![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative. This specification replaces GJB 2787-1996 General specification for satellite propulsion system. The following main technical changes have been made with respect to GJB 2787-1996: a) the name is changed to Specification for propulsion system of spacecraft, and the application scope is extended from satellites to spacecrafts; b) the related contents of electric propulsion system are added; c) the related contents of components (units) except the system level in the former specification are deleted; d) the system integration, foreign object debris control and thrust vector adjustment are added; e) the annexes in the former specification are deleted; f) Annex A giving the main indicator ranges of various propulsion systems is added; g) Annex B giving the propulsion system types recommended according to the spacecraft mission characteristics is added. Annexes A and B of this specification are informative. This specification was proposed by the Equipment Department of Aerospace Systems Division, PLA Strategic Support Force. GJB 2787 was issued for the first time in 1996. Specification for propulsion system of spacecraft 1 Scope This specification specifies the technical requirements, quality assurance requirements and delivery preparation for propulsion system of spacecraft (hereinafter referred to as propulsion system). This specification is applicable to the design, production, test and acceptance of cold gas propulsion system, chemical propulsion system and electric propulsion system of spacecraft. 2 Normative references The following normative documents contain provisions which, through reference in this text, constitute provisions of this specification. For dated reference, subsequent amendments (excluding corrections), or revisions, of any of these publications do not apply to this specification. However parties to agreements based on this specification are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references or references with version not indicated, the latest edition of the normative document referred to applies. GB 190 Packing symbol of dangerous goods GB/T 191 Packaging - Pictorial marking for handling of goods GB/T 678 Chemical reagent - Ethanol GB/T 4844 Pure helium, high pure helium and ultra pure helium GB/T 5828 Xenon GB/T 6682 Water for analytical laboratory use - Specification and test methods GB/T 8979 Pure nitrogen and high purity nitrogen and ultra pure nitrogen GJB 98 Anhydrous hydrazine GJB 145 Specification of preservation packaging GJB 150.15 Laboratory environmental test methods for military materiel - Part 15: Acceleration test GJB 150.16 Laboratory environmental test methods for military materiel - Part 16: Vibration test GJB 150.18 Laboratory environmental test methods for military materiel - Part 18: Shock test GJB 151 Electromagnetic emission and susceptibility requirements for military equipments and subsystems GJB 190 Classification of characteristics GJB 294 Specification for fusion welding of aluminum and aluminum alloys GJB 1027 Test requirements for launch, upper-stage, and space vehicles GJB 1673 Specification for nitrogen tetroxide GJB 1718 Electron beam welding GJB 1963 Specification for methylhydrazine GJB 1964 Specification for green