![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
1 General Provisions 1.0.1 This code was prepared with a view to implementing "Construction Law of the People's Republic of China" and "Law of the People's Republic of China on Protecting Against and Mitigating Earthquake Disasters", pursuing the policy of "Prevention First", reducing seismic damage, preventing secondary disaster, avoiding personal casualty, reducing economic losses, and making mechanical and electrical engineering such as building water supply and drainage, heating, ventilating, air conditioning, gas, heating power, electricity, communication and fire-fighting be safe and reliable, technology-advanced, economically reasonable and convenient for maintenance management after seismic precaution. 1.0.2 This code is applicable to seismic design of building mechanical and electrical engineering with the seismic precautionary intensity from Intensity 6 to Intensity 9 and is not applicable to seismic design of building mechanical and electrical engineering with the seismic precautionary intensity greater than Intensity 9 or that with special requirements. 1.0.3 Seismic design of building mechanical and electrical equipment engineering facilities according to this code shall reach the following requirements: 1 Mechanical and electrical equipment engineering facilities are generally free from damages or may continue operating without repairing in case of frequent earthquakes lower than local seismic precautionary intensity; 2 Mechanical and electrical equipment engineering facilities are possibly damaged and may still continue operating after general repair or without repairing in case of earthquakes equivalent to local seismic precautionary intensity; 3 Mechanical and electrical equipment engineering facilities are unlikely to be badly damaged and endanger lives in case of rare earthquake greater than local seismic precautionary intensity. 1.0.4 Seismic design must be carried out for the building mechanical and electrical engineering in regions with the seismic precautionary intensity of Intensity 6 or above. 1.0.5 Seismic action calculation may not be carried out for building (except Category A building) mechanical and electrical engineering in regions with the seismic precautionary intensity of Intensity 6. Note: In the following provisions of this code, expressive words "seismic precautionary intensity" a generally omitted, "seismic precautionary intensity of Intensity 6, Intensity 7, Intensity 8 or Intensity 9" are referred to as "Intensity 6, Intensity 7, Intensity 8 or Intensity 9". 1.0.6 Seismic design of building mechanical and electrical engineering shall meet not only the requirements in this code, but also those stipulated in the current relevant standards of the nation. 2 Terms and Symbols 2.1 Terms 2.1.1 Seismic precautionary intensity The seismic intensity which is approved according to the authority specified by the nation to act as the criterion of seismic precaution for one region, and generally is the seismic intensity with exceedance probability of 10% in 50 years. 2.1.2 Seismic precautionary criterion The rule for judging the seismic precautionary requirements, which is determined according to the seismic precautionary intensity or the design parameters of ground motion and the seismic precautionary category of buildings. 