真空型选择开关中分接连接位置的选择(分接选择器任务)和通过电流的转换(切换开关任务)是由不同的触头进行。
注3:选择开关也称为复合式有载分接开关。
3.8
无励磁分接开关de-energized tap-changer;DETC
只能在变压器无励磁下改变绕组分接位置的一种装置。
注1:DETC有时也称为OCTC。
注2:DETC有时缩写为DTC。
3.9
转换选择器change-over selector
与分接选择器或选择开关配合使用,能承载电流但不能接通和开断电流的一种装置。当从一个终端位置转移到另一终端位置时,能使分接选择器或选择开关的触头和接于其上的分接头不止一次地被使用着。
3.10
粗调选择器coarse change-over selector
把分接绕组接到粗调绕组或接到主绕组或其所属部分绕组上的一种转换选择器。
3.11
极性选择器reversing change-over selector
把分接绕组的一端或另一端接到主绕组上的一种转换选择器。
3.12
过渡阻抗transition impedance
由一个或几个元件组成的电阻器或电抗器,用以把使用中的分接头和与其相邻的将要使用的分接头桥接起来,使负载从一个分接转移到另一个分接而不切断负载电流或不使负载电流有明显的变化。同时,也在两个分接头均被使用的期间内限制其上的循环电流。
注:对于电抗式分接开关,过渡阻抗(电抗器)通称为限流自耦变压器。电抗式分接开关通常将桥接位置作为工作位置(中点或中心抽头的电抗式分接开关)用。因此,电抗器设计为连续工作。
3.13
限流自耦变压器preventive auto transformer
一种自耦变压器(或中心抽头电抗器),用于有载分接变换和调压变压器或分级电压调节器。当其工作在两相邻分接被桥接的位置时或相邻位置分接变换期间时,用来限制循环电流。
3.14
平衡绕组equalizer winding
与电抗式调压变压器的励磁绕组和分接绕组处在同一磁路上的绕组,其匝数约为每一分接段匝数的一半。
3.15
驱动机构 drive mechanism
用于驱动分接开关的一种装置。
注:机构可包括一个独立的能控制操作的储能机构。
3.16
触头组 set of contacts
单个定触头和动触头组成的触头对或几对实际上是同时动作的触头对的组合体。
3.17
切换开关和选择开关主触头(电阻式分接开关)diverter switch and se selector switch main contacts(resistor type tap-changer)
承载通过电流,并通常与主通断触头并联仅起转换电流作用的触头组(断口间通常有火花发生)。
3.18
切换开关和选择开关主通断触头(电阻式分接开关)diverter switch and selector switch main switching contacts(resistor type tap-changer)
接通和开断电流的触头组,它与变压器绕组之间不接入过渡电阻(断口间将有电弧发生)。
注:在真空型分接开关中,主通断触头将被真空断流器(真空管)所替代。
3.19
切换开关和选择开关过渡触头(电阻式分接开关)diverter switch and selector switch transitioncontacts(resistor type tap-changer)
与过渡电阻串联的、能接通和开断电流的触头组(断口间将有电弧发生)。
注:在真空型分接开关中,过渡触头将被真空断流器(真空管)所替代。
3.20
转换触头(电抗式分接开关)transfer contacts(reactor type tap-changer)
能接通和开断电流的触头组。
注:在无旁路触头时,转换触头是连续载流的触头。
3.21
旁路触头(电抗式分接开关)by-pass contacts(reactor type tap-changer)
将电流转移到转换触头而不产生电弧(可能发生火花)的载流触头组。
3.22
桥接位置 bridging position
电抗式分接开关选择器与转换触头是位于两个相邻分接上的位置,且输出端子是电气连接在两个相邻的分接间的中间位置上。
3.23