nitrogen tetroxide GJB 2203 Cleanliness and contamination control requirements for satellite product GJB 2502.2 Test method for thermal control coatings of spacecraft - Part 2: Measurement of solar absorptance GJB 2502.3 Test method for thermal control coatings of spacecraft - Part 3: Measurement of emissivity GJB 2770-1996 Storage environmental condition for military material GJB 2998 Mark of satellite products GJB 4014 Gaseous helium safe application rules GJB 5403 Anhydrous hydrazine safe application rules GJB/Z 35-1993 Derating criteria for electrical, electronic and electromechanical parts QJ 1408 Reliability assurance requirements for aerospace products QJ 1666 Technical requirements for fusion welding of titanium and titanium alloy QJ 1842 Technical requirements of structural steel and stainless steel fusion welding QJ 2053 Satellite leak detection test method QJ 2437 Analysis of effect and criticality of satellite failure QJ 2630.1 Space environment test methods for spacecraft units - Part 1: Thermal vacuum test QJ 2850 Prevention and control for foreign object debris (FOD) of space products QJ 2865 Technical requirements for welding tube QJ 3198-2008 Safe technique requirement for pyrotechnic devices used on apace vehicles 3 Requirements 3.1 Composition Generally, the propulsion system consists of functional modules such as propellant storage module, propellant filling (discharging) module, propellant supply module, thruster (motor) module, system parameter (pressure, temperature, flow rate, etc.) detection module and propulsion line module. When necessary, functional modules such as high-pressure gas storage module, decompression control module, power supply processing module and thrust vector adjustment module may be configured. 3.2 Functions The propulsion system mainly provides the forces and torques necessary for spacecrafts. 3.3 Working medium 3.3.1 Propellant 3.3.1.1 Cold gas propulsion system Generally, nitrogen is selected as propellant. The physical and chemical properties of nitrogen shall meet the requirements of GB/T 8979. Other propellants include ammonia and butane. 3.3.1.2 Chemical propulsion system 3.3.1.2.1 Single-component propulsion system Generally, anhydrous hydrazine is selected as propellant. Anhydrous hydrazine shall meet the requirements of monopropellant in GJB 5403 or GJB 98. Other propellants include ammonium dinitramide (ADN), hydroxylamine nitrate (HAN), DT-3, etc. 3.3.1.2.2 Double-component propulsion system Generally, green nitrogen tetroxide (or nitrogen tetroxide) and methylhydrazine are selected as propellants. The green nitrogen tetroxide shall meet the requirements of Grade A in GJB 1964, the nitrogen tetroxide shall meet the requirements of GJB 1673, and the methylhydrazine shall meet the requirements of GJB 1963. Other propellants include nitrogen tetroxide and anhydrous hydrazine. 3.3.1.3 Electric propulsion system Generally, xenon or anhydrous hydrazine is selected as propellant. The xenon shall meet the technical indicator of Grade I pure xenon in GB/T 5828, and the anhydrous hydrazine shall meet the requirements of monopropellant in GJB 98. 3.3.2 Pressurized gas Generally, helium or high purity nitrogen is selected as pressurized gas. The helium shall meet the requirements of GJB 4014 and the high purity nitrogen shall meet the requirements of GB/T 8979. 