![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative. This document is developed in accordance with the rules given in GB/T 1.1-2020 Directives for standardization—Part 1: Rules for the structure and drafting of standardizing documents. This standard was proposed by and is under the jurisdiction of the National Technical Committee of Standardization of Examination Methods for Key Products of Quality Supervision (SAC/TC 374). Introduction The extended electrical life of circuit-breaker (circuit-breaker class E2) defined in 3.4.113 of GB/T 1984-2014, that is, the electrical endurance of circuit-breaker, is derived from the operation experience of specific high-voltage circuit-breaker and the system protection and maintenance strategy. Moreover, for newly developed circuit-breakers, the electrical endurance can only be verified by laboratory tests. The new maintenance strategy tends to be “maintenance-free circuit-breaker”. For most users, the main concern is to reduce maintenance cost, and the maintenance-free performance of circuit-breaker can be verified by laboratory tests. In order to prevent different users from adopting different electrical endurance test procedures and ensure the consistency of the electrical endurance data of circuit-breakers provided by various manufacturers in the sales process, it is necessary to put forward standardized test procedures. Electrical endurance testing for circuit-breakers above a rated voltage of 52 kV 1 Scope This document specifies the general provisions, test samples, electrical endurance test procedures separated from standard type test, electrical endurance test procedures combined with standard type test, no-load test, wear test and acceptance test of the electrical endurance testing for circuit-breakers of 52 kV and above. This document is applicable to SF6 circuit-breakers class E2 for overhead lines of 52 kV and above. 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. GB/T 1984-2014 High-voltage alternating-current circuit-breakers GB/T 2900.20-2016 Electrotechnical terminology—High-voltage switchgear and controlgear GB/T 7674-2008 Gas-insulated metal-enclosed switchgear for rated voltages of 72.5kV and above GB/T 11022-2011 Common specifications for high-voltage switchgear and controlgear standards 3 Terms and definitions For the purposes of this document, the terms and definitions given in GB/T 1984-2014, GB/T 2900.20-2016 and GB/T 11022-2011 as well as the following apply. 3.1 restrike a resumption of non-residual current between the contacts of a mechanical switching device within a quarter of a power frequency period or longer after the arc extinguished during a breaking operation Note: All circuit-breakers in operation have a certain probability of restrike. The level of restrike probability also depends on the operating conditions (such as insulation coordination, annual operation times, user's maintenance plan, etc.). Therefore, in order to classify the restrike performance of circuit-breakers, circuit-breakers class C1 and Class 2 are introduced. [Source: