1 Scope
This document describes all tests for the technical performance and characteristics of jet fans as defined in ISO 13349. This document does not cover ventilation fans designed for ducting applications or designed separately for air circulation, e.g. ceiling fans and table fans.
The test procedures described in this document apply to laboratory conditions and do not include field performance tests.
2 Normative references
The contents of the following documents constitute essential provisions of this document by means of normative references in the text. Where a reference is dated, only the version corresponding to that date applies to this document; where a reference is not dated, the latest version (including all amendment sheets) applies to this document.
GB/T 1236-2017 Performance Test of Industrial Fans and Standardized Air Ducts (ISO 5801:2007, IDT)
ISO 3744 Acoustics - Determination of sound power levels and sound energy levels of noise sources using sound pressure - Engineering methods for substantially free over a reflecting plane
Note: GB/T 3767-2016 Acoustics - Engineering method for determining sound power level and sound energy level of noise sources in an approximate free field above the reflecting surface (ISO 3744; 2010, IDT)
ISO 13347 (all parts) Industrial fans - De determination of fan sound power levels der standardized laboratory conditions
Note: GB/T 34877.3 2017 Industrial Fans - Determination of Sound Power Levels of Fans under Standard Laboratory Conditions - Part 3: Envelope Surface Method (ISO 13347-3:2004, IDT)
ISO 13349 Fans - Vocabulary and definitions of categories
Note: GB/T 19075-2003 Industrial Fans Vocabulary and Category Definitions (ISO 13349:1999. IDT)
ISO 14694 Industrial fans - Specifications for balance quality and vibration levels
ISO 14695 Industrial fans - Methods of measurement of vibration
ISO 21940-11 "Mechanical vibration - Rotor balancing - Part 11: Procedures and tolerances for rotors with rigid behavior"
Note: GB/T 9239.1-2006 Mechanical Vibration - Balance Quality Requirements for Constant (Rigid) Rotors - Part 1: Specification and Inspection of Balance Tolerance
(ISO 1940-1;2003,IDT)
IEC 60034-2-1 Rotating electrical machines - Part 2-1: Standard methods for determining losses and efficiency from tests (excluding machines for traction vehicles)
3 Terms and definitions
The terms defined in ISO 13349 and GB/T 1236-2017 and the following terms and definitions apply to this document.
3.1
effective fan dynamic pressurepa
The conventional quantity of the kinetic energy component of the output of a ventilation fan. For jet fans, this is calculated from the effective outlet air velocity of the ventilator and the inlet density.
Note that the effective fan dynamic pressure differs from the average value of the dynamic pressure through the section, since it does not take into account the fluctuating part of the kinetic energy due to deviations from the mean axial velocity distribution plane.
3.2.1
Gross fan outlet area
The surface area defined immediately downstream of the air conveyor.
Note: As a rule, the gross fan outlet area is the total area of the inner plane of the housing or duct or muffler (see Figure 1) without regard to any obstructions in the ventilator outlet.
3.2.2
Effective fan outlet areaeffective fan owtisy areatr
The effective area of a jet fan ventilator outlet less the area of the motor, fairing or other obstruction mentioned in the notes.
Note 1, if the centre body of the muffler reaches the ventilator outlet plane, then the effective ventilator outlet area is defined as the annular area of the ventilator outlet plane, as shown in Figure
1 a).
Note 2r If the ventilator has a muffler without a central body, as in Figure 1 b), then the effective ventilator outlet area is close to the cross-sectional area within the muffler v not an outlet area of some flared shape
Note 3. If the central body (the central part of the motor or muffler) does not extend to the outlet plane, the effective outlet area of the ventilator is close to the annular area between the housing and the motor, but increases with the distance between the central body and the outlet, as defined in Figure 1 c). When the motor is located on the inlet side, the diagram applies to the impeller hub rather than the motor.
4 Symbols and units
The following symbols and their units apply to this document.
5 Measured characteristic parameters
5.1 Overview
In order to use a jet fan correctly and to obtain satisfactory performance and reliability in the application, in addition to mechanical characteristics such as weight, overall dimensions and mounting dimensions, it is necessary to determine certain socio-economic properties and characteristics.