3.4 Performance 3.4.1 Total impulse The propulsion system shall be able to provide a total impulse sufficient for the spacecraft mission. 3.4.2 Carrying volume of propellant The carrying volume of propellant shall meet the total impulse demand, and the following factors shall be considered: a) propellant required for thruster (motor) start-up and test; b) propellant leaking normally during its lifetime; c) propellant unavailable in tanks, gas cylinders and pipelines at the end of lifetime. 3.4.3 Working points The requirements for working points of propulsion system are as follows: a) the design of working pressure shall ensure that the inlet pressure of thruster (motor) is within its design working pressure range; b) the design of working temperature shall meet the design working range of thruster (motor), and the minimum working temperature of liquid propulsion system shall be at least 5℃ higher than the freezing point of propellant; c) the propellant flow rate, working voltage and working current of the electric propulsion system shall meet the requirements of the design working range of the electric thruster. 3.4.4 Flow characteristics The flow characteristics of propulsion system include flow rate, pressure drop, mixing ratio, etc. The flow rate-pressure drop characteristics of components (units) and the flow characteristics of pipeline for propulsion system shall be matched with the working point design of the propulsion system. 3.4.5 Sealing performance 3.4.5.1 Leakage rate of propulsion system The leakage rate of propulsion system is related to the scale and in-orbit lifetime, and the leakage rate indicator shall meet the requirements of special technical documents. 3.4.5.2 Single point leakage rate Generally, when helium is adopted as leakage indication gas, the single point leakage rate under the maximum expected working pressure is as follows: a) not greater than 1×10-6Pa·m3/s at the thread connection; b) not greater than 1×10-7Pa·m3/s at the welding connection. 3.4.6 Performance of thruster (motor) The main performance parameters of thruster (motor) are shown in Table 1, and the value of each parameter shall meet the requirements of special technical documents. Table 1 Main performance parameters of thruster (motor) S.N. Main performance parameter Application scope 1 Vacuum thrust All thrusters (motors) 2 Vacuum thrust range Variable-thrust thruster (motor) 3 Vacuum specific impulse All thrusters (motors) 4 Mixing ratio Double-component thruster (motor) 5 Minimum impulse Thruster (motor) working in pulse mode 6 Steady-state lifetime All thrusters (motors) 7 Pulse life Thruster (motor) working in pulse mode 8 Thrust vector All thrusters (motors) 9 Startup response time and shutdown response time Thruster (motor) with required impulse output response time 10 Residual impulse Thruster (motor) with required speed increment control 11 Plume divergence angle Thruster (motor) with required plume control 12 Thruster efficiency Electric thruster 3.4.7 Power supply conversion efficiency The power supply conversion efficiency of the power supply conversion module of electric propulsion system shall not be less than 88%. 