GB/T 2900.20-2016, 9.43, modified] 3.2 circuit-breaker class C1 a circuit-breaker that has a low probability of restrike during capacitive current breaking verified by specified type tests [Source: GB/T 1984-2014, 3.4.114] 3.3 circuit-breaker class C2 a circuit-breaker that has a very low probability of restrike during capacitive current breaking verified by specified type tests [Source: GB/T 1984-2014, 3.4.115] 3.4 circuit-breaker class E2 a circuit-breaker, designed such as not to require maintenance of the breaking parts of the main circuit during its expected operating life, and only little maintenance for other parts (circuit-breaker with extended electrical life) Note 1: Generally used for applications where frequent fault current are switched. Note 2: Little maintenance refers to lubrication, if applicable, changing gas and cleaning external surfaces. [Source: GB/T 1984-2014, 3.4.113, modified] 3.5 rated short-circuit break current the expected maximum short-circuit RMS current at which the circuit-breaker terminal can break under the specified service and performance conditions and also at the specified voltage 3.6 arcing time interval of time between the instant of an arc initiation in the first pole and the instant of the final arc extinction in all poles [Source: GB/T 1984-2014, 3.7.134] 3.7 direct test the test in which the applied voltage, the current and the transient and power-frequency recovery voltages are all obtained from a circuit having a single-power source, which may be a power system, or special alternators as used in short-circuit testing stations, or a combination of both [Source: GB/T 4473-2018, 3.1] 3.8 synthetic test the test in which all of the current, or a major portion of it, is obtained from one source (current circuit), and in which the applied voltage and/or the recovery voltage (transient and power frequency) are obtained wholly or in part from one or more separate sources (voltage circuits) [Source: GB/T 4473-2018, 3.2] 3.9 electrical endurance the limit of cumulative electrical wear that a circuit-breaker can withstand from the breaking current while operating normally under the normal working conditions during the operating life Note: It is also commonly referred to as extended electrical life. 3.10 transient recovery voltage; TRV the recovery voltage observed with obvious transient character across contacts of circuit-breaker after breaking of a short-circuit current and arc extinction Note 1: The transient recovery voltage may be oscillatory or non-oscillatory or a combination of these depending on the characteristics of the circuit and the switching device. It includes the voltage shift of the neutral point of a polyphase circuit. Note 2: The transient recovery voltage in three-phase circuits is, unless otherwise stated, that across the first-pole-to-clear, because this voltage is generally higher than the one that appears across each of the other two poles. Note 3: See 4.102 and Annex F of GB/T 1984-2014 for more details about TRV. [Source: GB/T 2900.20-2016, 9.23, modified] 3.11 