1 Scope
This document provides specifications for vibration and balance limits for ventilation fans for all applications, except for ventilation fans specifically designed for air circulation, such as ceiling and table fans, but limited to all types of ventilation fans with an installed capacity of less than 300 kW or motors with a maximum power of 355 kW commercially available (following the R20 series), for ventilation fans with a power exceeding this value, the applicable limits are given in ISO 10816-3; where the power of the ventilator to be installed varies between 300 kW and more and is an item under a single contract, the manufacturer and the purchaser shall agree on the applicable standard, usually by majority opinion of the participating parties.
Vibration data may be required for different applications, as detailed in chapter 5. If the customer is willing to accept lower quality balanced vibration levels see Appendix H.
This document recognises that vibration measurements can be recorded as velocity, acceleration or displacement in absolute units or in decibels based on a reference value; the value of the vibration measurement will be influenced by the actual installation on the balancing machine (see Appendix B), however the preferred parameter is velocity in millimetres per second (mm/s), given in root mean square (r.m.s) and bee-peaks or peaks, given the different customs around the world; It should also be remembered that the ventilator and its components can be considered as a spring-mass system and an understanding of this can help in solving most vibration problems (see Appendix D).
At the same time, it has been taken into account that ventilators are often not connected to the ductwork when tested in the factory, which results in significantly different pneumatic conditions compared to normal operation; also, temporary foundation supports may be used, which have different mass product stiffnesses than those used in the field, and accordingly, such tests provide for vibration measurements in a "narrow band"; field tests The "wide band" is specified, which represents a measure of the overall vibration intensity.
This document covers ventilator equipment with rigid rotors, commonly used in: commercial heating, ventilation and air conditioning, industrial processes, mining/tunnel ventilation and power generation; other areas are not specifically excluded; c applications where severe stresses, shocks or temperature extremes are not included, the use of any part or all of this document or its amendments is subject to agreement between the parties.
The foundation and actual installation of the ventilator equipment is outside the scope of this document, as the foundation design and installation of the ventilator is not normally undertaken by the ventilator manufacturer, and it is fully assumed that the foundation used to install the ventilator will provide the required support and stability to meet the vibration evaluation guidelines for ventilators arriving from the factory.
Other factors, such as impeller cleanliness, aerodynamic condition, background vibration, operating speeds different from those intended, and ventilator maintenance, may affect ventilator vibration levels but are outside the scope of this document.
This document is intended to cover only the balance and vibration of ventilators and does not consider the effects of vibration on personnel, equipment or processes.
2 Normative references
The contents of the following documents constitute essential provisions of this document by means of normative references in the text. Among them, note the date of the reference documents, only the date of the corresponding version applies to this document; do not note the date of the reference documents, the latest version (including all the revision of the list) applies to this document.
GB/T9239.1-2006 Mechanical Vibration - Balance Quality Requirements for Stationary (Rigid) Rotors - Part 1: Specification and Inspection of Balance Tolerance (ISO 1940-1; 2003, 1DT)
ISO 254 Belt drives - Pulleys - Quality finish and bal ance
ISO 4863 Flexible shaft couplings - Information to be supplied by users and manufacturers
ISO 5348 Mechanical vibration and shock - Mechanical
GB/T 41973-2022/ISO 14694:2003 mounting of accelerometers)
Note: GB/T 14412-2005 Mechanical Installation of Mechanical Vibration and Impact Accelerometers (ISO 5348:1998, IDT)
ISO 5801 Fans - Performance testing using standardized airways
Note: GB/T 1236-2017 Performance Test of Industrial Fans and Standardized Ducts (ISO 5801: 2007, IDT)
ISO 10816-3 Mechanical vibration Measurement and evaluation of machine vibration on non rotating parts Part 3: Industrial machines with rated power greater than 15 kW and rated speed between 120 r/min and 15 000 r/min measured in the field (Mechanical vibration - Evalua-tion of machine vibration by measurements on non-rotating parts - Part 3: Industrial machines withnominal power above 15 kW and nominal speeds between 120 r/min and 15 000 r/min when measuredin situ)
Note: GB/T 6075.3-2011 Mechanical Vibration Measurement and Evaluation of Machine Vibration on Non rotating Parts, Part 3: Industrial Machines with Rated Power greater than 15 kW and Rated Speed between 120 r/min and 15000 r/min Measured on Site (ISO 10816-3.2009.IDT)
ISO 13348 Industrial fans - Tolerances, methods of conversion and technical data presentation
ISO 14695:2003 Industrial fans - Method of measurement off vibration
ISO 21940-11 Mechanical vibration - Rotor balancing - Part 11: Procedures and tolerances for rotors with rigid behavior
Note: GB/T 9239.1-2006 Mechanical Vibration - Balance Quality of Constant (Rigid) Rotors - Part 1: Specification and Inspection of Balance Tolerance (ISO 1940-1, 2003, IDT)
3 Terminology and definitions
The following terms and definitions apply to this document.
