GB/T 9239 consists of the following parts, under the general title Mechanical Vibration — Rotor Balancing:
— Part 1: Introduction ;
— Part 2: Vocabulary ;
— Part 11: Procedures and Tolerances for Rotors with Rigid Behaviour ;
— Part 12: Procedures and Tolerances for Rotors with Flexible Behaviour ;
— Part 13: Criteria and Safeguards for the In-situ Balancing of Medium and Large Rotors ;
— Part 14: Procedures for Assessing Balance Errors ;
— Part 21: Description and Evaluation of Balancing Machine ;
— Part 23: Enclosures and Other Protective Measures for the Measuring Station of Balancing Machines ;
— Part 31: Susceptibility and Sensitivity of Machines to Unbalance ;
— Part 32: Shaft and Fitment Key Convention .
This part is Part 21 of GB/T 9239.
This part is drafted in accordance with the rules given in the GB/T 1.1-2009.
This part replaces GB/T 4201-2006 Description Verification and Evaluation of Balancing Machines in whole.
The following main technical deviations have been made with respect to GB/T 4201-2006 (the previous edition):
— modification of the standard name;
— modification of some parameters of proving rotors type C for outboard tests on horizontal machines (see Table 5; Table 5 of Edition 2006);
— modification of the some parameters of shafts of proving rotors type C for outboard tests on horizontal machines (see Table C.1; Table C.1 of Edition 2006);
This standard is identical with International Standard ISO 21940-21:2012 Mechanical Vibration — Rotor Balancing — Part 21: Description and Evaluation of Balancing Machines.
The Chinese documents consistent and corresponding with the normative international documents in this part are as follows:
— GB/T 6444-2008 Mechanical Vibration — Balancing — Vocabulary (ISO 1925:2001, IDT).
This part was proposed by China Machinery Industry Federation.
This part is under the jurisdiction of SAC/TC 122 (National Technical Committee 122 on Testing Machines of Standardization Administration of China).
The previous editions of standards replaced by this part are as follows:
— GB/T 4201-1984, GB/T 4201-2006.
— GB/T 7662-1987.
Mechanical Vibration — Rotor Balancing — Part 21: Description and Evaluation of Balancing Machines
1 Scope
This part of GB/T 9239 specifies requirements for evaluating the performance of machines for balancing rotating components by the following tests:
a) test for minimum achievable residual unbalance, Umar test;
b) test for unbalance reduction ratio, URR test;
c) test for couple unbalance interference on single-plane machines;
d) compensator test.
These tests are performed during acceptance of a balancing machine and also later, on a periodic basis, to ensure that the balancing machine is capable of handling the actual balancing tasks. For periodic tests, simplified procedures are specified. Tests for other machine capacities and performance parameters, however, are not contained in this part.
For these tests, three types of specially prepared proving rotors are specified, covering a wide range of applications on horizontal and vertical balancing machines. An annex describes recommended modifications of proving rotors prepared in accordance with the original national standard.
Moreover, this part also stresses the importance attached to the form in which the balancing machine characteristics are specified by the manufacturer. Adoption of the format specified enables users to compare products from different manufacturers. Additionally, in an annex, guidelines are given on the information by which users provide their data and requirements to a balancing machine manufacturer.
This part is applicable to balancing machines that support and rotate rotors with rigid behaviour at balancing speed and that indicate the amounts and angular locations of a required unbalance correction in one or more planes. Therefore, it is applicable to rotors with rigid behaviour as well as to rotors with shaft-elastic behaviour balanced in accordance with low-speed balancing procedures. It covers both soft-bearing balancing machines and hard-bearing balancing machines. Technical requirements for such balancing machines are included; however, special features, such as those associated with automatic correction, are excluded.
This part does not specify balancing criteria; such criteria are specified in ISO 1940-1 and ISO 11342 (only low-speed balancing procedures apply).
2 Normative References
The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 1925 Mechanical Vibration — Balancing — Vocabulary
3 Terms and Definitions
For the purposes of this document, the terms and definitions given in ISO 1925 apply.
4 Capacity and Performance Data of the Balancing Machine
4.1 General
The manufacturer shall specify the data listed in 4.2 for horizontal or 4.3 for vertical balancing machines, as applicable, and in a similar format.
Note: Information provided by the user to the balancing machine manufacturer is summarized in Annex A.
4.2 Data for horizontal balancing machines
4.2.1 Rotor mass and unbalance limitations
4.2.1.1 The maximum mass of a rotor, m, which can be balanced shall be stated over the range of balancing speeds (n1 , n2 , ...).
The maximum moment of inertia of a rotor with respect to the shaft axis, mr2, where m is the rotor mass and r is the radius of gyration, which the machine can accelerate in a stated acceleration time shall be given for the range of balancing speeds (n1 , n2 , ...) together with the corresponding cycle rate (see Table 1).
Table 1 Data for horizontal balancing machines
Manufacturer: ………………………………………… Model: ………….………………………………………..