power frequency recovery voltage the recovery voltage that appears across contacts of circuit-breaker when the transient voltage phenomena has subsided after breaking of a short-circuit current and arc extinction [Source: GB/T 2900.20-2016, 9.24, modified] 4 General 4.1 Maintenance-free period of test samples The maintenance-free test period is usually assumed to be 25 years. The test procedure given in this document is based on the cumulative electrical wear caused by current breaking in the 25-year operating period. If the user thinks that the overhaul period of the electrical wear parts of the arc extinguishing chamber is longer than 25 years, it would be necessary to formulate a special test procedure. Note: Electrical wear is a phenomenon that metal liquid bridges and arcs will be generated in the contact gap of circuit-breakers during breaking current, which will cause metal transfer, splashing and vaporization of contact materials, thus leading to contact material loss and contact surface deformation. The action of arc will also cause electrical wear for other parts in the arc extinguishing chamber. Such as the nozzle of SF6 arc extinguishing chamber. Electrical wear adversely affects the breaking performance, current flow performance and insulation performance of the breaker. 4.2 Factors to be considered in determining the electrical endurance test procedure Factors to be considered in determining the electrical endurance test procedures include, but are not limited to: ——reliability of test procedure; ——economy of test procedure; ——substitution of test procedure, such as using modified standard type test as test procedure of acceptance test; and ——possibility of combining test procedures, such as combining standard type test and electrical endurance test into one test procedure. Note 1: Although they are different from the actual operating conditions, these approaches can judge the design margin of the expected making and breaking of the product under wear conditions. Note 2: The standard type test refers to the making and breaking tests in accordance with those specified in 6.106~6.111 in GB/T 1984-2014. Note 3: This document shall be used together with GB/T 1984-2014, including the tolerance of test parameters. 4.3 Composition of electrical endurance test Electrical endurance test consists of wear test (see Clause 9) and subsequent acceptance test (see Clause 10). 4.4 Types of electrical endurance test procedures This document recommends two electrical endurance test procedures, namely: a) the electrical endurance test procedure separate from standard type test,see Clause 6. b) the electrical endurance test procedure combined with standard type test, see Clause 7. Contents Foreword i Introduction ii 1 Scope 2 Normative references 3 Terms and definitions 4 General 4.1 Maintenance-free period of test samples 4.2 Factors to be considered in determining the electrical endurance test procedure 4.3 Composition of electrical endurance test 4.4 Types of electrical endurance test procedures 4.5 Basic principles of electrical