非桥接位置non-bridging position
电抗式分接开关选择器与转换触头是位于同一分接上的位置。
3.24
循环电流drculating current
电阻式分接开关在分接变换中,当相邻两个分接头被暂时桥接时,或当电抗式分接开关在桥接的工作位置时,由分接头之间的电压降产生的,并流过过渡阻抗的电流。
注:这个循环电流是由分接间电压差所引起的。
3.25
开断电流 switched current
分接变换时,在切换开关或选择开关每个主通断触头组或过渡触头组(电阻式分接开关)或转换触头(电抗式分接开关)上所预计开断的电流。
3.26
恢复电压recovery voltage
切换开关或选择开关的每个主通断触头组或过渡触头组(电阻式分接开关)或转换触头(电抗式分接开关),在开断电流被切断之后出现在断口的工频电压。
3.27
分接变换操作tap-change operation
分接变换从一个工作分接位置转换到相邻一个分接位置的由开始到完成的全部过程。
3.28
操作循环cycle of operation
分接开关从一个终端位置变换到另一个终端位置,再同到原始位置的动作。
3.29
额定绝缘水平rated insulation level
对地、相间(如果适用)以及要求绝缘的那些零部件之间的冲击和工频耐受电压值。
3.30
额定通过电流 rated through-current
Ir
经分接开关流到外部电路的电流,此电流在相关的级电压下,能被分接开关从一个分接转移到另一个分接去。在满足本部分要求的情况下,分接开关能连续地承载此电流。
3.31
最大额定通过电流 maximum rated through-current
Irm
分接开关设计的最大额定通过电流,它是作为有关试验的基准电流。
3.32
额定级电压rated step voltage
Uir
对于每个额定通过电流,接到变压器相邻两个分接头上的分接开关两个端子间的最大允许电压。
3.33
相关额定级电压relevant rated step voltage
与给定的额定通过电流相关的允许最大级电压。
3.34
最大额定级电压maximum rated step voltage
Uirm
分接开关设计的额定级电压的最大值。
3.35
额定频率 rated frequency
分接开关设计的交流频率。
3.36
固有分接位置数 number of inherent tap positions
按照设计,一台分接开关在半个操作循环内所能用上的分接位置数的最大值。
注:“分接位置”术语一般以相关数的“±”值表示,例如±11位置,它们原则上也适用于电动机构。当使用术语“分接位置数”是与变压器有关时,总是指变压器的工作分接位置数。
3.37
工作分接位置数number of service tap positions
装在变压器里的一台分接开关在半个操作循环内所使用的分接位置数。
注:“分接位置”术语一般以相关数的“±”值表示,例如±11位置,它们原则上也适用于电动机构。当使用术语“分接位置数”是与变压器有关时,总是指变压器的工作分接位置数。
3.38
型式试验type test
在能代表某一系列分接开关的一台分接开关上所进行的试验,以验证例行试验中未验证的规定要求。如果这些分接开关是基于采用相同技术或相同材料的相同图纸制造的,则该台分接开关可被认为具有代表性。
注1:分接开关型式试验通常可以在一台分接开关或一台分接开关组部件,或同一系列分接开关的组部件上进行。
注2:分接开关系列是指基于同一设计的,并且在特性方面除对地及相间(如果有)绝缘水平、分接位置数及过渡阻抗值外都相同的一些分接开关。
注3:与一个特定型式试验无关的设计派生,不需要重复那种型式试验。
注4:一个导致数值与强度降低的设计派生,如果购买方与制造方均接受,则不需要一个特定的型式试验。
3.39
例行试验 routine test
在其每台分接开关上所进行的试验。
注:例行试验可在分接开关或分接开关的组件上进行。
3.40
电动机构 motor drive mechanism
装有电动机及控制线路的驱动机构。
3.41
电动机构逐级控制 step-by-step control of a motor-drive mechanism