Balancing speeds or speed ranges (see 4.2.3.1) n1 n2 n3 n4 …
Rotor mass kg
(see Note 1) Maximum
Minimum
Occasional overload force per support N
(see Note 1)
Maximum negative force per support N
(see Note 1)
Maximum rotor moment of inertia with respect to the shaft axis kg·m2
(see Note 2)
Cycle rate (see Note 2)
Maximum unbalance g·mm/kg or g·mm
(see Note 3) Measurable value
Permissible value
a) For inboard rotors
Minimum achievable residual specific unbalance, emar g·mm/kg
(see Note 4 and Clause 6) Maximum mass
0.2 × maximum mass
Minimum mass
Corresponding deflection of analogue amount-of-unbalance indicator, mm; or
Number of digital units
(see Note 4) Gross vehicle mass
0.2 × maximum mass
Minimum mass
b) For outboard rotors
Minimum achievable residual specific unbalance, emar g·mm/kg
(see Note 4 and Clause 6) Gross vehicle mass
0.2 × maximum mass
Minimum mass
Corresponding deflection of analogue amount-of-unbalance indicator, mm; or
Number of digital units
(see Note 4) Gross vehicle mass
0.2 × maximum mass
Minimum mass
Note 1: The occasional overload force is only stated for the lowest balancing speed. It is the maximum force per support that can be accommodated by the machine without immediate damage.
The negative force is the static upward force resulting from a rotor having its centre of mass outside the bearing support.
Note 2: Cycle rate for a given balancing speed is the number of starts and stops which the machine can perform per hour without damage to the machine when balancing a rotor of the maximum moment of inertia.
Note 3: In general, for rotors with rigid behaviour with two correction planes, one-half of the stated value pertains to each plane; for disc-shaped rotors, the full stated value holds for one plane.
Note 4: Limits for soft-bearing machines are generally stated in gram millimetres per kilogram (specific unbalance, g·mm/kg), since this value represents a measure of rotor displacement and, therefore, motion of the balancing machine bearings. For hard-bearing machines, the limits are generally stated in gram millimetres (g·mm), since these machines are usually factory calibrated to indicated unbalance in such units (see Clause 6). For two-plane machines, this is the result obtained when the minimum achievable residual unbalance is distributed between the two planes.
4.2.1.2 Production efficiency (see Clause 7) shall be stated, as follows.
4.2.1.2.1 Time per measuring run:
a) Time for mechanical adjustment: s
b) Time for setting indicating system: s
c) Time for preparation of rotor: s
d) Average acceleration time: s
e) Reading time (including time to stabilize): s
f) Average deceleration time: s
g) Relating readings to rotor: s
h) Other necessary time: s
i) Total time per measuring run [a) to h) in the preceding]: s
4.2.1.2.2 Unbalance reduction ratio, URR, for inboard rotors: %
4.2.1.2.3 Unbalance reduction ratio for outboard rotors: %
4.2.2 Rotor dimensions
4.2.2.1 Adequate envelope drawings of the pedestals and of other obstructions, such as belt-drive mechanism, shroud mounting pads, thrust arms and tie bars, shall be supplied to enable the user to determine the maximum rotor envelope that can be accommodated and the tooling or adaptors required.
A combination of large journal diameter and high balancing speed can result in an excessive journal peripheral speed. The maximum journal peripheral speed shall be stated.
When belt drive is supplied, balancing speeds shall be stated for both the maximum and minimum diameters over which the belt can drive, or other convenient diameter.
The manufacturer shall state if the axial position of the drive can be adjusted.
4.2.2.2 Rotor envelope limitations shall be stated (see Figure 1).
4.2.2.3 Rotor diameter:
a) Maximum diameter over bed: mm
b) Maximum diameter over which belt can drive: mm
c) Minimum diameter over which belt can drive: mm
4.2.2.4 Distance between journal centrelines:
a) Maximum: mm
b) Minimum: mm
c) Maximum distance from coupling flange to centreline of farthest bearing: mm
d) Minimum distance from coupling flange to centreline of nearest bearing: mm
Key:
1 — shaft;
2 — rotor;
3 — support;
4 — bed.
If the left-hand support is not a mirror image of the right-hand support, separate dimensions shall be shown.
The profile of the belt-drive equipment shall be shown, if applicable.
Figure 1 Example of a machine support drawing illustrating rotor envelope limitations
4.2.2.5 Journal diameter:
a) Maximum: mm
b) Minimum: mm
Maximum permissible peripheral journal speed m/s
4.2.2.6 Correction plane limitations (consistent with the statements in 5.4) shall be stated.
4.2.2.7 Correction plane interference ratios (consistent with the statements in 5.4 and based on the proving rotor) shall be stated.
4.2.3 Drive
4.2.3.1
Balancing speed Rated torque on rotor
r/min N·m
n1
n2
n3
n4
n5
n6
n7
n8
or steplessly variable or steplessly variable
From
To From
To
4.2.3.2 Torque:
a) Zero-speed torque: ................................. % of rated torque on rotor
b) Run-up torque adjustable from ......... % to .......... % of rated torque on rotor
c) Peak torque .......................................................... % of rated torque on rotor
Note: In most cases, maximum torque is required for accelerating a rotor. However, in the case of a rotor with high windage or friction loss, maximum torque can be required at balancing speed. When there is axial thrust, it is necessary that provisions be made to take this into account.
4.2.3.3 Type of drive to rotor: ………………………………………….
Examples: End drive by universal joint driver, end drive by band, belt drive, magnetic field, driven bearing rollers, air jet.