endurance test procedures 5 Test sample 5.1 General 5.2 Test sample parameters and structure 5.3 Information of test samples 5.4 Consistency confirmation of test sample drawings and data 6 Electrical endurance test procedure separated from standard type test 6.1 Test sequence and criteria 6.2 Test conditions for electrical endurance test separate from standard type test 7 Electrical endurance test procedure combined with standard type test 7.1 General 7.2 Equivalent number of breaking operations 7.3 Combined test procedure 8 No-load test 8.1 General 8.2 Rated operating sequence 8.3 No-load operation test to verify the consistency of test samples 8.4 No-load operation tests before and after electrical endurance test 9 Wear test 9.1 General 9.2 Test procedures and requirements 10 Acceptance test 10.1 General 10.2 No-load operation test 10.3 T10 test 10.4 L75 test at 60% rated short-circuit break current 10.5 Switching test at line charging current 10.6 Status inspection Annex A (Informative) Making and breaking test methods of circuit-breakers associated with electrical endurance testing A.1 Basic short-circuit test A.2 Short-line fault test A.3 Out-of-step making and breaking tests (OP1 and OP2) A.4 Switching test at line charging current Annex B (Informative) Examples of electrical endurance test of circuit-breakers separated from standard type test B.1 Test sample B.2 Test procedure Reference Figure 1 Connection of three-pole switching device Figure B. 1 Schematic diagram of test sample Figure B. 2 Oscillogram of opening no-load characteristic curve Figure B. 3 Oscillogram of closing no-load characteristic curve Figure B. 4 T10 (T60) test circuit for abrasion resistance Figure B. 5 Oscillogram of T10 test for abrasion resistance Figure B. 6 T10 acceptance test circuit Figure B. 7 Oscillogram of T10 acceptance test Figure B. 8 L75 acceptance test circuit at 60% rated short-circuit break current Figure B. 9 Oscillogram of L75 acceptance test at 60% rated short-circuit break current Figure B. 10 LC1 acceptance test circuit Figure B. 11 Oscillogram of LC1 acceptance test Figure B. 12 Impulse voltage test circuit for status inspection Table 1 Electrical endurance test sequence and criteria separated from standard type test Table 2 Number of breaking happened at 60% rated short-circuit breaking current (M90) Table 3 Test conditions for electrical endurance test separate from standard type test Table 4 Equivalent number of breaking operations Table 5 Combined procedure of electrical endurance test and standard type test of synthetic test for 50 kA circuit-breaker——type test method excluding electrical life Table 6 Combination procedure of electrical endurance test and standard type test for 50 kA circuit-breaker—type test method including electrical life Table 7 Relationship between capacitive voltage coefficient for capacitive current acceptance test in electrical endurance testing program and that for standard test Table B. 1 Record of no-load characteristic test parameters Table B. 2 Record of T10 (T60) abrasion resistance test