![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative. According to the requirements of the document "Notice on Printing and Publishing 'Development and Revision Plan of Engineering Construction Standards and Specifications in 2007 (first batch)'" (Jian Biao [2007] No. 125) issued by the former Ministry of Construction, This code is revised by China Northeast Architecture Design and Research Institute Co., Ltd. together with organizations concerned based on "Code for Design of Masonry Structures" GB 50003-2001. During the revision process, the drafting group considered the economic conditions and the current status of masonry structures according to the principle of "supplement, simplification and perfection", summarized new experience in the application of masonry structures in recent years, investigated the earthquake resistance hazard of masonry structures in Wenchuan and Yushu earthquake, conducted necessary test research and supplemented clauses for local new masonry materials emerging in energy conservation and emission reduction and wall material innovation environment by reference to the mature achievements of scientific research in masonry structure field, and perfected relevant content of masonry structure durability, detailing requirements, reinforced concrete masonry members, earthquake resistance design for masonry structure members, etc., meanwhile, conducted necessary simplification for adjustment coefficient of masonry strength, etc. The revised contents extensively solicited for the comment and suggestion of relevant design, scientific research, teaching, construction, enterprise and relevant management department nationwide, and finally finalized upon review through multiple repeat discussion, modification and replenishment. This code comprises 10 chapters and 4 appendixes, with main technical content including: general provisions, terms and symbols, materials, basic rules on design, unreinforced masonry members, detailing requirements, ring beams, lintels, wall beams and cantilever beams, reinforced brick masonry members, reinforced concrete masonry members, earthquake resistance design for masonry structure members, etc. Main revised contents of this code: add mature and feasible new masonry materials which adapt energy conservation and emission reduction and wall material innovation requirements and propose corresponding design method; revise evaluation method of local masonry strength according to test research and simplify the adjustment coefficient of masonry strength; add the relevant requirements for increasing masonry durability; perfect detailing requirements of masonry structures; supplement measures for preventing or relieving wall cracking caused by material deformation with respect to crack problems existing in new masonry material wall; perfect and supplement detailing requirements for the design of cavity wall filled with insulation; supplement the calculation method of eccentric compression outside masonry composite wall plane; enlarge the application scope of reinforced concrete masonry structure, add design requirements for frame-supported reinforced masonry block shear wall building; perfect earthquake resistance design method for masonry structures according to earthquake resistance hazard and in combination with masonry structure characteristic, and supplement earthquake resistance design method for infilled wall in concrete frame structure. The provisions printed in bold type are compulsory ones in this code and must be enforced strictly. The Ministry of Housing and Urban-Rural Development of the People's Republic of China is in charge of the administration of this code and the explanation of compulsory provisions, and China Northeast Architecture Design and Research Institute Co., Ltd. is responsible for the explanation of the specific technical contents. During the process of implementing this code, all organizations are kindly requested to seriously sum up experience in combination with engineering practice, post or pass opinions and advice on to the Administrative Group of "Code for Design of Masonry Structures" of China Northeast Architecture Design and Research Institute Co., Ltd. (address: No. 65, Guangrong Street, Heping District, Shenyang City, China, 110003, Email: gaoly@masonry.cn) for future reference. Chief development organization, participating development organizations, participating organization, chief drafting staff and chief examiners of this code: Chief development organization: China Northeast Architecture Design and Research Institute Co., Ltd. Participating development organizations: China National Machinery Industry Corporation Hunan University Changsha University of Science and Technology Zhejiang University Harbin Institute of Technology Xi'an University of Architecture and Technology Chongqing Institute of Building Research Tongji University Beijing Institute of Architectural Design Chongqing University Yunnan Building Technology Development Center Guangzhou Civil Architecture Research & Design Institute Shenyang Jianzhu University Zhengzhou University Shaanxi Research Institute of Building Sciences Institute of Engineering Mechanics, China Earthquake Administration Nanjing University of Technology Sichuan Institute of Building Research Participating organization: Guizhou Kailin Phosphorus Industry Co., Ltd. Chief drafting staff: Gao Lianyu, Xu Jian, Yuan Zhenfang, Shi Chuxian, Liang Jianguo, Yan Jiaxi, Tang Daixin, Lin Wenxiu, Liang Xingwen, Gong Shaoxi, Zhou Bingzhang, Wu Mingshun, Jin Weiliang, Liu