4.2.3.4 Prime mover (type of motor): ………………………………………….
a) Rated power: ………………………………………….kW
b) Motor speed: ………………………………………….r/min
c) Power supply, voltage/frequency/phase: ……………/………………/………………
4.2.3.5 Brake:
a) Type of brake: ………………………………………….
b) Braking torque adjustable from ........... % to .......... % of rated torque
c) Can the brake be used as a holding device? Yes / No
4.2.3.6 Motor and controls in accordance with the following standard(s): ………………
4.2.3.7 Speed regulation provided:
Accurate or constant within .................. % of ................. r/min, or .................. r/min
4.2.4 Couple unbalance interference ratio: ………………………………g·mm/(g·mm2)
Note: This value is only applicable for single-plane balancing machines. It describes the influence of couple unbalance in the rotor on the indication of resultant unbalance.
4.2.5 Air pressure requirements: ................. Pa, ............m3/s
4.3 Data for vertical balancing machines
4.3.1 Rotor mass and unbalance limitations
4.3.1.1 The maximum mass of a rotor, m, which can be balanced shall be stated over the range of balancing speeds (n1, n2, ...). The maximum moment of inertia of a rotor with respect to the shaft axis, mr2 , where m is the rotor mass and r is the radius of gyration, which the machine can accelerate in a stated acceleration time shall be given for the range of balancing speeds (n1, n2, ...) together with the corresponding cycle rate (see Table 2).
Table 2 Data for vertical balancing machines
Manufacturer: Model:
Balancing speeds or speed ranges (see 4.3.3.1) n1 n2 n3 n4 …
Rotor mass kg
(see Note 1) Maximum
Minimum
Occasional overload force up to N
(see Note 1)
Maximum rotor moment of inertia with respect to the shaft axis kg·m2
(see Note 2)
Cycle rate (see Note 2)
Maximum unbalance g·mm/kg or g·mm
(see Note 3) Measurable value
Permissible value
Minimum achievable residual specific unbalance, emar g·mm/kg
(see Note 4 and Clause 6) Maximum mass
0.2 × maximum mass
Minimum mass
Corresponding deflection of analogue amount-of-unbalance indicator, mm; or
Number of digital units
(see Note 4) Gross vehicle mass
0.2 × maximum mass
Minimum mass
Note 1: The occasional overload force is only stated for the lowest balancing speed. It is the maximum force per support that can be accommodated by the machine without immediate damage.
Note 2: Cycle rate for a given balancing speed is the number of starts and stops which the machine can perform per hour without damage to the machine when balancing a rotor of the maximum moment of inertia.
Note 3: In general, for rotors with rigid behaviour with two correction planes, one-half of the state value pertains to each plane; for disc-shaped rotors, the full stated value holds for one plane.
Note 4: Limits for soft-bearing machines are generally stated in gram millimetres per kilogram (specific unbalance, g·mm/kg), since this value represents a measure of rotor displacement and, therefore, motion of the balancing machine bearings. For hard-bearing machines, the limits are generally stated in gram millimetres (g·mm), since these machines are usually factory calibrated to indicated unbalance in such units (see Clause 6). For two-plane machines, this is the result obtained when the minimum achievable residual unbalance is distributed between the two planes.
4.3.1.2 Production efficiency (see Clause 7) shall be stated, as follows.
4.3.1.2.1 Time per measuring run:
a) Time for mechanical adjustment: s
b) Time for setting indicating system: s
c) Time for preparation of rotor: s
d) Average acceleration time: s
e) Reading time (including time to stabilize): s
f) Average deceleration time: s
g) Relating readings to rotor: s
h) Other necessary time: s
i) Total time per measuring run [a) to h) in the preceding]: s
4.3.1.2.2 Unbalance reduction ratio, URR: %
4.3.2 Rotor dimensions
4.3.2.1 If the machine is equipped with two or more speeds, the information on rotor dimensions shall be stated for each speed. If the machine is equipped with steplessly variable balancing speeds, then the information shall be given in the form of a table, formula or graph.
Adequate drawings of the support surface of the spindle or mounting plate and of obstructions, such as drill heads and electrical control cabinets, above the mounting plate shall be supplied to enable the user to determine the maximum rotor envelope that can be accommodated and the tooling or adaptors required.
4.3.2.2 Maximum diameter: mm
a) Maximum overall height: mm
b) Maximum height of centre of gravity: mm
at 100 % of maximum mass: mm
at 50% of maximum mass: mm
at 25% of maximum mass: mm
4.3.2.4 Rotor envelope limitations, including machine spindle or mounting plate interface, shall be stated (see Figure 2).
4.3.2.5 Correction plane limitations (consistent with the statements in 5.4) shall be stated.
4.3.3 Drive
4.3.3.1
Balancing speed Rated torque on rotor
r/min N·m
n1
n2
n3
n4
n5
n6
n7
n8
Key:
1 — rotor;
2 — adaptor;
3 — protractor;
4 — spindle;
5 — upper correction plane;
6 — centre of mass plane;
7 — lower correction plane;
8 — mounting holes for adaptor;
9 — spigot diameter.