parameters Table B. 3 Record of T10 acceptance test parameters Table B. 4 Record of TRV parameters of L75 acceptance test at 60% rated short-circuit break current Table B. 5 Record of L75 acceptance test parameters at 60% rated break current Table B. 6 Record of LC1 acceptance test parameters Table B. 7 Record of status inspection parameters using impulse voltage or T10 TRV test 52 kV及以上断路器电气耐久性试验方法 1 范围 本文件规定了52 kV及以上断路器的电气耐久性试验的总则、测试样品、和标准型式试验分开的电气耐久性试验程序、和标准型式试验合并的电气耐久性试验程序、空载试验、磨损试验和验收试验。 本文件适用于52 kV及以上、用于架空线路的E2级SF6断路器。 2规范性引用文件 下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 1984—2014 高压交流断路器 GB/T 2900.20—2016 电工术语 高压开关设备和控制设备 GB/T 7674—2008 额定电压72.5 kV及以上气体绝缘金属封闭开关设备 GB/T 11022—2011 高压开关设备和控制设备标准的共用技术要求 3术语和定义 GB/T 1984—2014、GB/T 2900.20—2016、GB/T 11022—2011界定的以及下列术语和定义适用于本文件。 3.1 重击穿 restrike 开关装置在开断操作过程中电弧熄灭后,在四分之一工频周期或更长时间内,触头间非剩余电流的电流重现。 注:运行中所有的断路器都有一定程度的重击穿概率。重击穿概率的水平还取决于运行条件(例如绝缘配合,每年的操作次数,用户的维修方案等),因此,为了把断路器的重击穿性能分类,故而引入了两级断路器:C1级和C2级。 [来源:GB/T 2900.20—2016,9.43,有修改] 3.2 C1级断路器 circuit-breaker class C1 一种断路器,在规定的型式试验验证容性电流开断过程中具有低的重击穿概率。 [来源:GB/T 1984—2014,3.4.114] 3.3 C2级断路器 circuit-breaker class C2 一种断路器,在规定的型式试验验证容性电流开断过程中具有非常低的重击穿概率。 [来源:GB/T 1984—2014,3.4.115] 3.4 E2级断路器 circuit-breaker class E2 一种断路器,在其预期的使用寿命期间,主回路中的开断用的零件不要求维护,其他零件只需很少的维护(具有延长的电寿命的断路器)。 注1:一般用于频繁开合故障电流场合。 注2:很少的维护是指润滑,如果适用,更换气体以及清洁外表面。 [来源:GB/T 1984—2014,3.4.113,有修改] 3.5 额定短路开断电流rated short-circuit break current 在规定的使用和性能条件以及规定的电压下,断路器端子处能够开断预期的最大短路电流有效值。 3.6 燃弧时间 arcing time 从第一极电弧起始时刻到所有极电弧熄灭时刻的时间间隔。 [来源:GB/T 1984—2014,3.7.134] 3.7 直接试验direct test 外施电压、电流以及瞬态和工频恢复电压均由一个单电源回路获得的试验,该电源可以是电力系统或者是用在短路试验站的专用发电机、或者是两者的组合。 [来源:GB/T 4473—2018,3.1] 3.8 合成试验synthetic test 全部电流或者大部分电流从一个电源(电流回路)获得,而外施电压和/或恢复电压(瞬态的和工频的)全部或部分从另一个或多个独立的电源(电压回路)获得的试验。 [来源:GB/T 4473—2018,3.2] 3.9 电气耐久性electrical endurance 断路器在寿命期内的正常工作条件下,能够正常运行并耐受开断电流引起的累积电磨损的极限值。 注:通常也称为延长的电寿命。 3.10 瞬态恢复电压transient recovery voltage;TRV 断路器在开断短路电流电弧熄灭时,在断口上出现的具有显著瞬变特性的恢复电压。 注1:该电压取决于回路和开关装置的特性,它可以是振荡的或非振荡的或两者的组合。它包括多相回路的中性点电压偏移。 注2:三相回路中瞬态恢复电压是指首开相上的电压,因该电压比出现在另外两相上的要高。 注3:有关TRV的更详细内容见GB/T 1984—2014的4.102及附录F。 [来源:GB/T 2900.20—2016,9.23,有修改] 3.11 工频恢复电压 power frequency recovery voltage 断路器在开断短路电流电弧熄灭时,瞬态电压现象消失后,出现在开关断口间的恢复电压。 [来源:GB/T 2900.20—2016,9.24,有修改] 4 总则 4.1 测试样品的免维护周期 测试样品免维护周期通常假设为25年。 本文件给出的试验程序是基于25年寿命期内电流开断引起的累积电磨损,如果用户认为灭弧室的电磨损部件的大修周期长于25年,则需要专门制定试验程序。 注:电磨损是断路器在开断电流过程中,触头间隙中会产生金属液态桥和电弧等,引起触头材料的金属转移、喷溅和气化,从而导致触头材料损耗和触头表面变形的一种现象。灭弧室内的其他部分在电弧作用下也会产生电磨损。如SF6灭弧室的喷口。电磨损对断器的开断性能、通流性能和绝缘性能产生不利影响。 4.2 确定电气耐久性试验程序时考虑的因素 确定电气耐久性试验程序时考虑的因素包括,但不限于: ——试验程序的可靠性; ——试验程序的经济性; ——试验程序的替代性,如使用修改的标准型式试验作为验收试验的试验程序; ——试验程序合并的可能性,如把标准型式试验和电气耐久性试验合并成一个试验程序。 注1:虽然这与实际的工况有差别,但这种方案能判断出产品在磨损条件下预期关合和开断的设计裕度。 注2:标准型式试验是指符合GB/T 1984—2014中6.106~6.111规定的关合和开断试验。 注3:本文件应与GB/T 1984—2014一起使用,包括试验参数的公差。 4.3 电气耐久性试验的组成 电气耐久性试验由磨损试验(见第9章)和随后的验收试验(见第10章)组成。 4.4 电气耐久性试验程序类别 本文件推荐两种电气耐久性试验程序,即 a)和标准型式试验分开的电气耐久性试验程序,见第6章。 b)和标准型式试验合并的电气耐久性试验程序,见第7章。 4.5 电气耐久性试验程序的基本原则 电气耐久性试验程序的基本原则包括,但不限于: ——电气耐久性试验程序中的试验由磨损试验阶段和随后的验收试验阶段组成。 ——在磨损试验阶段,断路器仅承受等效次数的累积开断操作,可不施加规定的瞬态恢复电压(TRV)。如果标准型式试验是电气耐久性试验与标准型式试验合并试验的一部分,GB/T 1984—2014适用。