3.5 Weight The weight of propulsion system (excluding propellant and pressurized gas) shall meet the requirements of special technical documents. See Annex A for the weight of various propulsion systems. 3.6 Power consumption The power consumption of propulsion system shall meet the requirements of special technical documents. See Annex A for the power consumption of various propulsion systems. 3.7 Marks The product marks shall meet the requirements of GJB 2998. The code and number of product on the product mark shall be consistent with the marks of product certificate and product quality log. 3.8 Appearance The appearance shall meet the following requirements: a) the surfaces of metal products shall be free from burrs, scratches, bumps, rust spots and cracks, and the surface plating shall be flat, smooth, and free from peeling and falling off; b) the non-metallic surfaces shall be smooth, flat, free from peeling, flaking, delamination and cracking as well as defects affecting use such as precipitation of additives; c) the pins and sockets of electric connectors shall be in good shape, with bright surface plating, no shedding, no rust spots and burrs, and the surface of glass insulators shall be smooth, free of pores and impurities; the insulators shall be firmly combined with pins and shells, without cracks at the joint, and the air tightness shall meet the requirements of special technical documents; d) the sealing surfaces of various components (units) and pipeline joints shall be free from scratches, the threads shall be clean and intact, the locking shall be firm, the lead seal shall be correct and complete, and the weld surface shall meet the requirements of GJB 294, GJB 1718, QJ 1666, QJ 1842 and QJ 2865. 3.9 Materials and electrical, electronic and electromechanical parts 3.9.1 Selection principles The selection principles of materials, electrical and electronic and electromechanical parts are as follows: a) select materials and electrical, electronic and electromechanical parts that meet the requirements of working performance, service environment, storage period, lifetime and manufacturing process from the selection catalogue as possible, and use them after passing the re-inspection according to requirements, and screen the electrical, electronic and electromechanical parts according to the requirements of special technical documents; b) the adoption of new materials and electrical, electronic and electromechanical parts shall be fully demonstrated, tested, identified or finalized, and pass the type approval. 3.9.2 Materials The materials shall meet the following requirements: a) compatibility: the metallic and nonmetallic materials shall be of Grade I compatible with the working medium in direct contact during the lifetime, otherwise they shall be used after passing the review. The parts shall be corrosion resistant. The protective measures, which shall be remained effective throughout the lifetime, shall be taken on the surfaces of non-corrosion-resistant materials; b) no hairline: the metallic materials of important components (units) (such as injector of thruster, valve body and element of gas and liquid valves) shall be hairline-free materials; c) anti-aging: the performance of non-metallic materials shall meet the service requirements during the lifetime. 