不管控制开关的操作顺序如何,在一个分接变换完成后,能使电动机构停止的装置。
3.42
分接位置指示器tap position indicator
用以指示分接开关分接位置的装置。
3.43
分接变换指示器tap-change in progress indicator
用以指示电动机构正在运行的装置。
3.44
极限开关 Iimit switches
能防止分接开关发生超越任一端位的操作,但允许向相反方向操作的装置。
3.45
机械端位止动装置mechanical end stop
能防止分接开关超越任一端位的操作,但允许向相反方向操作的机械装置。
3.46
并联控制装置parallcl control devices
一种电气控制装置。在几台带分接的变压器并联运行情况下,用它使所有的分接开关同时调到所需要的分接位置上,以避免各个电动机构操作不一致。
注:对于组成三相组的单相变压器,当每台单相分接开关均有自己的电动机构时,也需采用这样的控制装置。
3.47
紧急脱扣装置 emergency tripping device
一种能使电动机构在任何时候停止的装置,且当分接开关要开始下一个分接变换操作时,该装置需先完成一个特定的动作。
3.48
过电流闭锁装置 overcurrent blocking device
当通过变压器绕组中的过电流超过整定值时,能防止或中断电动机构操作的一种装置。
注:用弹簧储能系统带动的切换开关或选择开关,如果弹簧机构已释放动作,即使电动机构操作中断,则也不能阻止切换开关或选择开关操作。
3.49
重启动装置restaring device
能在电源电压中断后,使电动机构再次启动,从而使原来已经开始了的一个分接变换操作得以完成的一种装置。
3.50
操作计数器operation counter
一种用来指示分接变换完成次数的装置。
3.51
电动机构的手动操作 manual operation of a motor-drive mechanism
使用一种机械工具,以手动方式进行分接开关的操作,同时,电动机的操作被闭锁。
3.52
电动机构箱motor-drive cubicle
装有电动机构的箱子。
3.53
防止越级的保护装置protective device against running-through
当逐级控制线路发生故障时,能使电动机构停止的一种装置,以免出现电动机构跨越若干分接位置的情况。
3.54
I类分接开关class I tap-changer
仅适用于绕组中性点处的分接开关。
3.55
Ⅱ类分接开关classⅡtap-changer
适用于绕组中性点以外的其他位置处的分接开关。
3.56
埋入式分接开关in-tank tap-changer
分接开关安装在变压器主油箱内,且浸在其变压器绝缘液体内。
注:进一步信息见GB/T 10230.2。
3.57
外置式分接开关 compartment type tap-changer
分接开关安装在变压器主油箱外边,且浸在它自身的绝缘液体内。
注:进一步信息见GB/T 10230.2。
3.58
充气式分接开关 gas immersed tap-changer
分接开关安装在充气式变压器主气箱内或变压器主气箱外部的一容器内,且浸在它自身的绝缘气体里。
注:绝缘气体通常是SF6。
3.59
空气绝缘分接开关 air insulated tap-changer
在大气压力下绝缘介质为空气的分接开关。
注:这种型式分接开关通常安装在干式变压器上,不需要自身的容器,简称为干式分接开关。
3.60
设备最高电压highest voltage for equipment
Um
三相系统最高的相间电压方均根值,分接开关的绝缘是按此设计的。
4使用条件
4.1 分接开关的环境温度
除用户规定更严酷的条件外,液浸式分接开关应适于在表1所规定的温度范围内工作。
表1 分接开关的环境温度
分接开关 温度
最 低 最 高
外置式分接开关 -25℃ 与变压器环境温度相同
埋入式分接开关 -25℃ 105℃
注1:对分接开关的定义,见3.56和3.57。
注2:表中所列的105℃值,是基于GB/T 1094.7规定的正常循环负载下最高顶层油温。