有关标准型式试验中的关合和开断试验方式参见附录A。 ——验收试验应在试验程序的磨损试验阶段后进行,断路器的磨损状态判定是按照断路器“接近免维护寿命终了条件”时的正常运行能力进行,而不是通过按照GB/T 1984—2014规定的全部开断能力来进行。 ——磨损试验和验收试验中的所有试验均可进行单相试验。如果与标准型式试验合并进行,也可进行三相试验(见GB/T 1984—2014的6.102.4)。 ——磨损试验和验收试验应连续进行,不应中途间断,也不应进行任何形式的维护。但是,如果不可行(如转移场地),并且地方安全法规要求降低压力后才能移动设备,只要保证至少95%的气体被重新充入断路器再用,允许降低断路器的内部压力后进行移动。 5测试样品 5.1 总则 电气耐久性试验程序中的所有试验应在同一台测试样品上进行。 电气耐久性试验的试品应与标准型式试验的测试样品的机械特性一致。 5.2测试样品参数及结构 本文件适用的测试样品参数及结构特性主要包括,但不限于: ——额定电压52 kV及以上; ——运行频率50 Hz; ——设计安装在户内或户外; ——根据使用功能和结构形式,通常包含落地罐式、瓷柱式及气体绝缘金属封闭开关设备(GIS)中的断路器等。 5.3测试样品的信息 测试样品的信息包括,但不限于: ——图样和相关资料,包含型号、主要部件和零件信息; ——所有零部件的详细设计记录。 5.4测试样品图样和资料一致性确认 测试样品图样和资料一致性确认见GB/T 11022—2011的附录A。 6 和标准型式试验分开的电气耐久性试验程序 6.1试验顺序和判据 和标准型式试验分开的电气耐久性试验顺序和判据见表1。 磨损试验中的T60开断操作(60%额定短路开断电流)的开断次数见表2。 表1 和标准型式试验分开的电气耐久性试验顺序和判据 试验项目 试验参数和要求 验证试品一致性的空载操作试验 按8.3 磨损试验a 空载操作 按8.4 T60开断操作b (单分操作次数) 见表2 T10开断操作 (单分操作次数) 9 验收试验c 空载操作 按8.4 T10 按GB/T 1984—2014的6.100.1进行,仅进行单分操作 60%额定短路 开断电流的L75 按GB/T 1984—2014的6.109,并作如下修改: ——仅进行单分操作; ——通过增加电源回路阻抗将试验电流降低到额定短路开断电流的60% LC1d ——C1级断路器:24次O操作无重击穿或48次O操作一次重击穿; ——C2级断路器:48次O操作无重击穿或96次O操作一次重击穿 空载操作 按8.4 状态检查 按10.6 a磨损试验中的T10和T60开断操作的次序可以改变;验收试验中的T10和60%额定短路开断电流的L75开断操作的次序可以改变。 b磨损试验阶段的T60的操作次数是基于假定在验收试验阶段进行了3次60%额定短路开断电流的L75开断操作。在验收试验阶段60%额定短路开断电流的L75实际开断的次数多于3次时(例如进行合成试验时进行4次开断),那么磨损试验阶段的试验次数应相应地减少。 c验收试验阶段进行的所有开断试验应施加TRV。 d验收试验中LC1的试验次序在T10和60%额定短路开断电流的L75之后进行。 表2 60%额定短路开断电流时的开断次数(M90) 额定短路开断电流 kA T60开断操作次数(M90) ≤20 18 25 15 31.5 12 40 10 50 8 63 7 80 5 注1:M90是指电气耐久性试验的磨损试验中T60的开断次数.覆盖了25年寿命期内90%的累积电磨损。 注2:此表中的开断次数是假设25年的免维护周期。对于其他免维护周期,磨损试验中T60和T10的开断次数为表中给出的开断次数乘以免维护周期与假设25年周期的比值。 附录B给出了和标准型式试验分开的电气耐久性试验示例。 6.2 和标准型式试验分开的电气耐久性试验的试验条件和标准型式试验分开的电气耐久性试验的试验条件见表3。 表3 和标准型式试验分开的电气耐久性试验的试验条件 试验类型 操作顺序 试验电压和试验电流 操作电压和操作用压力 绝缘和/或开断用压力 燃弧时间 验证试品一致性的空载操作试验 按8.3 磨损试验 空载操作 按8.4 额定值 额定值 T60 O 按GB/T 1984—2014的6.106.3规定的T60型式试验,不施加TRV 额定值 额定值 按T60标准型式试验中的中燃弧时间 T10 O 按GB/T 19811—2014的6.106.1规定的T10型式试验,不施加TRV 额定值 额定值 按T10标准型式试验中的中燃弧时间 验收试验a 空载操作 按8.4 额定值 额定值 T10 O 按GB/T 1984—2014的6.106.1的T10型式试验 额定值 额定值 a 60%额定短路开断电流的L75 O 按GB/T 1984—2014的6.109.4,通过提高电源回路阻抗将试验电流降到额定短路开断电流的60%b 额定值 额定值 a 验收试验a LC1 O 按GB/T 1984—2014的6.111,试验电压为型式试验规定的试验电压的80%和相应于电压系数为1.12的电压值中的最大值(见表7) 额定值 额定值 分闸脱扣脉冲依次提前15°(电度) 空载操作 按8.4 额定值 额定值 状态检查 按10.6 — 额定值 注1:对于T10和T60的磨损试验,如果中燃弧时间的试验是在50 Hz下进行的,则50 Hz下的试验涵盖了60 Hz的要求。对于LC1的验收试验,60 Hz下的试验涵盖了50 Hz的要求。 注2:允许按照GB/T 1984—2014的6.102.4.2进行单元试验。 a由于操作或开断用的压力不同以及断路器的电磨损,对于验收试验,T10和具有60%额定短路开断电流的L75的燃弧时间可能不同于标准型式试验的数值。但是,试验中应再现全部的燃弧窗口,包括验证最短燃弧时间。 b如果采用合成试验,设计L75试验回路时,在合成回路的电流源回路中添加一个与人工线路电抗值相等的附加电抗来满足回路要求。 7 和标准型式试验合并的电气耐久性试验程序 7.1 总则 如果电气耐久性试验与标准型式试验合并,规定过于严格的限制条件会降低这一合并的经济性。 7.2开断操作的等效次数 为了在合并程序的磨损试验中获得最大的自由度,具有中燃弧时间的T60开断操作次数可以用其他试验方式代替,表4和公式(1)给出了相关的试验方式在中燃弧时间下的开断操作和在中燃弧时间下进行T60开断操作之间的等效关系。
|
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 |
服务热线:400-001-5431 | 电话:010-8572 5110 | 传真:010-8581 9515 | Email: bz@bzfyw.com | |
版权所有: 北京悦尔信息技术有限公司 2008-2020 京ICP备17065875号-1 51La |
本页关键词: |
GB/T 39891-2021, GB 39891-2021, GBT 39891-2021, GB/T39891-2021, GB/T 39891, GB/T39891, GB39891-2021, GB 39891, GB39891, GBT39891-2021, GBT 39891, GBT39891 |