Bin, Xue Huili, Cheng Caiyuan, Li Xiang, Luo Wankang, Yang Weijun, Hu Qiugu, Wang Fenglai, He Jiangang, Zhang Xingfu, Zhao Chengwen, Huang Jing, Wang Qinglin, Liu Lixin, Xie Lili, Liu Ming, Xiao Xiaosong, Qin Shihong, Lei Bo, Jiang Kai, Yu Zuguo, Xiong Lihong, Hou Ruxin, Yue Zengguo, Guo Zhanggen Chief examiners: Zhou Fulin, Sun Weimin, Ma Jianxun, Wang Cungui, You Shiqi, Chen Zhengxiang, Zhang Youliang, Zhang Jingjie, Gu Xianglin Contents 1 General Provisions 1 2 Terms and Symbols 1 2.1 Terms 1 2.2 Symbols 5 3 Materials 8 3.1 Strength Class of Materials 8 3.2 Calculation Data of Masonry 9 4 Basic Rules on Design 14 4.1 Principles of Design 14 4.2 Stipulations for Static Calculation of Buildings 16 4.3 Rules on Durability 20 5 Unreinforced Masonry Members 22 5.1 Compression Members 22 5.2 Local Compression 24 5.3 Members Subjected to Axial Tensile Load 28 5.4 Members Subjected to Bending 28 5.5 Members Subjected to Shear 29 6 Detailing Requirements 29 6.1 Verification for Slenderness Ratio of Wall and Column 29 6.2 General Detailing Requirements 31 6.3 Frame Filled Wall 34 6.4 Cavity Wall Filled with Insulation 35 6.5 Main Measures to Prevent Walls from Cracking 36 7 Ring Beams, Lintels, Wall Beams and Cantilever Beams 39 7.1 Ring Beams 39 7.2 Lintels 40 7.3 Wall Beams 41 7.4 Cantilever Beams 48 8 Reinforced Brick Masonry Members 51 8.1 Mesh-reinforced Brick Masonry Members 51 8.2 Composite Brick Masonry Members 52 9 Reinforced Concrete Masonry Members 58 9.1 General Requirements 58 9.2 Calculation of Reinforced Masonry Members Subjected to Axial Compression 58 9.3 Calculation of Reinforced Masonry Members Subjected to Shear 62 9.4 Detail Stipulation of Reinforced Concrete Masonry Shear Walls 64 10 Earthquake Resistance Design for Masonry Structure Members 68 10.1 General Requirements 68 10.2 Brick Masonry Members 75 10.3 Concrete Masonry Members 80 10.4 Earthquake Resistant Elements of Masonry Buildings with Bottom Frames 83 10.5 Earthquake Resistant Wall of Reinforced Concrete Masonry 88 Appendix A Specification and Dimension of Stone Materials and the Method for Defining the Strength Grades of Stone Materials 94 Appendix B Calculating Formulas for Strength Mean Values of Various Kinds of Masonry and Their Characteristic Strength Values 95 Appendix C Statical Calculation of "Semi-rigid" Buildings 98 Appendix D Influence Coefficients ψ and ψn 99 Explanation of Wording in This Code 106 List of Quoted Standards 107 1 General Provisions 1.0.1 This code is formulated with a view to implementing the technical and economic policies of the nation, persisting in wall material innovation, adjusting measures to local conditions, using local materials, reasonably selecting structural scheme and masonry materials, and achieving advanced technology, safety and usability, economy and rationality and quality guarantee. 1.0.2 This code is applicable to the design of the following masonry structures in building engineering, and the design for special conditions or with specific requirements shall be carried out according to special requirements: 1 Brick masonry: including unreinforced and reinforced masonry of fired common brick, fired perforated brick, autoclaved sand-lime brick, autoclaved flyash-lime brick, common concrete brick and perforated concrete brick; 2 Block masonry: including unreinforced and reinforced masonry of concrete block and light aggregate concrete block; 3 Stone masonry: including masonry of various squared stones and rubbles. 1.0.3 This code is established according to the principle specified in the current national standard "Unified Standard Reliability Design of Building Structures" GB 50068. The design terms and symbols are adopted according to the requirements of the current national standard "Standard for Terminology and Symbols Used in Design of Building Structures" GB/T 50083. 1.0.4 For design according to this code, the load shall comply with the current national standard "Load Code for the Design of Building Structures" GB 50009; the selection and application of wall materials shall comply with the current national standard "Uniform Technical Code for Wall Material used in Buildings" GB 50574; the selection of concrete materials shall meet the requirements of the current national standard "Code for Design of Concrete Structures" GB 50010; the construction quality control shall meet the requirements of the current national standards "Code for Acceptance of Constructional Quality of Masonry Structures" GB 50203 and "Code for Acceptance of Constructional Quality of Concrete Structures" GB 50204; and the structural earthquake resistance design shall meet the relevant requirements of the current national standard "Code for Seismic Design of Buildings" GB 50011. 1.0.5 The masonry structure design shall not only comply with this code, but also those in the current relevant ones of the nation. 2 Terms and Symbols 2.1 Terms 2.1.1 Masonry structure Structure that wall and column built with block and mortar are used as the main loaded members of the building. It is the general term of brick masonry, block masonry and stone masonry structure. 2.1.2 Reinforced masonry structure Structure that the reinforced masonry is used as the main loaded member of the building. It is the general term of mesh-reinforced masonry column, horizontal reinforced masonry wall, brick masonry and reinforced concrete layer or composite masonry column (wall) of reinforced mortar layer, composite wall of brick masonry and structural reinforced concrete column and reinforced concrete masonry shear wall structure. 