4.2 电动机构的环境温度
除用户规定更严酷的条件外,电动机构应适于在-25℃~40℃的环境温度下运行。
分接开关和电动机构更严酷的环境条件见GB/T 10230.2。
4.3 过载条件
符合本部分并按GB/T 10230.2选用和安装好的分接开关,不应限制GB/T 1094.7中规定的变压器的急救负载能力,变压器的急救负载有可能导致其顶层油温达到115℃。
5 有载分接开关的技术要求
5.1一般技术要求
5.1.1 额定值
5.1.1.1 额定特性
有载分接开关的额定特性为:
——额定通过电流;
——最大额定通过电流;
——额定级电压;
——最大额定级电压;
——额定频率;
——额定绝缘水平。
5.1.1.2额定通过电流与额定级电压间的相互关系
在不超过分接开关的最大额定通过电流下,可以有各种不同的额定通过电流值与相应的额定级电压值的组合。与额定通过电流某一个规定值相对应的某个额定级电压称为“相关额定级电压”。
5.1.2切换开关和选择开关的油(气)室
注入液体的切换开关或选择开关油室应是密封的。注入气体的切换开关或选择开关的气室也应是气密的。如有需要,则压力和真空耐受值应由制造方给出。
如果采用油中溶解气体分析法(DGA)对变压器油进行监视,则切换开关或选择开关的油室应装设一个储油柜,此储油柜应有液体密封和气密的隔膜。对真空型有载分接开关则需要变压器制造方与用户就此问题进行协商。
5.1.3油位计与气体监视装置
带有整体膨胀容积储油柜或独立储油柜的切换开关或选择开关油室(如果有),应装有油位计。
充气式分接开关的切换开关或选择开关的气室应装有气体监视装置。
注:气体监视装置可以是突发压力继电器或密度继电器。
5.1.4 防止内部故障的安全要求
5.1.4.1 概述
为了尽量减少切换开关或选择开关的油(气)室内部故障引起的后果,应装备一个保护装置。此保护装置应具有检测电弧故障或最终导致电弧故障的故障模式的功能。
所选的用于有载分接开关的一个保护装置应由制造方推荐。至少应安装一个保护装置。
用于液浸式有载分接开关最常见类型的保护装置如下所述。
外置式有载分接开关的分接选择器油室通常是与主变压器气体继电器相连通,也应考虑在分接选择器油室与储油柜之间提供一个单独合适的气体继电器。
注:真空型、无弧型且安装在密封油室里的有载分接开关可以采用其他型式的保护装置。
5.1.4.2油流控制继电器
安装在切换开关或选择开关顶部和储油柜之间连管上的油流控制继电器,当液体流动速度达到某一整定值时,它应动作并使变压器被切除。
5.1.4.3过压力继电器
当切换开关或选择开关油室中的压力一旦超过某一整定值时,过压力继电器动作并使变压器被切除。
5.1.4.4压力释放装置
当油室压力超过整定值时,压力释放装置将打开,从而使切换开关或选择开关的油室得到保护。
当压力释放装置是单一保护时,它也应装触点以使变压器被切除。
如果装有压力释放装置,则可以采用自密封隔膜式结构。此时应考虑装有压力释放装置的排出口,例如导管或管路,以保护人员免受液流的伤害。采用此装置应符合制造方与用户之间的协议。
5.1.5 防护瞬时过电压的限制装置
对于装有限制瞬时过电压保护装置的分接开关,分接开关制造方应对此过电压保护装置的保护特性以及在变压器试验时可能受到的任何限制均给出详细说明。
当采用火花间隙时,应注意在此间隙闪络后,保证放电能自动熄灭。
5.1.6转换选择器恢复电压
当粗调选择器或极性选择器操作时,分接绕组将瞬间悬浮。在触头分离期间,由于分接绕组与邻近绕组间的耦合电容,可能使转换选择器触头间产生较高的恢复电压。分接开关制造方应阐明有载分接开关转换选择器的任何极限转换参数。
注:关于选择、控制线路和装置以及变压器试验的进一步说明见GB/T 10230.2。
5.1.7粗细调转换泄漏电感
对于电阻式分接开关,当从细调绕组的一端变换到粗调绕组一端时,在两个绕组反向串接下,能产生一个高的泄漏电感,从而使切换开关或选择开关的开断电流与恢复电压之间有一个相位移,这可能导致开关电弧的延长。
有载分接开关制造方应对转换选择器的各种转换限制予以阐明。
注:关于选择和有关漏电感的绕组布置图的进一步说明见GB/T 10230.2。