2.1.3 Earthquake action The dynamic action of structure caused by ground motion, including horizontal earthquake action and vertical earthquake action. 2.1.4 Building mechanical and electrical equipment engineering facilities The accessory machines, electrical components, parts and systems offering service to the use function of buildings, mainly including elevator, lighting system and emergency power supply, communication equipment, pipeline system, heating and air conditioning system, fire alarm and fire-fighting system as well as common antenna, etc. 2.1.5 Seismic support The component composed of anchorage body, reinforced hanger rod, diagonal bracing and seismic connection component. 2.1.6 Seismic bracing The seismic support facility firmly connected with building structure, which is with seismic force as the main load and is composed of anchorage body, reinforced hanger rod, seismic connection component and seismic diagonal bracing. 2.1.7 Lateral seismic bracing The seismic bracing with diagonal bracing parallel to the cross section of pipeline. 2.1.8 Longitudinal seismic bracing The seismic bracing with diagonal bracing perpendicular to the cross section of pipeline. 2.1.9 Single tube seismic bracing The seismic bracing composed of a stick of load-bearing hanger and earthquake diagonal bracing. 2.1.10 Door-shaped seismic bracing The seismic bracing composed of two or more sticks of load-bearing hangers, transverse beams and earthquake diagonal bracing. 2.1.11 Design basic acceleration of ground motion The design value of seismic acceleration with exceedance probability of during the 50-years design reference period. 2.1.12 Design characteristic period of ground motion The period value corresponding to the starting point of the descending section reflecting factors such as the earthquake magnitude, epicentral distance and site category in the seismic influence coefficient curve used for seismic design. 2.2 Symbols 2.2.1 Action and effect F——the characteristic value of horizontal earthquake action imposed on the gravity center of mechanical and electrical equipment engineering facilities along the most unfavorable direction; G——the gravity of non-structural components; SGE——the effect of the representative value for gravity load; SEhk——the effect of the characteristic value of horizontal earthquake action; S——the design value of mechanical and electrical equipment engineering facility or component internal force combination. 2.2.2 Resistance and material performance R——the design value of load-carrying capacity of components; [θe]——the limit of elastic inter-storey drift angle; βs——the floor response spectrum value of building mechanical and electrical equipment engineering facility or component. 2.2.3 Geometric parameters h——the calculated storey height; l——the spacing between lateral and longitudinal seismic bracing for horizontal pipeline; l0——the maximum spacing of seismic bracing; L——the distance to the next longitudinal seismic bracing; L1——the spacing of longitudinal seismic bracing; L2——the spacing of lateral seismic bracing. 