3.9.3 Electrical, electronic and electromechanical parts The electrical, electronic and electromechanical parts shall be derated for use, and their derating shall meet the requirements of Grade I in GJB/Z 35-1993; otherwise, they shall be used after passing the review. 3.10 System integration The requirements for propulsion system integration are as follows: a) the layout and polarity of propulsion system pipeline shall meet the design principle requirements of propulsion system, and effective process control shall be carried out; b) issues such as control force, control torque, plume and thermal effect shall be considered for the layout of thruster (motor); c) for components (units) with large calorific value, the heat dissipation mode shall be considered when designing contact area and layout position, and the requirements of thermal control shall be met; d) dowel pins or adjustment mechanisms may be adopted for components (units) to be accurately installed in place. When the calibration accuracy is superior to 0.15°, it is necessary to set a calibration reference (usually an optical reflector) on the components (units); e) the pipeline system shall be connected by welding as possible, and the components to be replaced or subjected to special requirements may be connected by screwing; f) the welding quality of pipeline shall meet the requirements of QJ 2865, and the quality of welded joint shall be of Grade I; g) the set points of pipeline welds shall be easy for X-ray photography, and meet the requirements of bidirectional orthogonal X-ray photography, otherwise they shall be indicated during the design and approved by the parties concerned; h) generally, the bending radius of the pipeline is not less than four times the outer diameter of the pipeline, otherwise, it shall be implemented after process appraisal and review; i) generally, the distance between pipelines is not less than 6mm, and the distance between pipeline and other instruments/equipment/structural parts is not less than 10mm; for pipelines requiring thermal control, the space for thermal control coating shall be reserved; j) generally, lubricants are not used for all moving components (units) of the propulsion system; k) sealing grease shall not be used as an auxiliary sealing measure at sealing parts, and sealing materials and products shall meet the requirements of compatibility and lifetime. Foreword i 1 Scope 2 Normative references 3 Requirements 3.1 Composition 3.2 Functions 3.3 Working medium 3.4 Performance 3.5 Weight 3.6 Power consumption 3.7 Marks 3.8 Appearance 3.9 Materials and electrical, electronic and electromechanical parts 3.10 System integration 3.11 Interfaces 3.12 Environmental adaptability 3.13 Electromagnetic compatibility 3.14 Reliability 3.15 Safety 3.16 Foreign object debris (FOD) control 3.17 Thrust vector adjustment 4 Quality assurance requirements 4.1 Inspection classification 4.2 Inspection conditions 4.3 Appraisal inspection 4.4 Acceptance inspection 4.5 Packaging inspection 4.6 Inspection method 5 Delivery preparation 5.1 Sealing 5.2 Packaging 5.3 Transportation 5.4 Storage 5.5 Marks 6 Instructions 6.1 Intended use 6.2 Classification 6.3 Contents required to be specified in the order document 6.4 Others Annex A (Informative) Main parameters of propulsion system Annex B (Informative) Recommended application range of propulsion system 航天器推进系统规范 1 范围 本规范规定了航天器推进系统(以下简称推进系统)的技术要求、质量保证规定及交货准备等。 