2.1.3 Reinforced concrete masonry shear wall structure Building structure composed of reinforced concrete masonry shear wall bearing vertical and horizontal action and concrete floor and roof. 2.1.4 Fired common brick Roasted solid brick which takes coal gangue, shale, flyash or clay as the major raw materials, including fired coal gangue brick, fired shale brick, fired flyash brick, fired clay brick, etc. 2.1.5 Fired perforated brick Fired brick that takes coal gangue, shale, flyash or clay as the major raw materials, with void ratio not greater than 35%, with small and more holes, and is mainly used for bearing position. 2.1.6 Autoclaved sand-lime brick Solid brick which takes limy materials such as lime and siliceous materials such as sand as the major raw materials and is formed through blank preparation, pressing exhaust forming and autoclave curing. 2.1.7 Autoclaved flyash-lime brick Solid brick which takes limy materials such as lime, slaked lime (carbide slag) or cement and siliceous materials such as flyash as well as aggregates (sand, etc.) as the major raw materials, adds an adequate amount of gypsum, and is formed through blank preparation, pressing exhaust forming and autoclave curing. 2.1.8 Concrete small hollow block Hollow block which is made of ordinary concrete or light aggregate concrete, with a main dimension of 390mm×190mm×190mm and hollow ratio of 25%~50%, referred to as concrete block or masonry block. 2.1.9 Concrete brick A perforated concrete half blind hole brick or solid brick which takes cement as cementitious material and sand, stone, etc. as the main aggregates and is made through mixing with water, forming and curing. The main dimensions of perforated bricks are 240mm×115mm×90mmm, 240mm×190mm×90mm, 190mm×190mmm×90mm, etc.; the main dimensions of solid bricks are 240mm×115mm×53mm, 240mm×115mm×90mm, etc. 2.1.10 Mortar for concrete small hollow block Masonry mortar which is made by mechanically mixing such compositions as cement, sand, water and admixtures and additives added as required according to a certain proportion and is exclusively used for building concrete block, referred to as mortar for masonry block. 2.1.11 Grout for concrete small hollow block Concrete which is made by mechanically mixing such compositions as cement, aggregate, water and admixtures and additives added as required according to a certain proportion and is used for concreting block masonry core column or other holes to be filled, referred to as block grout concrete. 2.1.12 Mortar for autoclaved silicate brick Mortar which is made by mechanically mixing such compositions as cement, sand, water and admixtures and additives added as required according to a certain proportion and is exclusively used for building autoclaved lime-sand brick or autoclaved flyash brick masonry and the masonry shear strength shall not be less than the value of fired common brick masonry. 2.1.13 Pilastered wall Buttressed wall which is formed by locally thickening the wall along the wall length direction at a certain interval. 2.1.14 Structural concrete column Concrete column which is made according to the construction sequence of wall building first and then concrete column pouring based on structural reinforcement in the specified position of masonry building wall. Generally, it is referred to as structural concrete column, and structural column for short. 2.1.15 Ring beam Sealed concrete beam member according to structural reinforcement, arranged along the horizontal direction of masonry wall at building eave, window top, storey, crane beam top or foundation top elevation. 2.1.16 Wall beam Combined member composed of reinforced concrete joist and masonry wall within the range of calculation height on the beam, including simply-supported wall beam, continuous wall beam and frame-supported wall beam. 2.1.17 Cantilever beam Cantilever reinforced concrete beam which is embedded in masonry. It general refers to balcony cantilever beam, awning cantilever beam or veranda cantilever beam in the building. 2.1.18 Design working life Period specified in the design. During this period, the structure or structural member only needs normal maintenance for use according to its preset purpose, without overhaul reinforcement. 2.1.19 Static analysis scheme of building Static analysis diagram of structure determined according to the space working performance of building. The static analysis scheme of building covers rigid analysis scheme, rigid-elastic analysis scheme and elastic analysis scheme. 2.1.20 Rigid analysis scheme Static analysis scheme made for wall and column according to floor and roof as horizontally fixed hinged support. 2.1.21 Rigid-elastic analysis scheme Static analysis scheme made for wall and column according to floor, roof and wall and column as hinged connection and in consideration of space working bent frame or frame. 2.1.22 Elastic analysis scheme Scheme of static analysis for wall and column according to floor, roof and wall and column as hinged connection and without consideration of space working plane bent frame or frame. 2.1.23 Upper flexible and lower rigid complex multistorey building Multistorey building that the top storey fails to meet the rigid analysis scheme requirements but the lower storeys meet the rigid analysis scheme requirements in structural analysis. 