2.2.4 Calculation coefficient γ——the function coefficient of non-structural components; η——the category coefficient of non-structural components; ζ1——the state coefficient; ζ2——the position coefficient; αmax——the maximum seismic influence coefficient; γG——the partial coefficient of gravity load; γEh——the partial coefficient of horizontal earthquake action; αEk——the comprehensive coefficient of horizontal seismic force; k——the angular adjustment coefficient of earthquake bracing. 3 Basic Requirements for Design 3.1 General Requirements 3.1.1 Seismic measures for connection components and parts between building mechanical and electrical equipment engineering facilities and building structures shall be determined according to the precautionary intensity, use function of building, building height, structure type, deformation characteristic, positions and operation requirements of equipment and facilities as well as the relevant requirements of the current national standard "Code for Seismic Design of Buildings" (GB 50011) and after comprehensive analysis. 3.1.2 Important equipment rooms of building mechanical and electrical engineering shall not be arranged at the positions with weak seismic performance; for equipment with vibration isolation device, connection pieces shall not be damaged and resonance phenomenon of equipment and building structure shall be prevented in case of strong vibration. 3.1.3 Brackets and hangers of building mechanical and electrical equipment engineering facilities shall be possessed of sufficient rigidity and load-carrying capacity; reliable connection and anchorage shall be provided for brackets and hangers and building structure. 3.1.4 Opening on structural wall for building mechanical and electrical engineering pipeline shall be such arranged to avoid passing through main bearing structure components. The connection between pipeline and equipment and building structure shall be able to allow certain relative displacement. 3.1.5 Bases and connection pieces of building mechanical and electrical equipment engineering facilities shall be able to transfer all seismic action borne by the equipment to the building structure. In building structure, the embedded parts and anchoring parts used to fix building mechanical and electrical equipment engineering facilities shall be able to bear the seismic action transferred from building mechanical and electrical equipment engineering facilities to the major structure. 3.1.6 Seismic design of building mechanical and electrical equipment engineering facilities shall be based on design of building structure; precautionary measures shall be taken to connection pieces of building structure. Precautionary measures may not be taken to equipment with the gravity not greater than 1.8kN or hanger rod hanging pipeline for hanger rod with calculated length not greater than 300mm. 3.1.7 Seismic brackets and hangers shall be anchored with reinforced concrete structure and shall be welded or bolted with steel structure. 3.1.8 Flexible connection or other connection modes shall be adopted for building mechanical and electrical engineering pipeline crossing seismic isolation storey; and seismic brackets shall be arranged on both sides of seismic isolation storey. 