4 Symbols and units
The following symbols apply to this document.
5 Purpose of the test
Before any vibration test is carried out, it is desirable that the information required regarding the purpose of the test is clearly defined and agreed upon by all parties involved.
6 Classification of applications for balance and vibration (category BV)
The design/construction of the ventilator and the circumstances in which it is designed are important criteria for classifying many types of ventilators with respect to their application and meaningful balance quality classes and vibration levels.
The classification is given in Table 1 in a compilation of the application categories of ventilation fans according to the acceptable balance and vibration limits and the purpose for which they may be placed in use.
7 Balancing
7.1 Overview
The manufacturer of the ventilator is responsible for balancing the ventilator-impeller assembly to acceptable commercial standards; this document is based on ISO 21940-11 and is balanced on a special balancing machine with high sensitivity, the accuracy of the balancing machine should be assessed in accordance with the requirements for residual unbalance allowed.
7.2 Balancing quality classes
The following balancing quality classes apply to ventilator impellers. Ventilator manufacturers may add other rotating parts (shafts, couplings, grooved pulleys/pulleys, etc.) to a rotating assembly to be balanced together. Alternatively, balancing of individual components can be requested. The balancing requirements for couplings and pulleys are described in ISO 4863 and ISO 254.
8 Ventilator vibration
8.1 Measurement requirements
8.1.1 Overview
Figures 1 to 4 illustrate some of the possible locations and orientations for taking vibration readings on each ventilator bearing, other locations may be relevant for vibration measurements on the foundation or ventilator flange (see ISO 14695), the values shown in Table 4 are based on readings taken perpendicular to the axis of rotation; the number and location of test readings for factory or field operation are to be determined by the ventilator manufacturer or in consultation with the It is recommended that measurements be taken on the bearings of the impeller shaft or, if this is not feasible, that the signal collector be mounted on the shortest direct mechanical path between the sensor and the bearings; when a continuous mechanical path is not available, the sensor should not be mounted on an unsupported panel, ventilator casing, guard, flange or other part of the ventilator unless it is necessary to give information on the transmission of vibration to the duct and/or foundation (see ISO 14695). (see ISO 14695 and ISO 5348).
Horizontal data should be read in a radial direction at right angles to the ventilator shaft, vertical data should be read at right angles to the ventilator shaft and perpendicular to the horizontal reading, and axial data should be read in a direction parallel to the axis of the rotor shaft (rotor's).
9 Other rotating parts
Accessory rotating parts that can affect the vibration level of a ventilator include drive wheels, belts, couplings and motors/drives. When a ventilator is ordered from the manufacturer as a bare unit (i.e. the manufacturer does not supply the drive and/or motor or, if supplied, does not take responsibility for installation), it is not always practical for the manufacturer to carry out a final test run of the vibration level of the complete unit, and therefore, although the manufacturer has carried out impeller balancing, until the drive and/or drive is connected to the ventilator shaft and the unit is tested for vibration level in the start-up condition, the user It is not possible to determine whether the complete ventilator unit is running smoothly.