2.1.24 Types of roof or floor structure Classification of roof and floor according to the structure detailing and corresponding rigidity of roof and floor. According to the common structure, the roof and floor may be divided into three types, but the horizontal rigidity of each type of roof and floor is approximately same. 2.1.25 Ratio of height to sectional thickness of wall or column Ratio of calculation height to specified thickness of masonry wall and column. The specified thickness shall take the wall thickness for wall and the corresponding side length for column, and the sectional converted thickness for pilastered wall. 2.1.26 Effective support length of beam end Distribution length of compressive stress of beam end on masonry or rigid cushion block interface along bean span direction. 2.1.27 Calculating overturning point Rotating center taken as required for verifying the cantilever beam overturning resistance. 2.1.28 Expansion and contraction joint Vertical joint with free expansion and contraction after the building is divided into two or several independent units, generally including double-wall expansion and contraction joint, double-column expansion and contraction joint, etc. 2.1.29 Control joint Joint that the wall is divided into several independent wall limbs, and the wall limb is allowed with free deformation in its plane and has adequate resistivity against external force. 2.1.30 Category of construction quality control Masonry construction quality control category divided according to quality assurance system of construction site, mortar and concrete strength, and comprehensive level of technical grade of masonry worker. 2.1.31 Confined masonry member Masonry member which has restraint action by respectively arranging structural reinforced concrete column and ring-beam on both sides and upper and lower positions of unreinforced masonry wall piece for the purpose of increasing the ductility and resistance of unreinforced masonry wall piece. 2.1.32 Infilled wall in concrete frame structure Wall which is built in frame structure. 2.1.33 Cavity wall filled with insulation Wall that the continuous cavity reserved in the wall is filled with thermal insulating or heat insulating material and antirust metal tie is used to connect between interior side and exterior side of the wall. 2.1.34 Adjustable tie Tie which is embedded in mortar joint of interior and exterior side of cavity wall filled with insulation and utilizes adjustable behavior to eliminate adverse effect generated by inconsistency of vertical deformation for interior and exterior side. 2.2 Symbols 2.2.1 Material property MU——Strength class of block; M——Strength class of common mortar; Mb——Strength class of mortar for concrete small hollow block; Ms——Strength class of mortar for autoclaved silicate brick; C——Concrete strength class; Cb——Strength class of grout for concrete small hollow block; f1——Compressive strength class value or mean value of block; f2——Compressive strength mean value of mortar; f and fk——Design value and characteristic value of compressive strength of masonry; fg——Design value of compressive strength of single-row hole and perforated concrete block grout masonry (referred to as design value of compressive strength of grout masonry); fvg——Design value of shear strength of single-row hole and perforated concrete block grout masonry (referred to as design value of shear strength of grout masonry); ft and ft,k——Design value and characteristic value of axial tensile strength of masonry; ftm and ftm,k——Design value and characteristic value of bending tensile strength of masonry; fv and fv,k——Design value and characteristic value of shear strength of masonry; fVE——Design value of earthquake resistance shear strength damaged along the stepped section of masonry; fn——Design value of compressive strength of mesh-reinforced brick masonry; fy and ——Design value of tensile and compressive strength of steel bar; fc——Design value of axial compressive strength of concrete; E——Elastic modulus of masonry; Ec——Elastic modulus of concrete; G——Shear modulus of masonry. 2.2.2 Action and action effect N——Design value of axial force; Nl——Design value of axial force on local compression area and bearing pressure of beam end; N0——Design value of upper axial force; Nt——Design value of axial tension; M——Design value of bending moment; Mr——Design value of anti-overturning moment of cantilever beam; Mov——Design value of overturning moment of cantilever beam; V——Design value of shear force; F1——Design value of concentrated load on top of joist; Q1——Design value of evenly distributed load on top of joist; Q2——Design value of evenly distributed load on top of wall beam; σ0——Mean compressive stress of horizontal section. 2.2.3 Geometric parameters A——Sectional area; Ab——Area of cushion block; Ac——Sectional area of structural concrete column; Al——Local compression zone; An——Clear sectional area of wall; A0——Calculation area affecting local compressive strength; As and ——Sectional area of tensioned and compressed steer bar; a——Actual support length distance of side length and beam end; ai——Distance from opening side to the nearest support center of wall beam; a0——Effective support length of beam end; as and ——Distance from center of gravity of longitudinal tensioned and compressed steer bar to the proximal edge of cross section; b——Sectional width and side length; bc——Width of structural concrete column along wall length direction; bf——Calculated sectional flange width of pilastered wall and calculated width of wing wall; ——Flange calculation width of T-shaped and inverse L-shaped sectional compression zone; bs——Door and window opening width within the distance range between adjacent transverse wall and