3.1.9 Bottom of building mechanical and electrical equipment engineering facilities shall be firmly fixed to the floor. For seismic precaution of Intensity 8 or above, expansion bolts or bolts shall be fixed on the structural floor slab under cushion. For building mechanical and electrical equipment engineering facilities which cannot be bolted with the floor, L-type seismic anti-skid angle iron shall be adopted for limiting. 3.2 Site Influence 3.2.1 In case of Category I building site, seismic constructional measures for mechanical and electrical engineering of Category A and B buildings shall be taken according to the requirements of local seismic precautionary intensity and those for mechanical and electrical engineering of Category C buildings may be taken according to the requirements for one grade lower than the local seismic precautionary intensity; however, as for Intensity 6, seismic constructional measures shall be taken according to the requirements of the local seismic precautionary intensity. 3.2.2 In case of Category III or IV building site, for the mechanical and electrical engineering of various buildings in regions with the design basic acceleration of ground motion of 0.15g and 0.30g, the seismic constructional measures should be taken according to the requirements for Intensity 8 (0.20g) and Intensity 9 (0.40g) respectively. 3.3 Earthquake Motion Influence 3.3.1 For earthquakes suffered by building mechanical and electrical engineering location region, the seismic precautionary intensity may be selected according to current national standard "Code for Seismic Design of Buildings" (GB 50011), and design basic acceleration of ground motion and design characteristic period of ground motion corresponding to the seismic precautionary intensity may be adopted. For cities with prepared seismic precautionary zoning, the seismic precaution may be carried out according to approved seismic precautionary intensity and corresponding ground motion parameter. 3.3.2 The corresponding relationship between seismic precautionary intensity and value of design basic acceleration of ground motion shall meet those specified in Table 3.3.2. For building mechanical and electrical engineering in regions with the design basic acceleration of ground motion of 0.15g and 0.30g, unless otherwise stipulated in this code, the seismic design shall be carried out according to the requirements for Intensity 7 and Intensity 8 respectively. Table 3.2.2 Corresponding Relationship between Seismic Precautionary Intensity and Values of Design Basic Acceleration of Ground Motion Seismic precautionary intensity 6 7 8 9 Value of design basic acceleration of ground motion 0.05g 0.10(0.15)g 0.20(0.30)g 0.40g Note: g is the gravity acceleration. 3.3.3 Design characteristic period of ground motion for building structure shall be determined according to local design seismic group and site category and its value shall be adopted according to those specified in Table 3.3.3. Table 3.3.3 Value of Design Characteristic Period of Ground Motion (s) Design seismic group Site category I0 I1 II III IV Group 1 0.20 0.25 0.35 0.45 0.65 Group 2 0.25 0.30 0.40 0.55 0.75 Group 3 0.30 0.35 0.45 0.65 0.90 3.3.4 Seismic precautionary intensity, design basic acceleration of ground motion and design seismic group for central areas of main cities in China may be selected according to the relevant requirements of the current national standard "Code for Seismic Design of Buildings" (GB 50011). 