5.2 Thrust
Friction on the tunnel walls, inlet and outlet losses and sometimes traffic jams, as well as the effects of the weather at the tunnel entrance, create a pressure drop in the tunnel equal to the total pressure rise resulting from the momentum exchange between the jet fan exhaust airflow and the tunnel airflow. Since it is not possible to measure the momentum of the ventilator outlet airflow, but the change in momentum is equal in magnitude and opposite in direction to the thrust, the thrust measurement is used instead.
5.3 Input power
In order to design a tunnel installation, the input power of the ventilator motor should be known. In addition, this is a parameter that needs to be known in order to determine the overall efficiency of the jet fan.
5.4 Sound level
To ensure the best combination of jet fan and muffler to meet the sound level requirements of the tunnel, the sound levels at the inlet and outlet are usually determined.
Note: The ventilator manufacturer can only guarantee the sound power level of the ventilator, the sound pressure level in the tunnel depends on the size of the tunnel and the sound absorption characteristics, which is not the responsibility of the ventilator manufacturer.
5.5 Vibration speed
For safety, reliability and maintenance purposes, the actual vibration speed of the tunnel fan should be specified and recorded. Vibration speed measurements should be carried out in accordance with ISO 14695.
6 Instruments and measurements
6.1 Dimensions and area
Dimensional measurements and area measurements shall be carried out in accordance with the requirements of chapter 11 of GB/T 1236-2017.
6.2 Rotational speed
The impeller rotational speed shall be determined in accordance with the requirements of Chapter 9 of GB/T 1236-2017.
6.3 Thrust
6.3.1 Force balancing system
By using a calibrated balancing block, the force balancing system shall be able to determine the force or thrust with an uncertainty of ±5%.
6.3.2 Force transducer
The force transducer shall be capable of determining the thrust force with a hand determination of ±5% by using a calibrated balancing block.
6.4 Input power
The input power of the motor or impeller shall be determined in accordance with the coloured sub-chapter 10 of GB/T 1236-2017 and the measured power shall be corrected for density 1.2 kg/m* to determine P. and P.
6.5 Sound level
The sound level measurement system including microphone, wind shield, cable, amplifier and frequency analyser shall comply with ISO 13347.
6.6 Vibration velocity
The vibration velocity shall be measured in accordance with ! The root mean square (RMS) vibration velocity shall be measured by instrumentation in accordance with ISO 14695 to record the vibration velocity of the ventilator.
6.7 Volumetric flow
6.7.1 Pressure measuring instruments
Manometers for measuring differential pressure in the test space and barometers for measuring atmospheric pressure shall comply with the requirements of Chapter 6 of GB/T 1236-2017.
6.7.2 Temperature measuring instruments
Thermometers shall conform to the requirements of Chapter 8 of GB/T 1236-2017, the
7 Determination of thrust
7.1 Overview
There are two feasible basic forms for determining the thrust of a ventilator (T.) using direct measurements:
8 Determination of sound level
8.1 Overview
The semi-reverberant method of determining sound levels is a very practical method which, in addition to the necessary noise measurement instrumentation, requires minimal facilities, requiring only:
-- a suitable space;
--a calibrated sound source (if a calibrated standard sound source is not commercially available, see Appendix A if you wish to make your own).
When the resistance is zero, the ventilator has only one operating point and there is no intricate noise generated by the "loading device". Similarly, since only an open inlet or outlet sound level is required, there is no need for an anechoic end. It is important to recognise that this method measures the noise generated by the ventilator, whether it is radiated from the inlet, outlet or ventilator casing, and is therefore the same as the installation and use of the ventilator in the tunnel.
Alternatively, other international standards for measuring the sound level of fans, such as ISO 13347, can be used.
8.2 Test arrangement
The path of the ventilator, the calibrated standard sound source and the microphone are shown in Figure 8.
9 Determination of vibration speed
9.1 Overview
As the jet fan has only one operating condition in actual use, the test arrangement for vibration velocity of the jet fan can be simplified compared to the provisions of ISO 14695 for laboratory tests.
9.2 Test layout
The test shall be carried out in the same construction as that submitted to the user, otherwise the upstream and downstream mufflers shall be appropriately configured and, where vibration isolators are specified and vibration levels are required to be measured, the minimum static deflections given in Table 1 shall be used for measurement.