本规范适用于航天器冷气推进系统、化学推进系统和电推进系统的设计、生产、试验和验收。 2 引用文件 下列文件中的有关条款通过引用而成为本规范的条款。凡注日期或版次的引用文件,其后的任何修改单(不包含勘误的内容)或修订版本都不适用于本规范,但提倡使用本规范的各方探讨使用其最新版本的可能性。凡不注日期或版次的引用文件,其最新版本适用于本规范。 GB 190 危险货物包装标志 GB/T 191 包装储运图示标志 GB/T 678 化学试剂 乙醇(无水乙醇) GB/T 4844 纯氦、高纯氦和超纯氦 GB/T 5828 氙气 GB/T 6682 分析实验室用水规格和试验方法 GB/T 8979 纯氮、高纯氮和超纯氮 GJB 98 无水肼 GJB 145 防护包装规范 GJB 150.15 军用装备实验室环境试验方法 第15部分:加速度试验 GJB 150.16 军用装备实验室环境试验方法 第16部分:振动试验 GJB 150.18 军用装备实验室环境试验方法 第18部分:冲击试验 GJB 151 军用设备和分系统电磁发射和敏感度要求与测量 GJB 190 特性分类 GJB 294 铝及铝合金熔焊 GJB 1027 运载器、上面级和航天器试验要求 GJB 1673 四氧化二氮规范 GJB 1718 电子束焊接 GJB 1963 甲基肼规范 GJB 1964 绿色四氧化二氮规范 GJB 2203 卫星产品洁净度及污染控制要求 GJB 2502.2 航天器热控涂层试验方法 第2部分:太阳吸收比测试 GJB 2502.3 航天器热控涂层试验方法 第3部分:发射率测试 GJB 2770—1996 军用物资贮存环境条件 GJB 2998 卫星产品标志 GJB 4014 氦气安全应用准则 GJB 5403 无水肼安全应用准则 GJB/Z 35—1993 元器件降额准则 QJ 1408 航天产品可靠性保证要求 QJ 1666 钛及钛合金熔焊技术要求 QJ 1842 结构钢、不锈钢熔焊技术要求 QJ 2053 卫星检漏试验方法 QJ 2437 卫星故障模式影响和危害度分析 QJ 2630.1 航天器组件空间环境试验方法 第1部分:热真空试验 QJ 2850 航天产品多余物预防和控制 QJ 2865 导管焊接技术条件 QJ 3198-2008 航天火工装置安全技术要求 3 要求 3.1 组成 推进系统一般由推进剂贮存模块、推进剂加注(排放)模块、推进剂供给模块、推力器(发动机)模块、系统参数(压力、温度、流量等)检测模块、推进线路模块等功能模块组成。必要时,可配置高压气体存储模块、减压控制模块、电源处理模块和推力矢量调节模块等功能模块。 3.2 功能 推进系统主要为航天器提供控制所需的力和力矩。 3.3 工质 3.3.1 推进剂 3.3.1.1 冷气推进系统 一般选用氮气作为推进剂。氮气的理化性能应符合GB/T 8979的要求。其他推进剂还有氨、丁烷等。 3.3.1.2 化学推进系统 3.3.1.2.1 单组元推进系统 一般选用无水肼作为推进剂。无水肼应符合GJB 5403或GJB 98中单元推进剂级的要求。其他推进剂还有二硝酰胺(ADN)、硝酸羟胺(HAN)、单推-3 (DT-3)等。 3.3.1.2.2 双组元推进系统 一般选用绿色四氧化二氮(或四氧化二氮)和甲基肼作为推进剂。绿色四氧化二氮应符合GJB 1964中A级的要求,四氧化二氮应符合GJB 1673的要求,甲基肼应符合GJB 1963的要求。其他推进剂还有四氧化二氮和无水肼。 3.3.1.3 电推进系统 一般选用氙气或无水肼作为推进剂。氙气应符合GB/T 5828中纯氙一等品的技术指标,无水肼应符合GJB 98中单元推进剂级的要求。 3.3.2 增压气体 一般选用氦气或高纯氮气作为增压气体。氦气应符合GJB 4014的要求,高纯氮气应符合GB/T 8979的要求。 3.4 性能 3.4.1 总冲 推进系统应能提供不小于航天器任务需要的总冲。 3.4.2 推进剂携带量 推进剂携带量应满足总冲需求,并考虑以下因素: a) 推力器(发动机)启动及测试需要的推进剂; b) 寿命期间正常外漏的推进剂; c) 寿命末期贮箱、气瓶和管道内不可用的推进剂。 3.4.3 工作点 推进系统工作点要求如下: a) 工作压力设计应确保推力器(发动机)的入口压力在其设计工作压力范围内; b) 工作温度设计应能满足推力器(发动机)的设计工作范围,液体推进系统最低工作温度应至少高于推进剂冰点5℃; c) 电推进系统推进剂流量及工作电压、工作电流应满足电推力器设计工作范围的需求。 3.4.4 流动特性 推进系统的流动特性包括流量、压降、混合比等。推进系统部(组)件流量-压降特性和管道流动特性应与推进系统工作点设计匹配。 3.4.5 密封性能 3.4.5.1 推进系统漏率 推进系统漏率与规模和在轨工作寿命相关,漏率指标应符合专用技术文件的要求。 3.4.5.2 单点漏率 当示漏气体为氦气时,在最大预期工作压力下单点漏率要求一般如下: a) 螺纹连接点处不大于1×10-6Pa·m3/s; b) 焊接连接点处不大于1×10-7Pa·m3/s。 3.4.6 推力器(发动机)性能 推力器(发动机)的主要性能参数见表1,各参数值应符合专用技术文件的要求。 表1 推力器(发动机)主要性能参数 序号 主要性能参数 适用范围 1 真空推力 所有推力器(发动机) 2 真空推力范围 变推力推力器(发动机) 3 真空比冲 所有推力器(发动机) 4 混合比 双组元推力器(发动机) 5 最小脉冲冲量 脉冲模式工作的推力器(发动机) 6 稳态寿命 所有推力器(发动机) 7 脉冲寿命 脉冲模式工作的推力器(发动机) 8 推力矢量 所有推力器(发动机) 9 启动响应时间和关机响应时间 对冲量输出响应时间有要求的推力器(发动机) 10 后效冲量 对速度增量控制有要求的推力器(发动机) 11 羽流发散角 对羽流控制有要求的推力器(发动机) 12 推力器效率 电推力器 3.4.7 电源转换效率 电推进系统电源转换模块的电源转换效率应不小于88%。 3.5 重量 推进系统的重量(不含推进剂和增压气体)应符合专用技术文件的要求。各类推进系统的重量参见附录A。 3.6 功耗 推进系统的功耗应符合专用技术文件的要求。各类推进系统的功耗参见附录A。 3.7 标志 产品标志应符合GJB 2998的规定。产品标志上的产品代号、产品编号应与产品证明书和产品质量履历书的标志一致。 3.8 外观 外观应满足下列要求: a) 金属制品表面应无毛刺、划伤、碰伤、锈斑和裂纹,表面镀层应平整、光滑、无起皮和脱落; b) 非金属表面应光滑、平整,无起皮、剥落、分层和龟裂,不应存在填加物析出等影响使用的缺陷; c) 电连接器的插针、插孔形状应完好,表面镀层应光亮,无脱落、锈斑和毛刺,玻璃绝缘子表面应光洁,无气孔及杂质,绝缘子应和插针、壳体结合牢固、结合处无裂纹,气密性应符合专用技术文件的规定; d) 各部(组)件及管路接口处的密封面应无划伤,螺纹应清洁、完好,锁紧应牢固,铅封正确并齐全,焊缝表面应符合GJB 294、GJB 1718、QJ 1666、QJ 1842及QJ 2865的规定。 3.9 材料和元器件 3.9.1 选用原则 材料和元器件选用原则如下: a) 尽量在选用目录中选取满足工作性能、使用环境、贮存期、使用寿命及制造工艺要求的材料和元器件,材料按规定复验合格后使用,元器件按专用技术文件的要求进行筛选; b) 采用新型材料和元器件,应经过充分论证、试验和鉴定或定型,并通过型号审批。 