Balancing adjustments are often required to reduce vibration levels to start-up levels; it is recommended that all new BV-3, BV-4 and BV-5 ventilator units undergo a final complete test run prior to operational commissioning to establish a baseline for future predictive maintenance work.
The manufacturer of the ventilator cannot be held responsible for vibration effects caused by the addition of drive components after the factory test run; for more information on the balance quality class of components or vibration, see the relevant references listed in chapter Peal.
10 Instrumentation and calibration
10.1 Instrumentation
The instrumentation and balancing machine used should meet the requirements of the task and be within the current calibration period, see ISO 1940-1:1986, Chapter 8; the calibration interval of the instrumentation should be determined in accordance with the recommendations of the instrumentation manufacturer and the instrumentation should be in good condition and suitable to perform the required functions for the entire test period.
The person operating the instrument shall be familiar with the instrument and have sufficient experience to detect possible instrument malfunction or degradation in time; when the instrument requires corrective action or calibration, he shall be withdrawn from work until the corrective action has been completed.
10.2 Calibration
All instruments shall be calibrated to known standards, the complexity of which varies from physical inspection to complete calibration; the use of traceable weights that have been calibrated to determine residual unbalance, as described in ISO 1940-1;1986, 8.3, is an accepted method of calibrating instruments.
11 Records
11.1 Balancing
Appendix A (informative) Relationships between vibrational displacement, velocity and acceleration for sinusoidal motion
Appendix B (informative) Assembly guidelines for balancing on a balancing machine
Appendix C (informative) Sources of vibration
Appendix D (informative) Equations of vibration
Appendix E (Informative) Vibration and Support
Appendix F (informative) Unbalance and bearing response
Appendix G (informative) Condition monitoring and diagnostic guidelines
Appendix H (informative) Relief recommendations for specified classes and levels
Bibliography
1 Scope
2 Normative references
3 Terminology and definitions
4 Symbols and units
5 Purpose of the test
6 Classification of applications for balance and vibration (category BV)
7 Balancing
8 Ventilator vibration
9 Other rotating parts
10 Instrumentation and calibration
11 Records
Appendix A (informative) Relationships between vibrational displacement, velocity and acceleration for sinusoidal motion
Appendix B (informative) Assembly guidelines for balancing on a balancing machine
Appendix C (informative) Sources of vibration
Appendix D (informative) Equations of vibration
Appendix E (Informative) Vibration and Support
Appendix F (informative) Unbalance and bearing response