Unless otherwise agreed between the user and the supplier, the balance class of the impeller of the ventilator shall be G6.3 as defined in ISO 21940-11 and the motor shall be supplied with a normal vibration class corresponding to the motor base number in accordance with IEC 60034-14.
10 Determination of flow rate
10.1 General
It should be noted that the flow rate through a jet fan is not directly related to the flow rate through a tunnel and that this is not a major requirement in the technical specifications for jet fans There are three methods of flow measurement:
a) The first method is to use the inlet air chamber test set, where the previous pressurised ventilator is used as part of the test set, in order to correctly simulate the operating conditions of the ventilator;
b) the second method is to use the Pitot tube traverse method at the inlet of the jet fan
c) the third method, which is the simplest but also the least accurate, is to connect a venturi or conical inlet to the inlet of the jet fan as a flow measurement device.
10.2 Upstream air chamber method
The installation of the ventilator in the air chamber is shown in Figure 9, this arrangement simulates device type A, the upstream section of the test device should comply with the provisions of GB/T 1236 a 2017 30.2.
The ability to determine the flow rate using an arc or conical inlet in accordance with Chapter 23 in GB/T 1236-2017.
11 Representation of results
11.1 Product description
12 Tolerances and conversion rules
12.1 Tolerances
The performance parameters listed are the most probable parameters, not the maximum or the most careful. The tolerance values for jet fans apply to performance tested in accordance with this document, operating without external resistance.
As shown in Table 3, the tolerances are used to take account of measurement uncertainties and inverted w-differences, where direct test results are not available, see Appendix C. The effects described in the notes to Table 3 are for large fractional values in Table 3 to avoid a complex correction process; in addition, in some cases these uncertainties can result in a total tolerance for absorbed power higher than the 5% given in the table.
12.2 Conversion rules
Appendix A (informative) Illustrations and descriptions of standard sound sources
Appendix B (informative) Correction of sound pressure levels
Appendix C (informative) Factorless parameters
Appendix D (normative) Efficiency based on thrust measurements
Bibliography
contents
1 Scope
2 Normative references
3 Terms and definitions
4 Symbols and units
5 Measured characteristic parameters
6 Instruments and measurements
7 Determination of thrust
8 Determination of sound level
9 Determination of vibration speed
10 Determination of flow rate
11 Representation of results
12 Tolerances and conversion rules
Appendix A (informative) Illustrations and descriptions of standard sound sources
Appendix B (informative) Correction of sound pressure levels
Appendix C (informative) Factorless parameters
Appendix D (normative) Efficiency based on thrust measurements
Bibliography
1范围
本文件描述了ISO 13349定义的射流风机所有技术性能与特性的试验。本文件不包括为管道应用设计的或为空气循环单独设计的通风机,例如,吊扇和台扇。
本文件所述试验程序适用于实验室条件,不包含现场性能试验。
2规范性引用文件
下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T 1236-2017工业通风机﹑用标准化风道性能试验(ISO 5801:2007,IDT)
ISO 3744声学声压法测定噪声源声功率级和声能量级﹑反射面上方近似自由场的工程法(Acoustics - Determination of sound power levels andcound energy levels of noise sources usingsound pressurc - Engineering methods for essentially free over a reflecting plane)
注:GB/T 3767-2016声学声压法测定噪声源声功率级和声能量级反射面上方近似自由场的工程法(ISO 3744;2010,IDT)
ISO 13347(所有部分)工业风机﹑标准实验室条件下风机声功率级的测定(Industrial fans - De-termination of fan sound power levels nder standardized laboratory conditions)
注:GB/T 34877.3 2017 工业风机标准实验室条件下风机声功率级的测定第3部分:包络面法(ISO 13347-3:2004,IDT)
ISO 13349工业通风机词汇及种类定义(Fans - Vocabulary and definitions of categories)
注:GB/T 19075-2003工业通风机词汇及种类定义(ISO 13349:1999.IDT)
ISO 14694工业通风机平衡品质与振动等级规范(Industrial fans - Specifications for balancequality and vibration levels)
ISO 14695工业通风机通风机振动测量方法(Industrial fans - Methods of measurement of fanvibration)
ISO 21940-11"机械振动转子平衡第11部分:刚性转子的程序和公差(Mechanical vibration - Rotor balancing - Part 11: Procedures and tolerances for rotors with rigid behaviour)
注:GB/T 9239.1-2006机械振动恒态(刚性)转子平衡品质要求第1部分:规范与平衡允差的检验
(ISO 1940-1;2003,IDT)
IEC 60034-2-1旋转电机第2-1部分:确定损耗和效率的标准测试方法(不包括机车牵引电机)[Rotating electrical machines - Part 2-1: Standard methods for determining losses and efficiency fromtests (excluding machines for traction vehicles)]
3术语和定义
ISO 13349和GB/T 1236-2017 界定的以及下列术语和定义适用于本文件。
3.1
通风机有效动压effective fan dynamic pressurepa
通风机输出的动能分量的常规数量表示。对于射流风机来说,由通风机有效出口风速和进口密度计算。
注,通风机有效动压不同于通过该截面的动压的平均值,因为它不考虑由于偏离均勾轴向速度分布面造成的动能波动部分.