3.9.2 材料 材料应满足下列要求: a) 相容性:金属和非金属材料与直接接触的工作介质在寿命期内应Ⅰ级相容,若无法满足Ⅰ级相容要求,应经过评审通过后使用,零件应具有耐腐蚀能力,非耐蚀材料零件表面应采取防护措施,防护措施应在整个使用寿命期间保持有效; b) 无发纹:重要部(组)件(如推力器的喷注器,气、液阀门的阀体、阀芯部分)的金属材料应为无发纹材料; c) 抗老化:非金属材料性能在寿命期内应能满足使用要求。 3.9.3 元器件 电子、电气和机电元器件应降额使用,其降额等级应符合GJB/Z 35—1993中Ⅰ级的规定,否则应经过评审通过后使用。 3.10 系统集成 推进系统集成要求如下: a) 推进系统管路布局和极性应满足推进系统设计原理要求,并进行有效的过程控制; b) 推力器(发动机)的布局应考虑控制力、控制力矩、羽流和热影响等问题; c) 对于发热量较大的部(组)件,设计接触面积和布局位置时应考虑其散热方式,并符合热控要求; d) 对于要求精确安装的部(组)件,可采用定位销钉或调整机构,校准精度优于0.15º时,需在部(组)件上设置校准基准(通常采用光学反射镜); e) 管路系统尽量采用焊接方式连接,有更换需求或特殊要求的部件可采取螺接方式; f) 管路的焊接质量应符合QJ 2865的规定,焊接接头质量应为Ⅰ级; g) 管路焊缝的设置点应易于进行X光照相,并满足双向正交X光照相要求,若无法满足,需在设计时注明并得到各方认可; h) 管路弯曲半径一般不小于管材外径的四倍,否则需经工艺鉴定和评审后实施; i) 管路与管路之间的距离一般不小于6mm,管路与其他仪器设备及结构件之间的距离一般不小于10mm,对于需要热控的管路,应预留热控包覆的空间; j) 推进系统各活动部(组)件一般不采用润滑剂; k) 密封部位不应采用密封脂作为辅助密封措施,密封材料及制品应满足相容性和寿命要求。 3.11 接口 3.11.1 机械接口 各部(组)件在航天器上的安装界面,以及与管路的焊接或螺接接口,应符合专用技术文件的要求。 3.11.2 电接口 推进系统与其他分系统的接口电路形式、输入或输出阻抗、总线形式、信号的幅值及波形要求、信号的时序要求等应符合专用技术文件的要求。 推进系统各阀门、推力器(发动机)和传感器等部(组)件与推进线路模块、电源处理模块之间的电接口应互相匹配,并符合专用技术文件的要求。 3.11.3 热接口 推进系统各部(组)件的工作温度范围、热耗、安装面的面积、平面度及非安装面表面状态应符合专用技术文件的要求。 航天器外推进系统部(组)件的半球发射率和太阳吸收比应符合专用技术文件的要求。 3. 12 环境适应性 推进系统及部(组)件在经历GJB 1027或专用技术文件规定的环境试验(一般包括冲击、加速度、正弦振动、随机振动、热循环、热真空和压力试验等)后应能正常工作。 3.13 电磁兼容性 推进系统的电磁兼容性应符合GJB 151的规定。 3.14 可靠性 推进系统的可靠性要求如下: a) 推进系统应按QJ 2437的规定,进行故障模式影响和危害度分析,并按GJB 190的要求进行特性分类; b) 推进系统可靠性保证应符合QJ 1408的要求,且符合航天器可靠性分配的要求; c) 推进系统应进行充分、合理的冗余,在技术可能的情况下尽量消除单点故障。 3.15 安全性 推进系统的安全性要求如下: a) 推进系统应采取良好的防静电措施,系统接地电阻一般小于1Ω; b) 选用X射线探伤、声发射探伤或工业CT探伤对各承压部(组)件、材料及焊缝进行无损检验; c) 推进系统中压力容器的爆破压力不小于最大工作压力的1.5倍、验证压力不小于最大工作压力1.25倍,管路的爆破压力不小于最大工作压力的4倍,其他承压部(组)件的爆破压力应不小于最大工作压力的2倍、验证压力不小于最大工作压力的1.5倍; d) 对于高电压涉及的连线、器件、壳体采取全面的隔离防护措施,应在材料选择和布局上进行设计分析,确保相关部位不发生短路、击穿、真空放电等,相关高压的测量信号应与被测量信号隔离; e) 电推力器气路接口应进行电气绝缘; f) 涉及高电压的电连接器应设计合理的放气孔,防止低气压放电损坏产品; g) 各部(组)件上游供电模块应具有过载保护功能,保证出现短路或过载时航天器母线的安全; h) 化学推进系统推进剂加注过程中及加注后,应对贮箱压力、温度和周围环境的推进剂气体浓度进行监测,常温下可点火的化学推进系统,在加注后贮箱到发动机之间需设置可靠的机械隔离措施; i) 使用氙气的推进系统在系统加注、工作以及贮存时,应采取必要的安全措施,避免泄漏导致人员麻醉和窒息; j) 载人航天器推进系统应与载人舱段隔离。 3.16 多余物控制 3.16.1 控制原则 多余物控制基本原则如下: a) 推进系统研制全过程应按QJ 2850的规定进行多余物控制; b) 推进系统各部、组件在交付前应按专用技术文件要求进行洁净度检查,合格后交付。 3.16.2 外部多余物控制 外部多余物控制要求如下: a) 推进系统研制全过程应有有效的保护措施,避免受到外部多余物污染; b) 应在洁净环境下进行推进系统焊接、总装和测试操作,环境的洁净度控制应满足GJB 2203的要求。 3.16.3 内部多余物控制 内部多余物控制要求如下: a) 推进系统应识别对多余物敏感的部、组件,并在入口处进行过滤保护; b) 进入推进系统的介质(包括推进剂、模拟工质和气体)洁净度应满足GJB 2203的要求,所有通入的介质应经过规定精度的过滤器过滤。 3.17 推力矢量调节 电推进系统设计与推力矢量调节的设计应在性能、机械接口和热接口等方面相匹配,并进行验证。 推力矢量调节应考虑推进剂管路和电缆的安装和固定,在推力矢量调节机构转动的情况下,不应影响管路的密封性和电缆的可靠性。 4 质量保证规定 4.1 检验分类 本规范规定的检验分类如下: a) 鉴定检验; b) 交收检验。 4.2 检验条件 4.2.1 检验环境 除另有规定外,检验环境为: a) 温度:15℃~35℃; b) 湿度:30%~70%; c) 气压:当地气压; d) 光照度:不低于4001x; e) 洁净度:100 000级。 4.2.2 检验设备 检验设备的量程精度应满足产品的检验要求。所有检验设备应经计量部门检定合格,并在有效期内使用。 4.2.3 检验工质 检验工质通常使用无水乙醇、高纯氮气、纯氦和去离子水。无水乙醇应符合GB/T 678的规定,高纯氮气应符合GB/T 8979的规定,纯氦应符合GB/T 4844的规定,去离子水应符合GB/T 6682的规定。 4.3 鉴定检验 4.3.1 检验时机 出现下列情况之一时,应进行鉴定检验: a) 新研制及转厂生产; b) 设计、工艺、材料、元器件、装配发生重大改变,影响产品性能; c) 有关质量监督机构或订购方提出鉴定要求。 4.3.2 检验项目 鉴定检验的项目、要求及方法见表2。 |
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 |
服务热线:400-001-5431 | 电话:010-8572 5110 | 传真:010-8581 9515 | Email: bz@bzfyw.com | |
版权所有: 北京悦尔信息技术有限公司 2008-2020 京ICP备17065875号-1 51La |
本页关键词: |
GJB 2787A-2019, GJB/T 2787A-2019, GJBT 2787A-2019, GJB2787A-2019, GJB 2787A, GJB2787A, GJB/T2787A-2019, GJB/T 2787A, GJB/T2787A, GJBT2787A-2019, GJBT 2787A, GJBT2787A |