Figure 2 Example of vertical machine mounting interface illustrating rotor envelope limitations
4.3.3.2 Torque:
a) Zero-speed torque: ....................................% of rated torque on rotor
b) Run-up torque adjustable from ........... % to ............ % of rated torque on rotor
c) Peak torque .......................................................... % of rated torque on rotor
Note: In most cases, maximum torque is required for accelerating a rotor. However, in the case of a rotor with high windage or friction loss, maximum torque can be required at balancing speed.
4.3.3.3 Prime mover (type of motor): ........................................................................
a) Rated power: ........................................................................kW
b) Motor speed: ........................................................................r/min
c) Power supply, voltage/frequency/phase: ................./................./.................
4.3.3.4 Brake:
a) Type of brake: ....................................................................
b) Braking torque adjustable from .......... % to .......... % of rated torque
c) Can the brake be used as a holding device? Yes / No
4.3.3.5 Motor and controls in accordance with the following standard(s):.................
4.3.3.6 Speed regulation provided:
Accurate or constant within .................. % of ................. r/min, or .................. r/min
4.3.4 Couple unbalance interference ratio: ..................................g·mm/(g·mm2)
Note: This value is only applicable for single-plane balancing machines. It describes the influence of couple unbalance in the rotor on the indication of resultant unbalance.
4.3.5 Air pressure requirements: ................. Pa, ............m3/s
5 Machine Features
5.1 Principle of operation
An adequate description of the principle of operation of the balancing machine shall be given, e.g. motion measuring, force measuring, resonance, compensation.
5.2 Arrangement of the machine
5.2.1 The manufacturer shall describe the general configuration of the balancing machine and the principal features of design, e.g.:
— horizontal or vertical axis of rotation;
— soft- or hard-bearing suspension system;
— resonance-type machine with mechanical compensator.
5.2.2 The manufacturer shall provide details of the following, as applicable.
5.2.2.1 Components designed to support the rotor, e.g.:
— V blocks;
— open rollers;
— plain half bearings;
— closed ball, roller or plain bearings;
— devices to accommodate rotors in their service bearings;
— devices to accommodate complete units.
Details of bearing lubrication requirements shall be given, where applicable.
5.2.2.2 The mechanical adjustment and functioning of the means provided to take up axial thrust from the rotor (horizontal machines only).
5.2.2.3 Type(s) of transducers used to sense unbalance effects.
5.2.2.4 The drive and its control.
5.3 Indicating system
5.3.1 General
A balancing machine shall have means to determine the amount of unbalance and its angular location; such means shall be described, e.g.:
— wattmetric indicating system;
— voltmetric indicating system with phase-sensitive rectifier (including systems with frequency conversion);
— voltmetric system with stroboscope and filter;
— voltmetric indicating system with marking of angular position on the rotor itself;
— compensator with mechanical or electrical indication.
5.3.2 Amount indicators
The manufacturer shall describe the means of amount indication provided, e.g.:
— wattmetric or voltmetric component meters;
— wattmetric or voltmetric amount meters;
— wattmetric or voltmetric vector meters;
— mechanical or optical indicators;
— analogue or digital readout.
5.3.3 Angle indicators
The manufacturer shall describe the means of angle indication provided, e.g.:
— wattmetric or voltmetric component meters;
— wattmetric or voltmetric vector meters;
— direct angle indication in degrees on a scale meter;
— oscilloscope, stroboscopic indicators;
— mechanical or optical indicators;
— analogue or digital readout.
5.3.4 Operation of the indicating system
The manufacturer shall describe the procedure by which readings are obtained, taking into account at least the following aspects.
a) How many measuring runs are required to obtain:
— the two readings for single-plane balancing;
— the four readings for two-plane balancing.
b) Is an indicator provided for each reading or is it necessary to switch over for each reading.
c) Are readings retained after the end of the measuring run.
d) Is an individual plus-and-minus switch provided for each plane which permits the indication of a heavy or light spot.
5.4 Plane separation system
5.4.1 This subclause is not applicable to single-plane balancing machines, for which see 5.4.2.
The manufacturer shall state whether plane separation is provided. If it is provided, at least the following details shall be given.
a) How is it operated for single rotors of a type not previously balanced.
b) How is it operated for single rotors in a series, with identical dimensions and mass.
c) The limits of rotor geometry over which plane separation is effective shall be defined with the effectiveness stated on the basis of the correction plane interference ratio, stating the following.
— the ratio of bearing distance to plane distance for which plane separation is effective;
— whether either or both correction planes can be between or outside the bearings;
— whether the centre of mass can be between or outside the two selected correction planes or bearings.
d) Whether the indicator system can also be used to measure directly resultant unbalance and couple unbalance.
5.4.2 For single-plane horizontal or vertical machines, the manufacturer shall state to what extent the machine is able to suppress effects of couple unbalance (see 11.8).
5.5 Setting and calibration of indication
5.5.1 General
The manufacturer shall describe the means of setting and calibration and the means provided for checking these.
The manufacturer shall state whether setting is possible for indication in any desired unit, whether practical correction units or unbalance units.
The manufacturer shall state:
— the number of runs required for calibrating the balancing machine for single-plane balancing;
— the number of runs required for calibrating the balancing machine for two-plane balancing.
The manufacturer shall state the maximum permissible change, in percentage terms, in repeatability of speed during calibration and operation.