Appendix G (informative) Condition monitoring and diagnostic guidelines
Appendix H (informative) Relief recommendations for specified classes and levels
Bibliography
1范围
本文件对所有用途的通风机提供了振动与平衡限值的规范,专门设计用于空气循环的通风机除外,如吊扇和台扇等,但限于装机容量小于300 kW所有种类的通风机或市场可以购买的最大功率为355 kW的电机(遵循R20系列),对于功率超过这个数值的通风机,适用的限值见ISO 10816-3;当安装使用的通风机其功率在300 kW上下变化,且为单一合同下的物项时,制造商和采购方应就适用的标准协商一致,通常以参与单位多数意见为原则。
振动数据可为不同用途所需,详见第5章。如果客户愿意接受较低品质的平衡振动水平时见附录H。
本文件认可振动测量值可以记录为速度、加速度或位移,单位为绝对单位或基于参考值的分贝;振动测量的数值会受到在平衡机上实际安装情况的影响(见附录B),然而首选的参数为速度,单位为毫米每秒(mm/s),鉴于世界各地习惯不同,给出均方根(r.m.s)和蜂-峰或峰值;还宜记住的是,通风机及其部件可视作弹簧-质量系统,对此的理解有助于解决大部分的振动问题(见附录 D)。
同时,已经考虑到工厂进行试验时通风机常常不与管道系统连接,这样与正常运行相比,气动工况存在显著差异;另外也可采用临时基础支承,其质量积刚度与现场使用情况也不同,相应地,这类的测试规定以“窄带”测量振动;现场测试规定采用宽带”进行,其代表了总体振动烈度的度量。
本文件包含带有刚性转子的通风机设备,西常见于:商用供热,通风和空调,工业过程,矿业/隧道通风以及发电领域,其他领域未予以特别排除;c不包含严重受力,冲击或极端温度的应用场合,对于本文件或其修正的任意部分或全部的采用,由莎及的各方协商确定。
通风机设备的基础及实际安装不在本文件范围之内,基础设计和通风机安装一般不是由通风机制造商承担,完全可以认为用于安装通风机的基础能够提供需要的支承及稳定性,满足由工厂运抵的通风机振动评价准则。
其他因素﹐诸如叶轮清洁度﹑气动状态、背景振动、与原定不同的运行转速,以及通风机维护等,会影响通风机振动水平,但不在本文件范围之内。
本文件旨在仅涵盖通风机的平衡与振动,不考虑振动对人员,设备或过程的影响。
2规范性引用文件
下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T9239.1-2006机械振动恒态(刚性)转子平衡品质要求第1部分:规范与平衡允差的检验(ISO 1940-1;2003,1DT)
ISO 254皮带传动皮带轮质量成品与平衡(Belt drives - Pulleys - Quality finish and bal-ance)
ISO 4863弹性联轴器﹐由用户和制造商提供的资料(Resilient shaft couplings - Information tobe supplied by users and manufacturers)
ISO 5348机械振动与冲击加速度计的机械安装(Mechanical vibration and shock - Mechanical
GB/T 41973-2022/ISO 14694:2003 mounting of accelerometers)
注:GB/T 14412-2005机械振动与冲击加速度计的机械安装(ISO 5348:1998,IDT)
ISO 5801工业通风机用标准化风道性能试验(Fans - Performance testing using standardizedairways)
注:GB/T 1236-2017工业通风机﹑用标准化凤道性能试验(ISO 5801: 2007,IDT)
ISO 10816-3机械振动在非旋转部件上测量评价机器的振动第3部分:额定功率大于15 kW额定转速在120 r/min至15 000 r/min之间的在现场测量的工业机器(Mechanical vibration - Evalua-tion of machine vibration by measurements on non-rotating parts - Part 3: Industrial machines withnominal power above 15 kW and nominal speeds between 120 r/min and 15 000 r/min when measuredin situ)
注:GB/T 6075.3-2011机械振动在非旋转部件上测量评价机器的振动﹐第3部分:额定功率大于15 kW额定转速在120 r/min至15000 r/min之间的在现场测量的工业机器(ISO 10816-3.2009.IDT)
ISO 13348工业通风机公差及技术参数表示与转换方法(Industrial fans - Tolerances, methodsof conversion and technical data presentation)
ISO 14695:2003工业通风机通风机振动测量方法(Industrial fans - Method of measurement offan vibration)
ISO 21940-11机械振动转子平衡第11部分:刚性转子的程序和公差(Mechanical vibration - Rotor balancing - Part 11: Procedures and tolerances for rotors with rigid behaviour)
注:GB/T 9239.1-2006机械振动恒态(刚性)转子平衡品质阕淖第1部分:规范与平衡允差的检独(ISO 1940-1, 2003,IDT)
3术语和定义
下列术语和定义适用于本文件。
4符号和单位
下列符号适用于本文件。
5试验目的
在进行任何振动试验之前,相关各方宜清晰界定有关试验目的所需信息并达成一致。
6平衡与振动的应用分类(BV类别)
通风机的设计/结构及其设计所用场合﹐是很多类型通风机关于其应用与有意义的平衡品质等级和振动水平分类的重要准则。
表1按照通风机关于可接受的平衡与振动限值与可能安放使用的目的划分应用类别,汇编给出了分类,
7平衡
7.1概述
通风机制造商负责对通风机-叶轮组件进行平衡,使其达到可接受的商业标准要求;本文件根据ISO 21940-11制定,在高灵敏度的专用平衡机上进行平衡,平衡机的精度评定应符合残余不平衡量允许的要求。
7.2平衡品质等级
以下平衡品质等级适用于通风机叶轮,通风机制造商可将其他转动部件(轴,联轴器,槽轮/皮带轮等)加入组合成旋转组件一同进行平衡。另外,可要求进行单独部件的平衡。联轴器和皮带轮的平衡要求见ISO 4863和ISO 254.