wall between windows or between wall columns; c and d——Distance; e——Eccentricity of axial force; H——Wall height and member height; Hi——Storey height; H0——Calculation height of member and calculation height of wall beam midspan section; h——Wall thickness, smaller side length of rectangular section, side length along eccentric axial force direction of rectangular section, sectional height; hb——Joist height; h0——Effective height of section and converted height of cushion girder; hT——Converted thickness of T-shaped section; hw——Wall height and calculated sectional height of wall for wall beam; l——Spacing between structural columns; l0——Calculation span of beam; ln——Clear span of beam; I——Sectional moment of inertia; i——Gyration radius of section; s——Spacing and sectional moment of area; x0——Distance between calculating overturning point and outer edge of wall; umax——Maximum horizontal displacement; W——Section resistance moment; y——Distance from section gravity center to section edge of axial force in eccentric direction; z——Internal force arm. 2.2.4 Calculation coefficient α——Ratio of grout concrete area in block masonry to gross area of masonry, correction coefficient and coefficient; αM——Bending moment coefficient of joist in consideration of the combination action of wall beam; β——Slenderness ratio of member; [β]——Allowable slenderness ratio of wall and column; βV——Shear coefficient of joist in consideration of the combination action of wall beam; γ——Improvement coefficient of local compressive strength of masonry, coefficient; γa——Adjustment coefficient; γf——Partial coefficient of structural member property; γ0——Significance coefficient of structure; γG——Partial coefficient of permanent load; γRE——Earthquake resistance adjustment coefficient of bearing capacity; δ——Void ratio of concrete block, coefficient; ζ——Local compressive coefficient of masonry at the upper part of joist support; ζc——Participation service coefficient of core column; ζs——Participation service coefficient of steel bar; ηi——Influence coefficient of space property of building; ηc——Restraint correction coefficient of wall; ηN——Joist midspan axial force coefficient in consideration of the combination action of wall beam; λ——Shear-span ratio of calculation section; μ——Correction coefficient, influence coefficient of composite shear and compressive force; μ1——Correction coefficient of allowable slenderness ratio of self-bearing wall; μ2——Correction coefficient of allowable slenderness ratio of wall with door and window opening; μc——Improvement coefficient of allowable slenderness ratio of wall arranged with structural column; ξ——Relative height of sectional compression zone, coefficient; ξb——Limit of relative height of compression zone; ξ1——Influence coefficient of wing wall or structural column to shear bearing capacity of wall for wall beam; ξ2——Influence coefficient of opening to shear bearing capacity of wall for wall beam; ρ——Ratio of grouting and ratio of reinforcement of concrete masonry; ρs——Horizontal steel bar area ratio calculated according to vertical section of interlayer wall; φ——Influence coefficient of bearing capacity, coefficient; φn——Influence coefficient of bearing capacity of mesh-reinforced brick masonry member; φ0——Stability coefficient of axial compression member; φcom——Stability coefficient of composite brick masonry member; ψ——Reduction coefficient; ψM——Influence coefficient of opening to joist bending moment. 3 Materials 3.1 Strength Class of Materials 3.1.1 The strength class of bearing structure block shall be adopted according to the following requirements: 1 Strength class of fired common brick and fired perforated brick: MU30, MU25, MU20, MU15 and MU10; 2 Strength class of autoclaved sand-lime brick and autoclaved flyash-lime brick: MU25, MU20 and MU15; 3 Strength class of common concrete brick and perforated concrete brick: MU30, MU25, MU20 and MU15; 4 Strength class of concrete block and light aggregate concrete block: MU20, MU15, MU10, MU7.5 and MU5; 5 Strength class of stone: MU100, MU80, MU60, MU50, MU40, MU30 and MU20. Notes: 1 The void ratio of light aggregate concrete block masonry with double-row hole or multi-row hole for bearing shall not be greater than 35%; 2 The folding-pressure ratio limit of perforated brick and autoclaved siliceous brick for bearing, the limit of void ratio, wall and rib dimension of perforated brick of non-sintered material for bearing as well as the carbonization and softening performance requirements shall meet the relevant requirements of the current national standard "Uniform Technical Code for Wall Material used in Buildings" GB 50574; 3 The specification, dimension and strength class of stone may be determined in accordance with the method in Appendix A of this code. 3.1.2 The strength class of hollow brick and light aggregate concrete block of the self-bearing wall shall be adopted according to the following requirements: 1 Strength class of hollow brick: MU10, MU7.5, MU5 and MU3.5; 2 Strength class of light aggregate concrete block: MU10, MU7.5, MU5 and MU3.5. 