3.3.5 The maximum horizontal seismic influence coefficient of building mechanical and electrical engineering equipment shall be adopted according to those specified in Table 3.3.5; where seismic isolation design is adopted for building structure, the maximum horizontal seismic influence coefficient after seismic isolation shall be adopted. Table 3.3.5 Maximum Horizontal Seismic Influence Coefficient Earthquake effect Intensity 6 Intensity 7 Intensity 8 Intensity 9 Frequent earthquakes 0.04 0.08(0.12) 0.16(0.24) 0.32 Rare earthquake 0.28 0.50(0.72) 0.90(1.20) 1.40 Note: the values in parentheses are used for the regions where the design basic acceleration of ground motion is 0.15g and 0.30g respectively. 3.4 Calculation for Seismic Action 3.4.1 Seismic calculation for building mechanical and electrical engineering equipment shall be carried out according to seismic requirements of the building with different coefficients and category coefficients adopted for the positions; the category coefficients and function coefficients for mechanical and electrical equipment components may be determined according to those specified in Table 3.4.1 and shall meet the following requirements: 1 In case of high requirements, the appearance may be damaged, however, the use function and fire protection ability are not affected, it may stand more than 1.4 times the deformation of design deflection for the connected structural components, its function coefficient shall be larger than or equal to 1.4; 2 In case of medium requirements, the use function is basically normal or may be recovered quickly, the fire-resistant time is reduced by 1/4, it may stand the deformation of design deflection for connected structural components, and its function coefficient shall be taken as 1.0; 3 In case of general requirements, many components are basically at original positions, however, the system may be damaged and require repair for function recovery, the fire-resistant time is obviously reduced, it may only stand 0.6 times the deformation of design deflection for connected structural components, and its function coefficient shall be taken as 0.6. 1 General Provisions 2 Terms and Symbols 2.1 Terms 2.2 Symbols 3 Basic Requirements for Design 3.1 General Requirements 3.2 Site Influence 3.3 Earthquake Motion Influence 3.4 Calculation for Seismic Action 3.5 Aseismic Requirements for Building Mechanical and Electrical Equipment Engineering Facilities and Bracing 4 Water Supply and Drainage 4.1 Indoor Water Supply and Water Drainage 4.2 Outdoor Water Supply and Drainage of Building Quarters and Individual Buildings 5 HVAC 5.1 Heating, Ventilation and Air Conditioning Systems 5.2 Outdoor Thermal System 6 Gas 6.1 General Requirements 6.2 Gas System 7 Building Electricity 7.1 General Requirements 7.2 Settings of System and Equipment 7.3 Location Options of Engine Rooms 7.4 Equipment Installation 7.5 Conductor Selection and Line Laying 8 Seismic Bracing 8.1 General Requirements 8.2 Calculation for Seismic Bracing 8.3 Design for Seismic Bracing Explanation of Wording in this Code List of Quoted Standards 1 总 则 1.0.1为贯彻执行《中华人民共和国建筑法》和《中华人民共和国防震减灾法》,实行以“预防为主”的方针,使建筑给水排水、供暖、通风、空调、燃气、热力、电力、通讯、消防等机电工程经抗震设防后,减轻地震破坏,防止次生灾害,避免人员伤亡,减少经济损失,做到安全可靠、技术先进、经济合理、维护管理方便,制定本规范。 