5.5.2 Soft-bearing machines
The manufacturer shall state how calibration is accomplished on the first rotor of a particular mass and configuration (e.g. whether the rotor has to be balanced by a trial-and-error procedure or whether a compensator is provided, whether calibration masses are required), and whether total or partial recalibration is required when changing the balancing speed.
If a compensator is provided, the limits of initial unbalance, of rotor geometry and speed for which compensation is effective shall be stated.
5.5.3 Hard-bearing machines
The manufacturer shall state whether the balancing machine is permanently calibrated and can be set according to the rotor or whether it requires calibration by the user for different balancing speeds, rotor masses and dimensions.
5.6 Other devices
Special devices which influence the efficient functioning of the balancing machine shall be described in detail, e.g.:
— indication in components of an arbitrary coordinate system;
— indication of unbalance resolved into components located in limited sectors in more than two correction planes;
— correction devices;
— devices to correlate the measured angle or amount of unbalance with the rotor;
— suitable output for connection to a computer, printer or other peripherals.
6 Minimum Achievable Residual Unbalance
The minimum residual unbalance that can be achieved with a balancing machine shall be specified in terms of specific unbalance, in gram millimetres per kilogram (g·mm/kg), together with the corresponding amount-of-unbalance indication.
This minimum achievable residual specific unbalance, emar, shall be stated for the full range of rotor masses and balancing speeds of the machine.
In achieving the stated residual unbalance, the manufacturer shall consider whether the accuracy of the following is adequate for this purpose:
— amount indication;
— angle indication;
— plane separation;
— scale multiplier;
— drive, bearings, etc.
It should be noted that the stated minimum achievable residual unbalance value applies to the balancing machine as delivered, but if out-of-round journals, excessively heavy or loose adaptors, or other tooling are employed by the user, the minimum achievable residual unbalance can be affected.
7 Production Efficiency
7.1 General
Production efficiency is the ability of the machine to assist the operator in balancing a rotor to a given residual unbalance in the shortest possible time. It shall be assessed by using a proving rotor or, alternatively, a test rotor to be specified by the user.
To find the production rate for a specific rotor (number of pieces per time or the reciprocal of the floor-to-floor time), the time per measuring run, the necessary number of runs, the time for loading, unbalance correction and unloading have to be taken into consideration. The necessary number of measuring runs depends on the average initial unbalance, the balance tolerance and the unbalance reduction ratio (URR).