8通风机振动
8.1测量要求
8.1.1概述
图1~图4说明了在每个通风机轴承上测量振动读数时的一些可能的位置和方向,其他位置可能与在基础或通风机法兰上的振动测量相关(见ISO 14695),表4所示的数值所依据的是与旋转轴垂直方向测得的读数﹔在工厂或现场运行的试验读数的数量和位置由通风机制造商决定,或与采购方协商确定﹐建议在叶轮轴的轴承上进行测量﹐如不可行,则应将信号采集器安装在传感器与轴承之间的最短直接机械路径上﹔当不能得到连续的机械路径时,不应将传感器安装在无支撑的面板、通风机机壳、防护罩,法兰或通风机的其他地方,除非需要给出振动传递至管道和/或基础的信息(见ISO 14695和ISO 5348)。
水平数据应在与通风机轴成直角的径向方向上读取,垂直数据应在相对于通风机轴成直角,且与水平读数相垂直的方向读取,轴向数据应在与转轴(转子的)轴线相平行的方向读取。
9其他旋转部件
可影响通风机振动水平的附属旋转部件包括驱动轮,皮带、联轴器以及电机/驱动装置。当从制造商处订购的通风机为裸机状态时(即制造商不提供驱动和/或电机,或即使提供也不负责安装),由制造商进行最终整机的振动水平试验运行并不总是切实可行,因此,尽管制造商已经进行过叶轮平衡,但是在驱动和/驱动器与通风机轴连接,机组进行启动状态振动水平测试之前,用户无法确定通风机整机是否平稳运行。
通风机整机常常要求进行平衡调整,以将振动水平降低至启用状态水平;建议对所有新建的BV-3、BV-4和BV-5的通风机装置,在工作调试之前﹐先进行最终整机试验运行,以此确立未来的预测性维修工作的基准。
工厂试验运行之后增加的驱动部件所造成的振动效应,通风机制造商对此不能承担责任;关于部件的平衡品质等级或振动的更多信息,见第⒉章列出的相关引用文件。
10仪表及校准
10.1仪表
所用仪表及平衡机应满足任务要求并处在当前的校准有效期内﹐见ISO 1940-1:1986第8章;仪表的校准周期宜按照仪表制造商的建议确定,仪表应完好并适合于完成整个试验期间所要求的功能。
操作仪表的人员应熟悉仪表,并拥有足够的经验及时察觉可能的仪表故障或性能退化;当仪表需要采取纠正措施或校准时,应退出工作,直至完成纠正措施的执行。
10.2校准
所有仪表应根据已知标准进行校准,校准工作从实物检验到完整的校准,其复杂性各不相同;采用可追溯的已经通过校准的砝码确定残余不平衡量,如ISO 1940-1;1986中8.3所述,是一种被接受的校准仪器的方法。
11记录
11.1平衡
附录A(资料性)正弦运动的振动位移﹑速度及加速度之间的关系
附录B(资料性)在平衡机上进行平衡的装配指南
附录C(资料性)振动源
附录D(资料性)振动方程
附录E(资料性)振动与支承
附录F(资料性)不平衡与轴承的反应
附录G(资料性)状态监测与诊断指南
附录H(资料性)规定的等级与水平的宽限建议
参考文献