1.0.2本规范适用于抗震设防烈度为6度至9度的建筑机电工程抗震设计,不适用于抗震设防烈度大于9度或有特殊要求的建筑机电工程抗震设计。 1.0.3按本规范进行的建筑机电工程设施抗震设计应达到下列要求: 1 当遭受低于本地区抗震设防烈度的多遇地震影响时,机电工程设施一般不受损坏或不需修理可继续运行; 2 当遭受相当于本地区抗震设防烈度的地震影响时,机电工程设施可能损坏经一般修理或不需修理仍可继续运行; 3 当遭受高于本地区抗震设防烈度的罕遇地震影响时,机电工程设施不至于严重损坏,危及生命。 1.0.4抗震设防烈度为6度及6度以上地区的建筑机电工程必须进行抗震设计。 1.0.5对位于抗震设防烈度为6度地区且除甲类建筑以外的建筑机电工程,可不进行地震作用计算。 注:本规范以下条文中,一般略去“抗震设防烈度”表叙字样,对“抗震设防烈度为6度、7度、8度、9度”简称为“6度、7度、8度、9度”。 1.0.6建筑机电工程抗震设计除应符合本规范外,尚应符合国家现行有关标准的规定。 2术语和符号 2.1 术 语 2.1.1抗震设防烈度seismic precautionary intensity 按国家规定的权限批准作为一个地区抗震设防依据的地震烈度。一般情况,取50年内超越概率10%的地震烈度。 2.1.2抗震设防标准seismic precautionary criterion 衡量抗震设防要求高低的尺度,由抗震设防烈度或设计地震动参数及建筑抗震设防类别确定。 2.1.3地震作用earthquake action 由地震动引起的结构动态作用,包括水平地震作用和竖向地震作用。 2.1.4建筑机电工程设施 building mechanical and electrical equipment engineering facilities 为建筑使用功能服务的附属机械、电器构件、部件和系统。主要包括电梯,照明系统和应急电源,通信设备,管道系统,供暖和空气调节系统,火灾报警和消防系统,共用天线等。 2.1.5抗震支承seismic support 由锚固体、加固吊杆、斜撑和抗震连接构件组成的构件。 2.1.6抗震支吊架seismic bracing 与建筑结构体牢固连接,以地震力为主要荷载的抗震支撑设施。由锚固体、加固吊杆、抗震连接构件及抗震斜撑组成。 2.1.7侧向抗震支吊架lateral seismic bracing 斜撑与管道横截面平行的抗震支吊架。 2.1.8纵向抗震支吊架longitudinal seismic bracing 斜撑与管道横截面垂直的抗震支吊架。 2.1.9单管(杆)抗震支吊架single tube seismic bracing 由一根承重吊架和抗震斜撑组成的抗震支吊架。 2.1.10门型抗震支吊架door-shaped seismic bracing 由两根及以上承重吊架和横梁、抗震斜撑组成的抗震支吊架。 2.1.11设计基本地震加速度design basic acceleration of ground motion 50年设计基准期超越概率10%的地震加速度的设计取值。 2.1.12设计特征周期design characteristic period of ground motion 抗震设计用的地震影响系数曲线中,反映地震震级、震中距和场地类别等因素的下降段起始点对应的周期值。 2.2符 号 2.2.1作用和作用效应 F——沿最不利方向施加于机电工程设施重心处的水平地震作用标准值; G——非结构构件的重力; SGE——重力荷载代表值的效应; SEhk——水平地震作用标准值的效应; S——机电工程设施或构件内力组合的设计值。 2.2.2抗力和材料性能 R——构件承载力设计值; [θe]——弹性层间位移角限值; βs——建筑机电工程设施或构件的楼面反应谱值。 2.2.3几何参数 h——计算楼层层高; l——水平管线侧向及纵向抗震支吊架间距; l0——抗震支吊架的最大间距; L——距下一纵向抗震支吊架间距; L1——纵向抗震支吊架间距; L2——侧向抗震支吊架间距。 2.2.4计算系数 γ——非结构构件功能系数; η——非结构构件类别系数; ζ1——状态系数; ζ2——位置系数; αmax——地震影响系数最大值; γG——重力荷载分项系数; γEh——水平地震作用分项系数; αEk——水平地震力综合系数; k——抗震斜撑角度调整系数。 3设计基本要求 3.1一般规定 3.1.1建筑机电工程设施与建筑结构的连接构件和部件的抗震措施应根据设防烈度、建筑使用功能、建筑高度、结构类型、变形特征、设备设施所处位置和运行要求及现行国家标准《建筑抗震设计规范》GB 50011的有关规定,经综合分析后确定。 3.1.2建筑机电工程重要机房不应设置在抗震性能薄弱的部位;对于有隔振装置的设备,当发生强烈振动时不应破坏连接件,并应防止设备和建筑结构发生谐振现象。 3.1.3建筑机电工程设施的支、吊架应具有足够的刚度和承载力,支、吊架与建筑结构应有可靠的连接和锚固。 3.1.4建筑机电工程管道穿越结构墙体的洞口设置,应尽量避免穿越主要承重结构构件。管道和设备与建筑结构的连接,应能允许二者间有一定的相对变位。 3.1.5建筑机电工程设施的基座或连接件应能将设备承受的地震作用全部传递到建筑结构上。建筑结构中用以固定建筑机电工程设施的预埋件、锚固件,应能承受建筑机电工程设施传给主体结构的地震作用。 3.1.6建筑机电工程设施抗震设计应以建筑结构设计为基准,对与建筑结构的连接件应采取措施进行设防。对重力不大于1.8kN的设备或吊杆计算长度不大于300mm的吊杆悬挂管道,可不进行设防。 3.1.7抗震支、吊架与钢筋混凝土结构应采用锚栓连接,与钢结构应采用焊接或螺栓连接。 3.1.8穿过隔震层的建筑机电工程管道应采用柔性连接或其他方式,并应在隔震层两侧设置抗震支架。 3.1.9建筑机电工程设施底部应与地面牢固固定。对于8度及8度以上的抗震设防,膨胀螺栓或螺栓应固定在垫层下的结构楼板上。对于无法用螺栓与地面连接的建筑机电工程设施,应用L型抗震防滑角铁进行限位。 3.2场地影响 3.2.1建筑场地为工类时,甲、乙类建筑的建筑机电工程应按本地区抗震设防烈度的要求采取抗震构造措施;丙类建筑的建筑机电工程可按本地区抗震设防烈度降低一度的要求采取抗震构造措施,但6度时仍应按本地区抗震设防烈度的要求采取抗震构造措施。 3.2.2建筑场地为Ⅲ、Ⅳ类时,对设计基本地震加速度为0.15g和0.30g的地区,各类建筑机电工程宜分别按8度(0.20g)和9度(0.40g)的要求采取抗震构造措施。 3.3地震影响 3.3.1建筑机电工程所在地区遭受的地震影响,其抗震设防烈度可按现行国家标准《建筑抗震设计规范》GB 50011的有关规定选用,并可采用相应于抗震设防烈度的设计基本地震加速度和设计特征周期。对已编制抗震设防区划的城市,可按批准的抗震设防烈度和对应的地震动参数进行抗震设防。 3.3.2抗震设防烈度和设计基本地震加速度取值的对应关系,应符合表3.3.2的规定。设计基本地震加速度为0.15g和0.30g地区内的建筑机电工程,除本规范另有规定外,应分别按7度和8度的要求进行抗震设计。 表3.3.2抗震设防烈度和设计基本地震加速度值的对应关系 抗震设防烈度 6 7 8 9 设计基本地震加速度值 0.05g 0.10(0.15)g 0.20(0.30)g 0.40g 注:g为重力加速度。 3.3.3建筑结构的设计特征周期应根据其所在地的设计地震分组和场地类别确定,设计特征周期值应按表3.3.3的规定采用。 