3.1.3 The strength class of mortar shall be adopted according to the following requirements: 1 Strength class of common mortar adopted by fired common brick, fired perforated brick, autoclaved sand-lime brick and autoclaved flyash-lime brick: M15, M10, M7.5, M5 and M2.5; strength class of dedicated masonry mortar adopted by autoclaved sand-lime brick and autoclaved flyash-lime brick masonry: Ms15, Ms10, Ms7.5 and Ms5.0; 2 Strength class of mortar adopted by common concrete brick, perforated concrete brick, concrete block with single-row hole and gangue concrete block masonry: Mb20, Mb15, Mb10, Mb7.5 and Mb5; 3 Strength class of mortar adopted by light aggregate concrete block masonry with double-row hole or multi-row hole: Mb10, Mb7.5 and Mb5; 4 Strength class of mortar adopted by untrimmed squared stone and rubble masonry: M7.5, M5 and M2.5. Note: In determination of strength class of mortar, the block of the same kind shall be adopted as the bottom formwork of test block for mortar strength. 1 General Provisions 2 Terms and Symbols 2.1 Terms 2.2 Symbols 3 Materials 3.1 Strength Class of Materials 3.2 Calculation Data of Masonry 4 Basic Rules on Design 4.1 Principles of Design 4.2 Stipulations for Static Calculation of Buildings 4.3 Rules on Durability 5 Unreinforced Masonry Members 5.1 Compression Members 5.2 Local Compression 5.3 Members Subjected to Axial Tensile Load 5.4 Members Subjected to Bending 5.5 Members Subjected to Shear 6 Detailing Requirements 6.1 Verification for Slenderness Ratio of Wall and Column 6.2 General Detailing Requirements 6.3 Frame Filled Wall 6.4 Cavity Wall Filled with Insulation 6.5 Main Measures to Prevent Walls from Cracking 7 Ring Beams, Lintels, Wall Beams and Cantilever Beams 7.1 Ring Beams 7.2 Lintels 7.3 Wall Beams 7.4 Cantilever Beams 8 Reinforced Brick Masonry Members 8.1 Mesh-reinforced Brick Masonry Members 8.2 Composite Brick Masonry Members 9 Reinforced Concrete Masonry Members 9.1 General Requirements 9.2 Calculation of Reinforced Masonry Members Subjected to Axial Compression 9.3 Calculation of Reinforced Masonry Members Subjected to Shear 9.4 Detail Stipulation of Reinforced Concrete Masonry Shear Walls 10 Earthquake Resistance Design for Masonry Structure Members 10.1 General Requirements 10.2 Brick Masonry Members 10.3 Concrete Masonry Members 10.4 Earthquake Resistant Elements of Masonry Buildings with Bottom Frames 10.5 Earthquake Resistant Wall of Reinforced Concrete Masonry Appendix A Specification and Dimension of Stone Materials and the Method for Defining the Strength Grades of Stone Materials Appendix B Calculating Formulas for Strength Mean Values of Various Kinds of Masonry and Their Characteristic Strength Values Appendix C Statical Calculation of "Semi-rigid" Buildings Appendix D Influence Coefficients ψ and ψn Explanation of Wording in This Code List of Quoted Standards 1 总则 1.0.1 为了贯彻执行国家的技术经济政策,坚持墙材革新、因地制宜、就地取材,合理选用结构方案和砌体材料,做到技术先进、安全适用、经济合理、确保质量,制定本规范。 1.0.2 本规范适用于建筑工程的下列砌体结构设计,特殊条件下或有特殊要求的应按专门规定进行设计: 1 砖砌体:包括烧结普通砖、烧结多孔砖、蒸压灰砂普通砖、蒸压粉煤灰普通砖、混凝土普通砖、混凝土多孔砖的无筋和配筋砌体; 2 砌块砌体:包括混凝土砌块、轻集料混凝土砌块的无筋和配筋砌体; 3 石砌体:包括各种料石和毛石的砌体。 1.0.3 本规范根据现行国家标准《建筑结构可靠度设计统一标准》GB 500068规定的原则制订。设计术语和符号按照现行国家标准《建筑结构设计术语和符号标准》GB/T 50083的规定采用。 1.0.4 按本规范设计时,荷载应按现行国家标准《建筑结构荷载规范》GB 50009的规定执行;墙体材料的选择与应用应按现行国家标准《墙体材料应用统一技术规范》GB 50574的规定执行;混凝土材料的选择应符合现行国家标准《混凝土结构设计规范》GB 50010的要求;施工质量控制应符合现行国家标准《砌体结构工程施工质量验收规范》GB 50203、《混凝土结构工程施工质量验收规范》GB 50204的要求;结构抗震设计应符合现行国家标准《建筑抗震设计规范》GB 50011的有关规定。 1.0.5 砌体结构设计除应符合本规范规定外,尚应符合国家现行有关标准的规定。 2 术语和符号 2.1 术语 2.1.1 砌体结构 masonry structure 由块体和砂浆砌筑而成的墙、柱作为建筑物主要受力构件的结构。是砖砌体、砌块砌体和石砌体结构的统称。 2.1.2 配筋砌体结构 reinforced masonry structure 由配置钢筋的砌体作为建筑物主要受力构件的结构。是网状配筋砌体柱、水平配筋砌体墙、砖砌体和钢筋混凝土面层或钢筋砂浆面层组合砌体柱(墙)、砖砌体和钢筋混凝土构造柱组合墙和配筋砌块砌体剪力墙结构的统称。 2.1.3 配筋砌块砌体剪力墙结构 reinforced concrete masonry shear wall structure 由承受竖向和水平作用的配筋砌块砌体剪力墙和混凝土楼、屋盖所组成的房屋建筑结构。 2.1.4 烧结普通砖 fired common brick 由煤矸石、页岩、粉煤灰或黏土为主要原料,经过焙烧而成的实心砖。分烧结煤矸石砖、烧结页岩砖、烧结粉煤灰砖、烧结黏土砖等。 2.1.5 烧结多孔砖 fired perforated brick 以煤矸石、页岩、粉煤灰或黏土为主要原料,经焙烧而成、孔洞率不大于35%,孔的尺寸小而数量多,主要用于承重部位的砖。 2.1.6 蒸压灰砂普通砖 autoclaved sand-lime brick 以石灰等钙质材料和砂等硅质材料为主要原料,经坯料制备、压制排气成型、高压蒸汽养护而成的实心砖。 2.1.7 蒸压粉煤灰普通砖 autoclaved flyash-lime brick 以石灰、消石灰(如电石渣)或水泥等钙质材料与粉煤灰等硅质材料及集料(砂等)为主要原料,掺加适量石膏,经坯料制备、压制排气成型、高压蒸汽养护而成的实心砖。 2.1.8 混凝土小型空心砌块 concrete small hollow blok 由普通混凝土或轻集料混凝土制成,主规格尺寸为390mm×190mm×190mm、 空心率为25%~50%的空心砌块。简称混凝土砌块或砌块。 2.1.9 混凝土砖 concrete brick 以水泥为胶结材料,以砂、石等为主要集料,加水搅拌、成型、养护制成的一种多孔的混凝土半盲孔砖或实心砖。多孔砖的主规格尺寸为240mm×115mm×90mmm、240mm×190mm×90mm、190mm×190mmm×90mm等;实心砖的主规格尺寸为240mm×115mm×53mm、240mm×115mm×90mm等。 2.1.10 混凝土砌块(砖)专用砌筑砂浆 mortar for concrete small hollow block 由水泥、砂、水以及根据需要掺入的掺和料和外加剂等组分,按一定比例,采用机械拌和制成,专门用于砌筑混凝土砌块的砌筑砂浆。简称砌块专用砂浆。 2.1.11 混凝土砌块灌孔混凝土 grout for concrete small hollow block 由水泥、集料、水以及根据需要掺入的掺和料和外加剂等组分,按一定比例,采用机械搅拌后,用于浇注混凝土砌块砌体芯柱或其他需要填实部位孔洞的混凝土。简称砌块灌孔混凝土。 2.1.12 蒸压灰砂普通砖、蒸压粉煤灰普通砖专用砌筑砂浆 mortar for autoclaved silicate brick 由水泥、砂、水以及根据需要掺入的掺和料和外加剂等组分,按一定比例,采用机械拌和制成,专门用于砌筑蒸压灰砂砖或蒸压粉煤灰砖砌体,且砌体抗剪强度应不低于烧结普通砖砌体的取值的砂浆。 2.1.13 带壁柱墙 pilastered wall 沿墙长度方向隔一定距离将墙体局部加厚,形成的带垛墙体。 2.1.14 混凝土构造柱 structural concrete column 在砌体房屋墙体的规定部位,按构造配筋,并按先砌墙后浇灌混凝土柱的施工顺序制成的混凝土柱。通常称为混凝土构造柱,简称构造柱。 2.1.15 圈粱 ring beam 在房屋的檐口、窗顶、楼层、吊车梁顶或基础顶面标高处,沿砌体墙水平方向设置封闭状的按构造配筋的混凝土梁式构件。 2.1.16 墙梁 wall beam 由钢筋混凝土托梁和梁上计算高度范围内的砌体墙组成的组合构件。包括简支墙梁、连续墙梁和框支墙梁。 2.1.17 挑梁 cantilever beam 嵌固在砌体中的悬挑式钢筋混凝土梁。一般指房屋中的阳台挑梁、雨篷挑梁或外廊挑梁。 2.1.18 设计使用年限 design working life 设计规定的时期。在此期间结构或结构构件只需进行正常的维护便可按其预定的目的使用,而不需进行大修加固。 2.1.19 房屋静力计算方案 static analysis scheme of building 根据房屋的空间工作性能确定的结构静力计算简图。房屋的静力计算方案包括刚性方案、刚弹性方案和弹性方案。 2.1.20 刚性方案 rigid analysis scheme 按楼盖、屋盖作为水平不动铰支座对墙、柱进行静力计算的方案。 2.1.21 刚弹性方案 rigid-elastic analysis scheme 按楼盖、屋盖与墙、柱为铰接,考虑空间工作的排架或框架对墙、柱进行静力计算的方案。 2.1.22 弹性方案 elastic analysis scheme 按楼盖、屋盖与墙、柱为铰接,不考虑空间工作的平面排架或框架对墙、柱进行静力计算的方案。 2.1.23 上柔下刚多层房屋 upper flexible and lower rigid complex multistorey building 在结构计算中,顶层不符合刚性方案要求,而下面各层符合刚性方案要求的多层房屋。 2.1.24 屋盖、楼盖类别 types of roof or floor structure 根据屋盖、楼盖的结构构造及其相应的刚度对屋盖、楼盖的分类。根据常用结构,可把屋盖、楼盖划分为三类,而认为每一类屋盖和楼盖中的水平刚度大致相同。 2.1.25 砌体墙、柱高厚比 ratio of height to sectional thickness of wall or column 砌体墙、柱的计算高度与规定厚度的比值。