Foreword III
1 Scope
2 Normative References
3 Terms and Definitions
4 Capacity and Performance Data of the Balancing Machine
4.1 General
4.2 Data for horizontal balancing machines
4.3 Data for vertical balancing machines
5 Machine Features
5.1 Principle of operation
5.2 Arrangement of the machine
5.3 Indicating system
5.4 Plane separation system
5.5 Setting and calibration of indication
5.6 Other devices
6 Minimum Achievable Residual Unbalance
7 Production Efficiency
7.1 General
7.2 Time per measuring run
7.3 Unbalance reduction ratio
8 Performance Qualifying Factors
9 Installation Requirements
9.1 General
9.2 Electrical and pneumatic requirements
9.3 Foundation
10 Proving Rotors and Test Masses
10.1 General
10.2 Proving rotors
10.3 Test masses
11 Verification Tests
11.1 Requirements for performance and parameter verification
11.2 Duties of manufacturer and user
11.3 Requirement for weighing scale
11.4 Test and rechecks
11.5 Test speed
11.6 Test for minimum achievable residual unbalance, Umar
11.7 Test for unbalance reduction ratio, URR
11.8 Test for couple unbalance interference on single-plane machines
11.9 Compensator test
11.10 Simplified tests
Annex A (Informative) Information Provided by the User to the Balancing Machine Manufacturer
Annex B (Informative) URR Limit Diagrams
Annex C (Informative) Shafts of Outboard Proving Rotors Type C
Annex D (Informative) Modifications of Proving Rotors Prepared in accordance with the Original National Standard to This Part
Bibliography
机械振动 转子平衡
第21部分:平衡机的描述与评定
1 范围
GB/T 9239的本部分规定了通过下列试验对平衡旋转零部件用的平衡机性能的评定要求:
a) 最小可达剩余不平衡量试验,Umar试验;
b) 不平衡量减少率试验,URR试验;
c) 单面平衡机偶不平衡干扰试验;
d) 补偿器试验。
这些试验是在验收平衡机过程中和以后定期检查中进行的,以确保平衡机能够运用于实际的平衡作业。对于定期试验规定了简化试验程序。本部分未规定对平衡机其他能力和性能参数的试验。
这些试验中规定了三种型式的专用校验转子,适用于绝大多数立式和卧式平衡机的应用范围。附件中描述了按照原国家标准规定的老式校验转子的推荐改制方法。
此外,本部分还强调了制造商制定平衡机特性格式的重要性。采用此指定格式,使用户能够对不同制造商的产品进行比较。另外在附录中,给出了由用户向制造商提供数据和要求的信息指南。
本部分适用于支承转子并使转子旋转在平衡转速下处于刚性状态的平衡机,并能在一个或多个平面上能指示出需要不平衡校正的量值和所在相角。因此,它适用于刚性转子以及带有弹性轴的转子按照低速平衡程序平衡。它涵盖了软支承平衡机和硬支承平衡机。本部分还包括对上述平衡机的技术要求,但不包括诸如与自动校正有关的那些特殊性能。
本部分未规定平衡准则,该准则在ISO 1940-1和ISO 11342(只有低速平衡程序适用)中予以规定。
2 规范性引用文件
下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文
件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
ISO 1925 机械振动 平衡 词汇(Mechanical vibration—Balancing—Vocabulary)
3 术语和定义
ISO 1925界定的术语和定义适用于本文件。
4 平衡机的容量和性能数据
4.1 一般要求
制造者应按4.2或4.3的规定,分别给出适合于卧式平衡机或立式平衡机的数据。
注:用户向平衡机制造商提供的信息汇总参见附录A。
4.2 卧式平衡机数据
4.2.1 转子质量和不平衡量限值
4.2.1.1 能够平衡的转子最大质量m,应在平衡机的平衡转速(n1、n2、……)范围内规定。
应给出对应平衡转速(n1、n2、……)范围在规定加速时间内平衡机能够完成加速的转子相对于轴线的最大转动惯量mr2,m 为转子质量,r 为回转半径,并同时给出相应的周期率(见表1)。