表3.3.3设计特征周期值(s) 设计地震 分组 场地类别 I0 I1 Ⅱ Ⅲ Ⅳ 第一组 0.20 0.25 0.35 0.45 0.65 第二组 0.25 0.30 0.40 0.55 0.75 第三组 0.30 0.35 0.45 0.65 0.90 3.3.4我国主要城镇中心地区的抗震设防烈度、设计基本地震加速度值和所属的设计地震分组,可按现行国家标准《建筑抗震设计规范》GB 50011的有关规定选用。 3.3.5建筑机电工程设备的水平地震影响系数最大值应按表3.3.5采用,当建筑结构采用隔震设计时,应采用隔震后的水平地震影响系数最大值。 表3.3.5水平地震影响系数最大值 地震影响 6度 7度 8度 9度 多遇地震 0.04 0.08(0.12) 0.16(0.24) 0.32 罕遇地震 0.28 0.50(0.72) 0.90(1.20) 1.40 注:括号中数值分别用于设计基本地震加速度为0.15g和0.30g的地区。 3.4地震作用计算 3.4.1建筑机电工程设备应根据所属建筑抗震要求、所属部位采用不同功能系数、类别系数进行抗震计算,建筑机电设备构件的类别系数和功能系数可按表3.4.1的规定确定,并应符合下列规定: 1高要求时,外观可能损坏但不影响使用功能和防火能力,可经受相连结构构件出现1.4倍以上设计挠度的变形,其功能系数应大于等于1.4; 2中等要求时,使用功能基本正常或可很快恢复,耐火时间减少1/4,可经受相连结构构件出现设计挠度的变形,其功能系数应取1.0; 3一般要求时,多数构件基本处于原位,但系统可能损坏,需修理才能恢复功能,耐火时间明显降低,只能经受相连结构构件出现0.6倍设计挠度的变形,其功能系数应取0.6。 表3.4.1 建筑机电设备构件的类别系数和功能系数 构件、部件所属系统 类别系数 功能系数 甲类建筑 乙类建筑 丙类建筑 消防系统、燃气及其他气体系统;应急电源的主控系统、发电机,冷冻机等 1.0 2.0 1.4 1.4 电梯的支承结构,导轨、支架,轿箱导向构件等 1.0 1.4 1.0 1.0 悬挂式或摇摆式灯具,给排水管道、通风空调管道及电缆桥架 0.9 1.4 1.0 0.6 其他灯具 0.6 1.4 1.0 0.6 柜式没备支座 0.6 1.4 1.0 0.6 水箱、冷却塔支座 1.2 1.4 1.0 1.0 锅炉、压力容器支座 1.0 1.4 1.0 1.0 公用天线支座 1.2 1.4 1.0 1.0 3.4.2当计算两个连接在一起、抗震措施要求不同的建筑机电设备时,应按较高要求进行抗震设计。建筑机电设备连接损坏时,不应引起与之相连的有较高要求的机电设备失效。 3.4.3下列建筑机电设备应进行抗震验算: 1 7度~9度时,电梯提升设备的锚固件、高层建筑上的电梯构件及其锚固; 2 7度~9度时,建筑机电设备自重大于1.8kN或其体系自振周期大于0.1s的设备支架、基座及其锚固。 3.4.4建筑机电工程的地震作用计算方法,应符合下列规定: 1 各构件和部件的地震力应施加于其重心,水平地震力应沿任一水平方向; 2 建筑机电工程自身重力产生的地震作用可采用等效侧力法计算;对支承于不同楼层或防震缝两侧的建筑机电工程,除自身重力产生的地震作用外,尚应同时计算地震时支承点之间相对位移产生的作用效应; 3 建筑机电设备(含支架)的体系自振周期大于0.1s,且其重力大于所在楼层重力的1%,或建筑机电设备的重力大于所在楼层重力的10%时,宜进入整体结构模型进行抗震计算,也可采用楼面反应谱方法计算。其中,与楼盖非弹性连接的设备,可直接将设备与楼盖作为一个质点计入整个结构的分析中得到设备所受的地震作用。 3.4.5 当采用等效侧力法时,水平地震作用标准值宜按下式计算: F=γηζ1ζ2αmaxG (3.4.5) 式中:F——沿最不利方向施加于机电工程设施重心处的水平地震作用标准值; γ——非结构构件功能系数,按本规范第3.4.1条执行; η——非结构构件类别系数,按本规范第3.4.1条执行; ζ1——状态系数;对支承点低于质心的任何设备和柔性体系宜取2.0,其余情况可取1.0; ζ2——位置系数,建筑的顶点宜取2.0,底部宜取1.0,沿高度线性分布;对结构要求采用时程分析法补充计算的建筑,应按其计算结果调整; αmax——地震影响系数最大值;可按本规范第3.3.5条中多遇地震的规定采用; G——非结构构件的重力,应包括运行时有关的人员、容器和管道中的介质及储物柜中物品的重力。 3.4.6建筑机电工程设施或构件因支承点相对水平位移产生的内力,可按该构件在位移方向的刚度乘以规定的支承点相对弹性水平位移计算,并应符合下列规定: 1 建筑机电工程设施或构件在位移方向的刚度,应根据其端部的实际连接状态,分别采用刚性连接、铰接、弹性连接或滑动连接等简化的力学模型; 2分段防震缝两侧的相对水平位移,宜根据使用要求确定;相邻楼层的相对弹性水平位移△u,应按下式计算: Δu=[θe]h (3.4.6) 式中:[θe]——弹性层间位移角限值,宜按表3.4.6采用; h——计算楼层层高(m)。 表3.4.6弹性层间位移角限值 结构类型 [θe] 钢筋混凝土框架 1/550 钢筋混凝土框架抗震墙、板柱-抗震墙、框架-核心筒 1/800 钢筋混凝土抗震墙、筒中筒 1/1000 钢筋混凝土框支层 1/1000 多、高层钢结构 1/250 3.4.7当采用楼面反应谱法时,建筑机电工程设施或构件的水平地震作用标准值宜按下式计算: F=γηβsG (3.4.7) 式中:βs——建筑机电工程设施或构件的楼面反应谱值。 3.5建筑机电工程设施和支吊架抗震要求 3.5.1建筑机电工程设施的地震作用效应(包括自身重力产生的效应和支座相对位移产生的效应)和其他荷载效应的基本组合,应按下式计算: S=γGSGE+γEhSEhk (3.5.1) 式中:S——机电工程设施或构件内力组合的设计值,包括组合的弯矩、轴向力和剪力设计值; γG——重力荷载分项系数,一般情况取1.2; γEh——水平地震作用分项系数,取1.3; SGE——重力荷载代表值的效应; SEhk——水平地震作用标准值的效应。 3.5.2 建筑机电工程设施构件抗震验算时,摩擦力不得作为抵抗地震作用的抗力;承载力抗震调整系数,可采用1.0,并应满足下式要求: S≤R (3.5.2) 式中:R——构件承载力设计值。 3.5.3建筑物内的高位水箱应与所在结构可靠连接,8度及8度以上时,结构设计应考虑高位水箱对结构体系产生的附加地震作用效应。 3.5.4在设防烈度地震作用下需要连续工作的建筑机电工程设施,其支吊架应能保证设施正常工作,重量较大的设备宜设置在结构地震反应较小的部位;相关部位的结构构件应采取相应的加强措施。 3.5.5需要设防的建筑机电工程设施所承受的不同方向的地震作用应由不同方向的抗震支承来承担,水平方向的地震作用应由两个不同方向的抗震支承来承担。 4给水排水 4.1室内给水排水 4.1.1 给水排水管道的选用应符合下列规定: 1 生活给水管、热水管的选用应符合下列规定: 1)8度及8度以下地区的多层建筑应按现行国家标准《建筑给水排水设计规范》GB 50015规定的材质选用; 2)高层建筑及9度地区建筑的干管、立管应采用铜管、不锈钢管、金属复合管等强度高且具有较好延性的管道,连接方式可采用管件连接或焊接; 2高层建筑及9度地区建筑的入户管阀门之后应设软接头; 3消防给水管、气体灭火输送管道的管材和连接方式应根据系统工作压力,按国家现行标准中有关消防的规定选用; 4重力流排水的污、废水管的选用应符合下列规定: 1)8度及8度以下地区的多层建筑应按现行国家标准《建筑给水排水设计规范》GB 50015规定的管材选用; 2)高层建筑及9度地区建筑宜采用柔性接口的机制排水铸铁管。 