规定厚度对墙取墙厚,对柱取对应的边长,对带壁柱墙取截面的折算厚度。 2.1.26 梁端有效支承长度 effective support length of beam end 梁端在砌体或刚性垫块界面上压应力沿梁跨方向的分布长度。 2.1.27 计算倾覆点 calculating overturning point 验算挑梁抗倾覆时,根据规定所取的转动中心。 2.1.28 伸缩缝 expansion and contraction joint 将建筑物分割成两个或若干个独立单元,彼此能自由伸缩的竖向缝。通常有双墙伸缩缝、双柱伸缩缝等。 2.1.29 控制缝 control joint 将墙体分割成若干个独立墙肢的缝,允许墙肢在其平面内自由变形,并对外力有足够的抵抗能力。 2.1.30 施工质量控制等级 category of construction quality control 根据施工现场的质保体系、砂浆和混凝土的强度、砌筑工人技术等级综合水平划分的砌体施工质量控制级别。 2.1.31 约束砌体构件 confined masonry member 通过在无筋砌体墙片的两侧、上下分别设置钢筋混凝土构造柱、圈梁形成的约束作用提高无筋砌体墙片延性和抗力的砌体构件。 2.1.32 框架填充墙 infilled wall in concrete frame structure 在框架结构中砌筑的墙体。 2.1.33 夹心墙 cavity wall with insulation 墙体中预留的连续空腔内填充保温或隔热材料,并在墙的内叶和外叶之间用防锈的金属拉结件连接形成的墙体。 2.1.34 可调节拉结件 adjustable tie 预埋在夹心墙内、外叶墙的灰缝内,利用可调节特性,消除内外叶墙因竖向变形不一致而产生的不利影响的拉结件。 2.2 符号 2.2.1 材料性能 MU——块体的强度等级; M——普通砂浆的强度等级; Mb——混凝土块体(砖)专用砌筑砂浆的强度等级; Ms——蒸压灰砂普通砖、蒸压粉煤灰普通砖专用砌筑砂浆的强度等级; C——混凝土的强度等级; Cb——混凝土砌块灌孔混凝土的强度等级; f1——块体的抗压强度等级值或平均值; f2——砂浆的抗压强度平均值; f、fk——砌体的抗压强度设计值、标准值; fg——单排孔且对穿孔的混凝土砌块灌孔砌体抗压强度设计值(简称灌孔砌体抗压强度设计值); fvg——单排孔且对穿孔的混凝土砌块灌孔砌体抗剪强度设计值(简称灌孔砌体抗剪强度设计值); ft、ft,k——砌体的轴心抗拉强度设计值、标准值; ftm、ftm,k——砌体的弯曲抗拉强度设计值、标准值; fv、fv,k——砌体的抗剪强度设计值、标准值; fVE——砌体沿阶梯形截面破坏的抗震抗剪强度设计值; fn——网状配筋砖砌体的抗压强度设计值; fy、 ——钢筋的抗拉、抗压强度设计值; fc——混凝土的轴心抗压强度设计值; E——砌体的弹性模量; Ec——混凝土的弹性模量; G——砌体的剪变模量。 2.2.2 作用和作用效应 N——轴向力设计值; Nl——局部受压面积上的轴向力设计值、梁端支承压力; N0——上部轴向力设计值; Nt——轴心拉力设计值; M——弯矩设计值; Mr——挑梁的抗倾覆力矩设计值; Mov——挑梁的倾覆力矩设计值; V——剪力设计值; F1一一托梁顶面上的集中荷载设计值; Q1——托梁顶面上的均布荷载设计值; Q2——墙梁顶面上的均布荷载设计值; σ0——水平截面平均压应力。 2.2.3 几何参数 A——截面面积; Ab——垫块面积; Ac——混凝土构造柱的截面面积; Al——局部受压面积; An——墙体净截面面积; A0——影响局部抗压强度的计算面积; As、 ——受拉、受压钢筋的截面面积; a一边长、梁端实际支承长度距离; ai——洞口边至墙梁最近支座中心的距离; a0——梁端有效支承长度; as、 ——纵向受拉、受压钢筋重心至截面近边的距离; b——截面宽度、边长; bc——混凝土构造柱沿墙长方向的宽度; bf——带壁柱墙的计算截面翼缘宽度、翼墙计算宽度; ——T形、倒L形截面受压区的翼缘计算宽度; bs——在相邻横墙、窗间墙之间或壁柱间的距离范围内的门窗洞口宽度; c、d——距离; e——轴向力的偏心距; H——墙体高度、构件高度; Hi——层高; H0——构件的计算高度、墙梁跨中截面的计算高度; h——墙厚、矩形截面较小边长、矩形截面的轴向力偏心方向的边长、截面高度; hb——托梁高度; h0——截面有效高度、垫梁折算高度; hT——T形截面的折算厚度; hw——墙体高度、墙梁墙体计算截面高度; l——构造柱的间距; l0——梁的计算跨度; ln——梁的净跨度; I——截面惯性矩; i——截面的回转半径; s——间距、截面面积矩; x0——计算倾覆点到墙外边缘的距离; umax——最大水平位移; W——截面抵抗矩; y——截面重心到轴向力所在偏心方向截面边缘的距离; z——内力臂。 2.2.4 计算系数 α——砌块砌体中灌孔混凝土面积和砌体毛面积的比值、修正系数、系数; αM——考虑墙梁组合作用的托梁弯矩系数; β——构件的高厚比; [β]——墙、柱的允许高厚比; βV——考虑墙粱组合作用的托梁剪力系数; γ——砌体局部抗压强度提高系数、系数; γa——调整系数; γf——结构构件材料性能分项系数; γ0——结构重要性系数; γG——永久荷载分项系数; γRE——承载力抗震调整系数; δ——混凝土砌块的孔洞率、系数; ζ——托梁支座上部砌体局压系数; ζc——芯柱参与工作系数; ζs——钢筋参与工作系数; ηi——房屋空间性能影响系数; ηc——墙体约束修正系数; ηN——考虑墙梁组合作用的托梁跨中轴力系数; λ——计算截面的剪跨比; μ——修正系数、剪压复合受力影响系数; μ1——自承重墙允许高厚比的修正系数; μ2——有门窗洞口墙允许高厚比的修正系数; μc——设构造柱墙体允许高厚比提高系数; ξ——截面受压区相对高度、系数; ξb——受压区相对高度的界限值; ξ1——翼墙或构造柱对墙梁墙体受剪承载力影响系数; ξ2——洞口对墙梁墙体受剪承载力影响系数; ρ——混凝土砌块砌体的灌孔率、配筋率; ρs——按层间墙体竖向截面计算的水平钢筋面积率; φ——承载力的影响系数、系数; φn——网状配筋砖砌体构件的承载力的影响系数; φ0——轴心受压构件的稳定系数; φcom——组合砖砌体构件的稳定系数; ψ——折减系数; ψM——洞口对托梁弯矩的影响系数。 3 材料 3.1 材料强度等级 3.1.1 承重结构的块体的强度等级,应按下列规定采用: 1 烧结普通砖、烧结多孔砖的强度等级:MU30、MU25、MU20、MU15和MU10; 2 蒸压灰砂普通砖、蒸压粉煤灰普通砖的强度等级:MU25、MU20和MU15; 3 混凝土普通砖、混凝土多孔砖的强度等级:MU30、MU25、MU20和MU15; 4 混凝土砌块、轻集料混凝土砌块的强度等级:MU20、MU15、MU10、MU7.5和MU5; 5 石材的强度等级:MU100、MU80、MU60、MU50、MU40、MU30和MU20。 注:1用于承重的双排孔或多排孔轻集料混凝土砌块砌体的孔洞率不应大于35%; 2对用于承重的多孔砖及蒸压硅酸盐砖的折压比限值和用于承重的非烧结材料多孔砖的孔洞率、壁及肋尺寸限值及碳化、软化性能要求应符合现行国家标准《墙体材料应用统一技术规范》GB 50574的有关规定; 3 石材的规格、尺寸及其强度等级可按本规范附录A的方法确定。 3.1.2 自承重墙的空心砖、轻集料混凝土砌块的强度等级,应按下列规定采用: 1 空心砖的强度等级:MU10、MU7.5、MU5和MU3.5; 2 轻集料混凝土砌块的强度等级:MU10、MU7.5、MU5和MU3.5。 3.1.3 砂浆的强度等级应按下列规定采用: 1 烧结普通砖、烧结多孔砖、蒸压灰砂普通砖和蒸压粉煤灰普通砖砌体采用的普通砂浆强度等级:M15、M10、M7.5、M5和M2.5;蒸压灰砂普通砖和蒸压粉煤灰普通砖砌体采用的专用砌筑砂浆强度等级:Ms15、Ms10、Ms7.5、Ms5.0; 2 混凝土普通砖、混凝土多孔砖、单排孔混凝土砌块和煤矸石混凝土砌块砌体采用的砂浆强度等级:Mb20、Mb15、Mb10、Mb7.5和Mb5; 3 双排孔或多排孔轻集料混凝土砌块砌体采用的砂浆强度等级:Mb10、Mb7.5和Mb5; 4 毛料石、毛石砌体采用的砂浆强度等级:M7.5、M5和M2.5。 注:确定砂浆强度等级时应采用同类块体为砂浆强度试块底模。 3.2 砌体的计算指标 3.2.1 龄期为28d的以毛截面计算的砌体抗压强度设计值,当施工质量控制等级为B级时,应根据块体和砂浆的强度等级分别按下列规定采用: 1 烧结普通砖、烧结多孔砖砌体的抗压强度设计值,应按表3.2.1-1采用。 表3.2.1-1 烧结普通砖和烧结多孔砖砌体的抗压强度设计值(MPa) 砖强度等级 砂浆强度等级 砂浆强度 M15 M10 M7.5 M5 M2.5 0 MU30 3.94 3.27 2.93 2.59 2.26 1.15 MU25 3.60 2.98 2.68 2.37 2.06 1.05 MU20 3.22 2.67 2.39 2.12 1.84 0.94 MU15 2.79 2.31 2.07 1.83 1.60 0.82 MU10 - 1.89 1.69 1.50 1.30 0.67 注:当烧结多孔砖的孔洞率大于30%时,表中数值应乘以0.9。 2 混凝土普通砖和混凝土多孔砖砌体的抗压强度设计值,应按表3.2.1-2采用。 表3.2.1-2 混凝土普通砖和混凝土多孔砖砌体的抗压强度设计值(MPa) 砖强度等级 砂浆强度等级 砂浆强度 Mb20 Mb15 Mb10 Mb7.5 Mb5 0 MU30 4.61 3.94 3.27 2.93 2.59 1.15 MU25 4.21 3.60 2.98 2.68 2.37 1.05 MU20 3.77 3.22 2.67 2.39 2.12 0.94 MU15 - 2.79 2.31 2.07 1.83 0.82 3 蒸压灰砂普通砖和蒸压粉煤灰普通砖砌体的抗压强度设计值,应按表3.2.1-3采用。 表3.2.1-3 蒸压灰砂普通砖和蒸压粉煤灰普通砖砌体的 抗压强度设计值(MPa) 砖强度等级 砂浆强度等级 砂浆强度 M15 M10 M7.5 M5 0 MU25 3.60 2.98 2.68 2.37 1.05 MU20 3.22 2.67 2.39 2.12 0.94 MU15 2.79 2.31 2.07 1.83 0.82 注:当采用专用砂浆砌筑时,其抗压强度设计值按表中数值采用。 4 单排孔混凝土砌块和轻集料混凝土砌块对孔砌筑砌体的抗压强度设计值,应按表3.2.1-4采用。 表3.2.1-4 单排孔混凝土砌块和轻集料混凝土砌块对孔砌筑砌体的 抗压强度设计值(MPa) 砖强度等级 砂浆强度等级 砂浆强度 Mb20 Mb15 Mb10 Mb7.5 Mb5 0 MU20 6.30 5.68 4.95 4.44 3.94 2.33 MU15 - 4.61 4.02 3.61 3.20 1.89 MU10 - - 2.79 2.50 2.22 1.31 MU7.5 - - - 1.93 1.7l 1.01 MU5 - - - - 1.19 0.70 注:1 对独立柱或厚度为双排组砌的砌块砌体,应按表中数值乘以0.7; 2 对T形截面墙体、柱,应按表中数值乘以0.85。 5 单排孔混凝土砌块对孔砌筑时,灌孔砌体的抗压强度设计值fg,应按下列方法确定: 1) 混凝土砌块砌体的灌孔混凝土强度等级不应低于Cb20,且不应低于1.5倍的块体强度等级。灌孔混凝土强度指标取同强度等级的混凝土强度指标。 2) 灌孔混凝土砌块砌体的抗压强度设计值fg,应按下列公式计算: fg=f+0.6αfc (3.2.1-1) α=δρ (3.2.1-2) 式中:fg——灌孔混凝土砌块砌体的抗压强度设计值,该值不应大于未灌孔砌体抗压强度设计值的2倍: f——未灌孔混凝土砌块砌体的抗压强度设计值,应按表3.2.1-4采用: fc——灌孔混凝土的轴心抗压强度设计值; α——混凝土砌块砌体中灌孔混凝土面积与砌体毛面积的比值; δ——混凝土砌块的孔洞率; ρ——混凝土砌块砌体的灌孔率,系截面灌孔混凝土面积与截面孔洞面积的比值,灌孔率应根据受力或施工条件确定,且不应小于33%。 6 双排孔或多排孔轻集料混凝土砌块砌体的抗压强度设计值,应按表3.2.1-5采用。 表3.2.1-5 双排孔或多排孔轻集料混凝土砌块砌体的 抗压强度设计值(MPa) 砌块强度等级 砂浆强度等级 砂浆强度 Mb10 Mb7.5 Mb5 0 MU10 3.08 2.76 2.45 1.44 MU7.5 - 2.13 1.88 1.12 MU5 - - 1.31 0.78 MU3.5 - - 0.95 0.56 注:1 表中的砌块为火山渣、浮石和陶粒轻集料混凝土砌块; 2 对厚度方向为双排组砌的轻集料混凝土砌块砌体的抗压强度设计值,应按表中数值乘以0.8。 7 块体高度为180mm~350mm的毛料石砌体的抗压强度设计值,应按表3.2.1-6采用。 