表1 卧式平衡机数据
制造者: 型号:
平衡转速或转速范围(见4.2.3.1) n1 n2 n3 n4 …
转子质量 kg
(见注1) 最大
最小
每个支承架偶然过载力 N
(见注1)
每个支承架的最大支承反力 N
(见注1)
转子于轴线的最大转动惯量 kg·m2
(见注2)
周期率(见注2)
最大不平衡度(或量) g·mm/kg或g·mm
(见注3) 测量值
允许值
a) 内质心转子
最小可达剩余不平衡度,emar g·mm/kg
(见注4和第6章) 最大质量
0.2×最大质量
最小质量
模拟式不平衡量指示器的相应偏转量,mm
或
数字式指示装置显示的字数
(见注4) 最大质量
0.2×最大质量
最小质量
b) 外质心转子
最小可达剩余不平衡度,emar g·mm/kg
(见注4和第6章) 最大质量
0.2×最大质量
最小质量
模拟式不平衡量指示器的相应偏转量,mm
或
数字式指示装置显示的字数
(见注4) 最大质量
0.2×最大质量
最小质量
注1:偶然过载力仅需对应最低平衡转速标出。该力是在不直接损坏平衡机的情况下每个支承架能够承受的最大作用力。
支承反力是由质心位于轴承支架以外的转子所产生的方向向上的静态力。
注2:对于某一给定平衡转速的周期率是指在不损坏平衡机的情况下平衡最大转动惯量的转子时,平衡机每小时能进行启动和停机的次数。
注3:对于具有两个校正平面的刚性转子,通常是将该给定值的一半分配给每个平面;对于盘类转子,则该给定值的全部属于一个平面。
注4:软支承平衡机的限值通常以克毫米每千克(不平衡度,g·mm/kg)表示,该值代表转子位移,亦即平衡机支承移动的量度。对于硬支承平衡机,该限值通常以克毫米(g·mm)表示,因为此类平衡机通常就以这样的单位对指示的不平衡量进行出厂校准的(见第6章)。对于双面平衡机,该值是最小可达剩余不平衡量分配到两个平面上所得到的结果。
4.2.1.2 关于生产效率(见第7章)应标明的内容如下。
4.2.1.2.1 每次测量运行时间:
a) 机械调整时间: s
b) 指示系统设定时间: s
c) 转子的准备时间: s
d) 平均加速时间: s
e) 读数时间(包括数值稳定时间): s
f) 平均减速时间: s
g) 将测量读数对应到转子上的时间: s
h) 其他必要的时间: s
i) 每次测量操作[上述a)~h)]总时间: s
4.2.1.2.2 内质心转子不平衡量减少率URR: %
4.2.1.2.3 外质心转子不平衡量减少率: %
4.2.2 转子尺寸
4.2.2.1 应提供摆架和诸如圈带驱动装置、护罩安装底座、止推臂、连接杆等其他妨碍物件的足够详细的外形尺寸图,以供使用者确定能够容纳的最大转子空间及所需要的工装或接头。
大的轴颈直径的和高平衡转速的组合可以导致过高的轴颈圆周线速度,故应标明最高的轴颈圆周线速度。
当采用圈带驱动时,对圈带能够驱动的最大和最小直径或其他合适的直径应标明平衡转速。
如果驱动装置的轴向位置能够调节,制造者应予以说明。
4.2.2.2 应标明转子外形的极限尺寸(见图1)。
4.2.2.3 转子直径:
a) 机座上可放置的最大直径: mm
b) 可用圈带驱动的最大直径: mm
c) 可用圈带驱动的最小直径: mm
4.2.2.4 轴颈中心线间的距离:
a) 最大距离: mm
b) 最小距离: mm
c) 从连接法兰到最远端支承中心线的最大距离: mm
d) 从连接法兰到最近端支承中心线的最小距离: mm
说明:
1——转子轴;
2——转子;
3——支承架;
4——机座。
如果左侧支承架与右侧支承架不是镜像对称的,应分别标示出其尺寸。
如果采用圈带驱动,应标示出圈带驱动装置的轮廓图。
图1 标明转子极限尺寸的平衡机支承架外形图示例
4.2.2.5 轴颈直径:
a) 最大直径: mm
b) 最小直径: mm
最大允许轴颈外圆线速度: m/s
4.2.2.6 对校正平面的限定(按5.4的规定)应予以说明。
4.2.2.7 应标明校正平面干扰比(按5.4的规定和基于的校验转子)。
4.2.3 驱动
4.2.3.1
平衡转速 施加到转子上的额定扭矩
r/min N·m
n1
n2
n3
n4
n5
n6
n7
n8
或无级变速 或无级变化
从
到 从
到
4.2.3.2 施加到转子上的扭矩:
a) 零转速扭矩:额定扭矩的 %
b) 启动扭矩可调:从额定扭矩的 %,到 %
c) 峰值扭矩:额定扭矩的 %
注:在绝大多数情况下,加速转子需要最大扭矩。但是在转子有高风阻或摩擦阻力大的情况时,平衡转速需要最大的扭矩。当存在轴向推力时,要考虑相关措施。
4.2.3.3 驱动转子的类型:
示例:万向节轴端驱动,轴端带动驱动,圈带驱动,磁场驱动,驱动滚轮,吹气驱动。
4.2.3.4 主动力源(电动机的类型):
a) 额定功率: kW
b) 电动机转速: r/min
c) 电源:电压/频率/相数: / /
4.2.3.5 制动:
a) 制动类型:
b) 制动扭矩可调:从额定扭矩的 %到 %
c) 制动装置能否用作夹持装置? 能/否
4.2.3.6 电动机和控制系统符合下述标准:
4.2.3.7 转速调整水平:
准确到或稳定在 r/min的 %,或 r/min以内
4.2.4 偶不平衡干扰比: g·mm/(g·mm2)
注:这个数值仅适用于单面平衡机。它描述了转子的偶不平衡对不平衡结果指示的影响。
4.2.5 压缩空气要求: Pa, m3/s
4.3 立式平衡机数据
4.3.1 转子质量和不平衡量限值
4.3.1.1 能够平衡的转子最大质量m ,应在平衡机的平衡转速(n1、n2、……)范围内规定。应给出对应平衡转速(n1、n2、……)范围在规定加速时间内平衡机能够完成加速的转子相对于轴线的最大转动惯量mr2,m 为转子质量,r 为回转半径,并同时给出相应的周期率(见表2)。
表2 立式平衡机数据
制造者: 型号:
平衡转速或转速范围(也见4.2.3.1) n1 n2 n3 n4 …
转子质量 kg
(见注1) 最大
最小
偶然过载力可达 N
(见注1)
转子对轴线的最大转动惯量 kg·m2
(见注2)
表2 (续)
制造者: 型号:
周期率(见注2)
最大不平衡度(或量) g·mm/kg或g·mm
(见注3) 测量值
允许值
最小可达剩余不平衡度, emar g·mm/kg
(见注4和第6章) 最大质量
0.2×最大质量
最小质量
模拟式不平衡量指示器的相应偏转量,mm
或
数字式指示装置显示的字数
(见注4) 最大质量
0.2×最大质量
最小质量