4.1.2管道的布置与敷设应符合下列规定: 1 8度、9度地区的高层建筑的给水、排水立管直线长度大于50m时,宜采取抗震动措施;直线长度大于100m时,应采取抗震动措施; 2 8度、9度地区的高层建筑的生活给水系统,不宜采用同一供水立管串联两组或多组减压阀分区供水的方式; 3需要设防的室内给水、热水以及消防管道管径大于或等于DN65的水平管道,当其采用吊架、支架或托架固定时,应按本规范第8章的要求设置抗震支承。室内自动喷水灭火系统和气体灭火系统等消防系统还应按相关施工及验收规范的要求设置防晃支架;管段设置抗震支架与防晃支架重合处,可只设抗震支承; 4管道不应穿过抗震缝。当给水管道必须穿越抗震缝时宜靠近建筑物的下部穿越,且应在抗震缝两边各装一个柔性管接头或在通过抗震缝处安装门形弯头或设置伸缩节; 5管道穿过内墙或楼板时,应设置套管;套管与管道间的缝隙,应采用柔性防火材料封堵; 6当8度、9度地区建筑物给水引入管和排水出户管穿越地下室外墙时,应设防水套管。穿越基础时,基础与管道间应留有一定空隙,并宜在管道穿越地下室外墙或基础处的室外部位设置波纹管伸缩节。 4.1.3室内设备、构筑物、设施的选型、布置与固定应符合下列规定: 1生活、消防用金属水箱、玻璃钢水箱宜采用应力分布均匀的圆形或方形水箱; 2建筑物内的生活用低位贮水池(箱)、消防贮水池及相应的低区给水泵房、高区转输泵房,低区热交换间等宜布置在建筑结构地震反应较小的地下室或底层; 3高层建筑的中间水箱(池)、高位水箱(池)应靠建筑物中心部位布置,水泵房、热交换u间等宜靠近建筑物中心部位布置; 4应保证设备、设施、构筑物有足够的检修空间; 5运行时不产生振动的给水水箱、水加热器、太阳能集热设备、冷却塔、开水炉等设备、设施应与主体结构牢固连接,与其连接的管道应采用金属管道;8度、9度地区建筑物的生活、消防给水箱(池)的配水管、水泵吸水管应设软管接头; 6 8度、9度地区建筑物中的给水泵等设备应设防振基础,且应在基础四周设限位器固定,限位器应经计算确定。 4.2建筑小区、单体建筑室外给水排水 4.2.1建筑小区、单体建筑的室外给水排水的抗震设计除应满足本节的要求外,尚应符合现行国家标准《室外给水排水和燃气热力工程抗震设计规范》GB 50032的有关规定。 4.2.2给水排水管材的选用应符合下列规定: 1生活给水管宜采用球墨铸铁管、双面防腐钢管、塑料和金属复合管、PE管等具有延性的管道;当采用球墨铸铁管时,应采用柔性接口连接; 2热水管宜采用不锈钢管、双面防腐钢管、塑料和金属复合管; 3消防给水管宜采用球墨铸铁管、焊接钢管、热浸镀锌钢管; 4排水管材宜采用PVC和PE双壁波纹管、钢筋混凝土管或其他类型的化学管材,排水管的接口应采用柔性接口;不得采用陶土管、石棉水泥管;8度的Ⅲ类、Ⅳ类场地或9度的地区,管材应采用承插式连接,其接口处填料应采用柔性材料; 5 7度、8度且地基土为可液化地段或9度的地区,室外埋地给水、排水管道均不得采用塑料管。管网上的闸门、检查井等附属构筑物不宜采用砖砌体结构和塑料制品。 4.2.3管道的布置与敷设应符合下列规定: 1 生活给水、消防给水管道的布置与敷设应符合下列规定: 1)管道宜埋地敷设或管沟敷设; 2)管道应避免敷设在高坎、深坑、崩塌、滑坡地段; 3)采用市政供水管网供水的建筑、建筑小区宜采用两路供水,不能断水的重要建筑应采用两路供水,或设两条引入管; 4)干管应成环状布置,并应在环管上合理设置阀门井。 2热水管道的布置与敷设应符合下列规定: 1)管道宜采用直埋敷设或管沟敷设,9度地区宜采用管沟敷设; 2)管道应避免敷设在高坎、深坑、崩塌、滑坡地段; 3)应结合防止热水管道的伸缩变形采取抗震防变形措施; 4)保温材料应具有良好的柔性。 3排水管道的布置与敷设应符合下列规定: 1)大型建筑小区的排水管道宜采用分段布置,就近处理和分散排出,有条件时应适当增设连通管或设置事故排出口; 2)接入城市市政排水管网时宜设有一定防止水流倒灌的跌水高度; 3)排水管道应避免敷设在高坎、深坑、崩塌、滑坡地段。 4.2.4水池的设置应符合下列规定: 1生活、消防贮水水池宜采用地下式,平面形状宜为圆形或方形,并应采用钢筋混凝土结构; 2水池的进、出水管道应分设,管材宜采用双面防腐钢管,进、出水管道上均应设置控制阀门; 3穿越水池池体的配管宜预埋柔性套管,在水池壁(底)外应设置柔性接口。 4.2.5水塔的设置应符合下列规定: 1水塔宜用钢筋混凝土倒锥壳水塔的构造形式; 2水塔的进、出水管,溢水及泄水均应采用双面防腐钢管,进、出水管道上均应设置控制阀门,托架或支架应牢固,弯头、三通、阀门等配件前后应设柔性接头,埋地管道宜采用柔性接口的给水铸铁管或PE管; 3水塔距其他建筑物的距离不应小于水塔高度的1.5倍。 4.2.6水泵房的设置应符合下列规定: 1 室外给水排水泵房宜毗邻水池设在地下室内; 2泵房内的管道应有牢靠的侧向抗震支撑,沿墙敷设管道应设支架和托架。 5 暖通空调 5.1供暖、通风与空气调节系统 5.1.1供暖、通风与空气调节管道的选材应符合下列规定: 1供暖、空气调节水管道的选用应符合下列规定: 1)8度及8度以下地区的多层建筑可按国家现行有关标准规定的材质选用; 2)高层建筑及9度地区的建筑应采用热镀锌钢管、钢管、不锈钢管、铜管,连接方式可采用管件连接或焊接; 2通风、空调调节风道的管材可按国家现行有关标准规定的材质选用; 3排烟风道、排烟用补风风道、加压送风和事故通风风道的选用应符合下列规定: 1)8度及8度以下地区的多层建筑,宜采用镀锌钢板或钢板制作; 2)高层建筑及9度地区的建筑应采用热镀锌钢板或钢板制作。 5.1.2供暖、空气调节水管道的布置与敷设应符合下列规定: 1管道不应穿过抗震缝。当必须穿越时,应在抗震缝两边各装一个柔性管接头或在通过抗震缝处安装门形弯头或设伸缩节; 2管道穿过内墙或楼板时,应设置套管,套管与管道间的缝隙应填充柔性耐火材料; 3管道穿过建筑物的外墙或基础时,应符合下列规定: 1)管道穿越建筑物外墙时应设防水套管,管道穿越建筑物基础时应设套管。基础与管道之间应留有一定间隙,管道与套管间的缝隙内应填充柔性材料; 2)当穿越的管道与建筑物外墙或基础为嵌固时,应在穿越的管道上室外就近设置柔性连接件。 4锅炉房、制冷机房、热交换站内的管道应有可靠的侧向和纵向抗震支撑。多根管道共用支吊架或管径大于等于300mm的单根管道支吊架,宜采用门型抗震支吊架; 5管道抗震支吊架不应限制管线热胀冷缩产生的位移。管道抗震支吊架设置和设计应符合本规范第8章的规定。 5.1.3通风、空气调节风道的布置与敷设应符合下列规定: 1风道不应穿过抗震缝。当必须穿越时,应在抗震缝两侧各装一个柔性软接头; 2风道穿过内墙或楼板时,应设置套管,套管与管道间的缝隙,应填充柔性耐火材料; 3矩形截面面积大于等于0.38m2和圆形直径大于等于0.70m的风道可采用抗震支吊架,风道抗震支吊架的设置和设计应符合本规范第8章的规定。 |
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 |
服务热线:400-001-5431 | 电话:010-8572 5110 | 传真:010-8581 9515 | Email: bz@bzfyw.com | |
版权所有: 北京悦尔信息技术有限公司 2008-2020 京ICP备17065875号-1 51La |
本页关键词: |
GB 50981-2014, GB/T 50981-2014, GBT 50981-2014, GB50981-2014, GB 50981, GB50981, GB/T50981-2014, GB/T 50981, GB/T50981, GBT50981-2014, GBT 50981, GBT50981 |