表3.2.1-6 毛料石砌体的抗压强度设计值(MPa) 毛料石 强度等级 砂浆强度等级 砂浆强度 M17.5 M5 M2.5 0 MU100 5.42 4.80 4.18 2.13 MU80 4.85 4.29 3.73 1.91 MU60 4.20 3.71 3.23 1.65 MU50 3.83 3.39 2.95 1.51 MU40 3.43 3.04 2.64 1.35 MU30 2.97 2.63 2.29 1.17 MU20 2.42 2.15 1.87 0.95 注:对细料石砌体、粗料石砌体和干砌勾缝石砌体,表中数值应分别乘以调整系数1.4、1.2和0.8。 8 毛石砌体的抗压强度设计值,应按表3.2.1-7采用。 表3.2.1-7 毛石砌体的抗压强度设计值(MPa) 毛石强度等级 砂浆强度等级 砂浆强度 M17.5 M5 M2.5 0 MU100 1.27 1.12 0.98 0.34 MU80 1.13 1.00 0.87 0.30 MU60 0.98 0.87 0.76 0.26 MU50 0.90 0.80 0.69 0.23 MU40 0.80 0.71 0.62 0.21 MU30 0.69 0.61 0.53 0.18 MU20 0.56 0.51 0.44 0.15 3.2.2 龄期为28d的以毛截面计算的各类砌体的轴心抗拉强度设计值、弯曲抗拉强度设计值和抗剪强度设计值,应符合下列规定: 1 当施工质量控制等级为B级时,强度设计值应按表3.2.2采用: 表3.2.2 沿砌体灰缝截面破坏时砌体的轴心抗拉强度设计值、 弯曲抗拉强度设计值和抗剪强度设计值(MPa) 强度 类别 破坏特征及砌体种类 砂浆强度等级 ≥M10 M7.5 M5 M2.5 轴 心 抗 拉 沿齿缝 烧结普通砖、烧结多孔砖混凝土普通砖、混凝土多孔砖 蒸压灰砂普通砖、蒸压粉煤灰普通砖 混凝土和轻集料混凝土砌块 毛石 0.19 0.19 0.12 0.09 - 0.16 0.16 0.10 0.08 0.07 0.13 0.13 0.08 0.07 0.06 0.09 - - - 0.04 弯 曲 抗 拉 沿齿缝 烧结普通砖、烧结多孔砖混凝土普通砖、混凝土多孔砖 蒸压灰砂普通砖、蒸压粉煤灰普通砖 混凝土和轻集料混凝土砌块 毛石 0.33 0.33 0.24 0.11 - 0.29 0.29 0.2 0.09 0.11 0.23 0.23 0.16 0.08 0.09 0.17 - - - 0.07 沿通缝 烧结普通砖、烧结多孔砖混凝土普通砖、混凝土多孔砖 蒸压灰砂普通砖、蒸压粉煤灰普通砖 混凝土和轻集料混凝土砌块 0.17 0.17 0.12 0.08 0.14 0.14 0.10 0.06 0.11 0.11 0.08 0.05 0.08 - - - 抗 剪 烧结普通砖、烧结多孔砖 混凝土普通砖、混凝土多孔砖 蒸压灰砂普通砖、蒸压粉煤灰普通砖 混凝土和轻集料混凝土砌块 毛石 0.17 0.17 0.12 0.09 - 0.14 0.14 0.10 0.08 0.19 0.11 0.11 0.08 0.06 0.16 0.08- - -0.11 注:1 对于用形状规则的块体砌筑的砌体,当搭接长度与块体高度的比值小于1时,其轴心抗拉强度设计值ft和弯曲抗拉强度设计值ftm应按表中数值乘以搭接长度与块体高度比值后采用; 2 表中数值是依据普通砂浆砌筑的砌体确定,采用经研究性试验且通过技术鉴定的专用砂浆砌筑的蒸压灰砂普通砖、蒸压粉煤灰普通砖砌体,其抗剪强度设计值按相应普通砂浆强度等级砌筑的烧结普通砖砌体采用; 3 对混凝土普通砖、混凝土多孔砖、混凝土和轻集料混凝土砌块砌体,表中的砂浆强度等级分别为:≥Mb10、Mb7.5及Mb5。 2 单排孔混凝土砌块对孔砌筑时,灌孔砌体的抗剪强度设计值fvg,应按下式计算: fvg=0.2f 0.55 g (3.2.2) 式中:fg——灌孔砌体的抗压强度设计值(MPa)。 3.2.3 下列情况的各类砌体,其砌体强度设计值应乘以调整系数γa 1 对无筋砌体构件,其截面面积小于0.3m2时,γa为其截面面积加0.7;对配筋砌体构件,当其中砌体截面面积小于0.2m2时,γa为其截面面积加0.8;构件截面面积以“m2”计; 2 当砌体用强度等级小于M5.0的水泥砂浆砌筑时,对第3.2.1条各表中的数值,γa为0.9;对第3.2.2条表3.2.2中数值,γa为0.8; 3 当验算施工中房屋的构件时,γa为1.1。 3.2.4 施工阶段砂浆尚未硬化的新砌砌体的强度和稳定性,可按砂浆强度为零进行验算。对于冬期施工采用掺盐砂浆法施工的砌体,砂浆强度等级按常温施工的强度等级提高一级时,砌体强度和稳定性可不验算。配筋砌体不得用掺盐砂浆施工。 3.2.5 砌体的弹性模量、线膨胀系数和收缩系数、摩擦系数分别按下列规定采用。砌体的剪变模量按砌体弹性模量的0.4倍采用。烧结普通砖砌体的泊松比可取0.15。 1 砌体的弹性模量,按表3.2.5-1采用: 表3.2.5-1 砌体的弹性模量(MPa) 砌体种类 砂浆强度等级 ≥M10 M7.5 M5 M2.5 烧结普通砖、烧结多孔砖砌体 1600f 1600f 1600f 1390f 混凝土普通砖、混凝土多孔砖砌体 1600f 1600f 1600f - 蒸压灰砂普通砖、蒸压粉煤灰普通砖砌体 1060f 1060f 1060f - 非灌孔混凝土砌块砌体 1700f 1600f 1500f - 粗料石、毛料石、毛石砌体 - 5650 4000 2250 细料石砌体 - 17000 12000 6750 注:1 轻集料混凝土砌块砌体的弹性模量,可按表中混凝土砌块砌体的弹性模量采用; 2 表中砌体抗压强度设计值不按3.2.3条进行调整; 3 表中砂浆为普通砂浆,采用专用砂浆砌筑的砌体的弹性模量也按此表取值; 4 对混凝土普通砖、混凝土多孔砖、混凝土和轻集料混凝土砌块砌体,表中的砂浆强度等级分别为:≥Mb10、Mb7.5及Mb5; 5 对蒸压灰砂普通砖和蒸压粉煤灰普通砖砌体,当采用专用砂浆砌筑时,其强度设计值按表中数值采用。 2 单排孔且对孔砌筑的混凝土砌块灌孔砌体的弹性模量,应按下列公式计算: E=2000fg (3.2.5) 式中:fg——灌孔砌体的抗压强度设计值。 3 砌体的线膨胀系数和收缩率,可按表3.2.5-2采用。 表3.2.5-2 砌体的线膨胀系数和收缩率 砌体类别 线膨胀系数 (10-6/℃) 收缩率 (mm/m) 烧结普通砖、烧结多孔砖砌体 5 -0.1 蒸压灰砂普通砖、蒸压粉煤灰普通砖砌体 8 -0.2 混凝土普通砖、混凝土多孔砖、混凝土砌块砌体 10 -0.2 轻集料混凝土砌块砌体 10 -0.3 料石和毛石砌体 8 - 注:表中的收缩率系由达到收缩允许标准的块体砌筑28d的砌体收缩系数。当地方有可靠的砌体收缩试验数据时,亦可采用当地的试验数据。 4 砌体的摩擦系数,可按表3.2.5-3采用。 表3.2.5-3 砌体的摩擦系数 材料类别 摩擦面情况 干燥 潮湿 砌体沿砌体或混凝土滑动 0.7 0.6 砌体沿木材滑动 0.6 0.5 砌体沿钢滑动 0.45 0.35 砌体沿砂或卵石滑动 0.6 0.5 砌体沿粉土滑动 0.55 0.4 砌体沿黏性土滑动 0.5 0.3 4 基本设计规定 4.1 设计原则 4.1.1 本规范采用以概率理论为基础的极限状态设计方法,以可靠指标度量结构构件的可靠度,采用分项系数的设计表达式进行计算。 4.1.2 砌体结构应按承载能力极限状态设计,并满足正常使用极限状态的要求。 4.1.3 砌体结构和结构构件在设计使用年限内及正常维护条件下,必须保持满足使用要求,而不需大修或加固。设计使用年限可按现行国家标准《建筑结构可靠度设计统一标准》GB 50068的有关规定确定。 4.1.4 根据建筑结构破坏可能产生的后果(危及人的生命、造成经济损失、产生社会影响等)的严重性,建筑结构应按表 4.1.4 划分为三个安全等级,设计时应根据具体情况适当选用。 表4.1.4 建筑结构的安全等级 安全等级 破坏后果 建筑物类型 一级 很严重 重要的房屋 二级 严重 一般的房屋 三级 不严重 次要的房屋 注:1 对于特殊的建筑物,其安全等级可根据具体情况另行确定; 2 对抗震设防区的砌体结构设计,应按现行国家标准《建筑抗震设防分类标准》GB 50223根据建筑物重要性区分建筑物类别。 4.1.5 砌体结构按承载能力极限状态设计时,应按下列公式中最不利组合进行计算: ≤R(f,ak…) (4.1.5-1) ≤R(f,ak…) (4.1.5-2) 式中:γ0——结构重要性系数。对安全等级为一级或设计使用年限为50a以上的结构构件,不应小于1.1;对安全等级为二级或设计使用年限为50a的结构构件,不应小于1.0;对安全等级为三级或设计使用年限为a~5a的结构构件,不应小于0.9; γL——结构构件的抗力模型不定性系数。对静力设计,考虑结构设计使用年限的荷载调整系数,设计使用年限为50a,取1.0;设计使用年限为100a,取1.1; SGk——永久荷载标准值的效应; SQ1k——在基本组合中起控制作用的一个可变荷载标准值的效应; SQik——第i个可变荷载标准值的效应; R(·)——结构构件的抗力函数; γQi——第i个可变荷载的分项系数; ψci——第i个可变荷载的组合值系数。一般情况下应取0.7;对书库、档案库、储藏室或通风机房、电梯机房应取0.9; f——砌体的强度设计值,f=fk/γf; fk——砌体的强度标准值,fk=fm-1.645σf; γf一一砌体结构的材料性能分项系数,一般情况下,宜按施工质量控制等级为B级考虑,取γf=1.6;当为C级时,取γf=1.8;当为A级时,取γf=1.5; fm一一砌体的强度平均值,可按本规范附录B的方法确定; σf——砌体强度的标准差; ak——几何参数标准值。 注:1 当工业建筑楼面活荷载标准值大于4kN/m2时,式中系数1.4应为1.3; 2 施工质量控制等级划分要求,应符合现行国家标准《砌体结构工程施工质量验收规范》GB 50203的有关规定。 4.1.6 当砌体结构作为一个刚体,需验算整体稳定性时,应按下列公式中最不利组合进行验算: ≤0.8SG1k (4.1.6-1) ≤0.8SG1k (4.1.6-2) 式中:SG1k——起有利作用的永久荷载标准值的效应; SG2k——起不利作用的永久荷载标准值的效应。 4.1.7 设计应明确建筑结构的用途,在设计使用年限内未经技术鉴定或设计许可,不得改变结构用途、构件布置和使用环境。 4.2 房屋的静力计算规定 4.2.1 房屋的静力计算,根据房屋的空间工作性能分为刚性方案、刚弹性方案和弹性方案。设计时,可按表4.2.1确定静力计算方案。 表4.2.1 房屋的静力计算方案 屋盖或楼盖类别 刚性方案 刚弹性方案 弹性方案 1 整体式、装配整体和装配式无檩体系钢 筋混凝土屋盖或钢筋混凝土楼盖 s<32 32≤s≤72 s>72 2 装配式有檩体系钢筋混凝土屋盖、轻钢 屋盖和有密铺望板的木屋盖或木楼盖 s<20 20≤s≤48 s>48 3 瓦材屋面的木屋盖和轻钢屋盖 s<16 16≤s≤36 s>36 注:1 表中s为房屋横墙间距,其长度单位为“m”; 2 当屋盖、楼盖类别不同或横墙间距不同时,可按本规范第4.2.7条的规定确定房屋的静力计算方案; 3 对无山墙或伸缩缝处无横墙的房屋,应按弹性方案考虑。 4.2.2 刚性和刚弹性方案房屋的横墙,应符合下列规定: 1 横墙中开有洞口时,洞口的水平截面面积不应超过横墙截面面积的50%; 2 横墙的厚度不宜小于180mm; 3 单层房屋的横墙长度不宜小于其高度,多层房屋的横墙长度不宜小于H/2(H为横墙总高度)。 注:1 当横墙不能同时符合上述要求时,应对横墙的刚度进行验算。如其最大水平位移值umax≤ 时,仍可视作刚性或刚弹性方案房屋的横墙; 2 凡符合注1刚度要求的一段横墙或其他结构构件(如框架等),也可视作刚性或刚弹性方案房屋的横墙。 4.2.3 弹性方案房屋的静力计算,可按屋架或大梁与墙(柱)为铰接的、不考虑空间工作的平面排架或框架计算。 4.2.4 刚弹性方案房屋的静力计算,可按屋架、大梁与墙(柱)铰接并考虑空间工作的平面排架或框架计算。房屋各层的空间性能影响系数,可按表4.2.4采用,其计算方法应按本规范附录C的规定采用。 |
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 |
服务热线:400-001-5431 | 电话:010-8572 5110 | 传真:010-8581 9515 | Email: bz@bzfyw.com | |
版权所有: 北京悦尔信息技术有限公司 2008-2020 京ICP备17065875号-1 51La |
本页关键词: |
GB 50003-2011, GB/T 50003-2011, GBT 50003-2011, GB50003-2011, GB 50003, GB50003, GB/T50003-2011, GB/T 50003, GB/T50003, GBT50003-2011, GBT 50003, GBT50003 |