注1:偶然过载力仅需对应最低平衡转速标出。该力是在不直接损坏平衡机的情况下每个支承架能够承受的最大作用力。
注2:对于某一给定平衡转速的周期率是指在不损坏平衡机的情况下平衡最大转动惯量的转子时,平衡机每小时能进行启动和停机的次数。
注3:对于具有两个校正平面的刚性转子,通常是将该给定值的一半分配给每个平面;对于盘类转子,则该给定值的全部属于一个平面。
注4:软支承平衡机的限值通常以克毫米每千克(不平衡度,g·mm/kg)表示,该值代表转子位移,亦即平衡机支承移动的量度。对于硬支承平衡机,该限值通常以克毫米(g·mm)表示,因为此类平衡机通常就以这样的单位对指示的不平衡量进行出厂校准的(见第6章)。对于双面平衡机,该值是最小可达剩余不平衡量分配到两个平面上所得到的结果。
4.3.1.2 关于生产效率(见第7章)应标明下列内容。
4.3.1.2.1 每次测量运行的时间:
a) 机械调整时间: s
b) 指示系统设定时间: s
c) 转子的准备时间: s
d) 平均加速时间: s
e) 读数时间(包括数值稳定时间): s
f) 平均减速时间: s
g) 将测量读数对应到转子上的时间: s
h) 其他必要的时间: s
i) 每次测量操作[上述a)~h)]总时间: s
4.3.1.2.2 不平衡量减少率URR: %
4.3.2 转子尺寸
4.3.2.1 如果平衡机具有两种或多种转速,对应每种转速应给出此参数。如果平衡机的平衡转速可无级变速,则此参数应以表格、公式或图表的格式给出。
应提供主轴承载面或安装平面和诸如钻削动力头、电控箱等障碍物件在其安装平面的以上部分的足够详细的外形尺寸图,以供使用者确定能够容纳的最大转子的空间及所需要的工装和(或)接头。
4.3.2.2 最大直径: mm
a) 最大总高度: mm
b) 最大重心高度: mm
100%最大质量时的高度: mm
50%最大质量时的高度: mm
25%最大质量时的高度: mm
4.3.2.4 应标明转子外形的极限尺寸,包括平衡机轴端或安装平面的接口尺寸(见图2)。
4.3.2.5 对校正平面的限定(按5.4的规定)应予以说明。
4.3.3 驱动
4.3.3.1
平衡转速 施加到转子上的额定扭矩
r/min N·m
n1
n2
n3
n4
n5
n6
n7
n8
说明:
1——转子;
2——连接器;
3——角度盘;
4——主轴;
5——上校正平面;
6——质心平面;
7——下校正平面;
8——连接器安装孔;
9——柱塞直径。
图2 标明转子外形极限尺寸和与立式平衡机安装连接关系的示例
4.3.3.2 施加到转子上的扭矩:
a) 零转速扭矩:额定扭矩的 %
b) 启动扭矩可调:从额定扭矩的 %到 %
c) 峰值扭矩:额定扭矩的 %
注:在绝大多数情况下,加速转子需要最大扭矩。但是在转子有高风阻或摩擦阻力大的情况时,平衡转速需要最大的扭矩。
4.3.3.3 主动力源(电动机类型): a) 额定功率: kW
b) 电动机转速: r/min
c) 电源:电压/频率/相数: / /
4.3.3.4 制动:
a) 制动类型:
b) 制动扭矩可调:从额定扭矩的 %到 %
c) 制动装置能否用作夹持装置? 能/否
4.3.3.5 电动机和控制系统符合下述标准:
4.3.3.6 转速调整水平:
准确到或稳定在 r/min的 %,或 r/min以内。
4.3.4 偶不平衡干扰比: g·mm/(g·mm2)
注:这个数值仅适用于单面平衡机。它描述了转子的偶不平衡对不平衡指示的影响。
4.3.5 压缩空气要求: Pa, m3/s
5 平衡机性能
5.1 工作原理
应给出位移测量、力测量、谐振、补偿等平衡机工作原理的详细说明。
5.2 平衡机的结构
5.2.1 制造商应说明平衡机的一般结构型式和主要设计特点,例如:
——水平或垂直的旋转轴;
——软支承系统或硬支承系统;
——带机械补偿器的谐振式平衡机。
5.2.2 为方便使用,制造商应尽可能提供下列详情。
5.2.2.1 为支承转子而设计的部件,如:
——V 型块;
——开式滚轮;
——半开滑动轴承;
——闭式滚珠、滚柱或滑动轴承;
——转子的调心轴承;
——调整总成的装置。
用到轴承时,应给出轴承润滑要求的细节。
5.2.2.2 承受转子轴向推力装置的机械调整和功能(仅对卧式平衡机而言)。
5.2.2.3 用于检测不平衡效应的传感器的类型。
5.2.2.4 驱动及其控制。
5.3 指示系统
5.3.1 一般要求
平衡机应具有测定不平衡量值及其相角位置的装置,对该装置应予以描述,示例如下:
——光点矢量瓦特计指示系统;
——带有相敏检波器的电压表指示系统(包括频率转换系统);
——带有频闪仪和滤波器的电压表指示系统;
——转子本身带有相角位置标志的电压表指示系统;
——带有机械和电气指示的补偿器。
5.3.2 量值指示器
制造商应对平衡机上的量值指示装置予以说明,示例如下:
——瓦特计或电压表分量指示器;
——瓦特计或电压表量值指示器;
——瓦特计或电压表矢量指示器;
——机械式或光学式指示器;
——模拟式或数字式指示器。
5.3.3 相角指示器
制造商应对平衡机上的相角指示装置予以说明,示例如下:
——瓦特计和电压表分量指示器;
——瓦特计和电压表矢量指示器;
——在以度为单位标度的仪表上直接指示相角;
——示波器、频闪指示器;
——机械式或光学式指示器;
——模拟式或数字式指示器。
5.3.4 指示系统的操作
制造商应描述获取读数的步骤,至少应考虑以下几点:
a) 需要多少次测量运行可获取:
——单面平衡过程中的两个读数;
——双面平衡过程中的四个读数。
b) 是否一个指示器能显示每个读数,或对于每个读数是否需要切换。
c) 测量运行结束后能否保留读数。
d) 是否为每个平面提供一个独立的可指示轻位或重位的加—减切换开关。
5.4 平面分离系统
5.4.1 本条不适用于单面平衡机,见5.4.2。
制造商应说明平衡机是否具有平面分离功能,如果有此功能,至少应给出下列细节:
a) 对于以前未曾平衡的某类型的单个转子如何操作。
b) 对成批的具有相同尺寸和质量的单种转子如何操作。
c) 能有效进行平面分离的转子几何尺寸的限值应根据校正平面干扰比表明的有效性而确定,并做下列说明:
——能有效进行平面分离的支承间距与平面间距之比;
——一个或两个校正平面能否位于支承之内或之外;
——质心能否位于两个选定的校正平面或支承之内或之外。
d) 指示系统能否也可用于直接测量静不平衡和偶不平衡。
5.4.2 对单面卧式或立式平衡机,制造商应说明平衡机能抑制偶不平衡影响的能力(见11.8)。