3.2.1
通风机出口总面积gross fan outlet area
紧邻空气输送装置下游所限定的表面积。
注﹔作为惯例,通风机出口总面积为机壳或管道或消声器内侧平面的总面积(见图1)不考虑通风机出口内的任何障碍物。
3.2.2
通风机出口有效面积effective fan owtisy areatr
射流风机通风机出口面积扣除电机,整流罩或其他在注解中提到的障碍物的有效面积,
注1,如果消声器中心体达到通风机出口平面,那么通风机有效出口面积定义为通风机出口平面的环形面积,如图
1 a)所示。
注2r如果通风机具有无中心体的消声器﹐如图1 b),则通风机有效出口面积接近消声器内的横截面积v不是某种喇叭口形状的出口面积
注3。如果中心体(电机或消声器的中心部分)不延至出口平面,则通风机有效出口面积接近机壳和电机之间的环形面积,但要随中心体和出口之间的距离有所增大,如图1 c)中的定义。当电机位于进气侧时,图适用于叶轮轮毂而不是电机.
4符号和单位
下列符号及其单位适用于本文件。
5测量的特性参数
5.1概述
为了正确使用射流风机并能在应用中获得令大满意的性能和可靠性,除了需要了解诸如重量,总尺寸及安装尺寸等机械特性以外,还应确定某此社术性能与特性,
5.2推力
隧道壁面上的摩擦﹐进、出口的损失,有时候还有交通堵塞,以及隧道入口的气候影响,都会在隧道中形成一个压力降,这个压力降与射流风机排气气流与隧道气流之间的动量交换产生的总压力升相等。由于无法测量通风机出口气流的动量﹐但是动量的变化与推力大小相等、方向相反﹐因而用推力测量代替。
5.3输入功率
为了设计隧道装置,应了解通风机电机的输入功率,另外,这也是确定射流风机总效率所需要了解的参数。
5.4声级
为保证射流风机和消声器的最佳组合以满足隧道的声级要求,通常确定进口和出口的声级。
注:通风机制造商只能保证通风机的声功率级,隧道中的声压级取决于隧道的大小和吸声特性,这不是通风机制造商的责任范围.
5.5振动速度
为了使用的安全性、可靠性和维护的需要,应规定和记录隧道风机的实际振动速度。振动速度测量应按照ISO 14695。
6仪器和测量
6.1尺寸和面积
应按照GB/T 1236-2017第11章的要求进行尺寸测量和面积的测定。
6.2转速
应按照GB/T 1236-2017第9章的要求测定叶轮转速。
6.3推力
6.3.1力平衡系统
通过使用校准平衡块,力的平衡系统应能确定力或推力的不确定度达到±5%。
6.3.2力传感器
使用校准平衡块校准后,力传感器应能确定推力的手确定度达到±5%。
6.4输入功率
应按照 GB/T 1236-2017第10章的彩次确定电机或叶轮的输入功率,对测量的功率进行密度1.2 kg/m*修正后确定P.和P..
6.5声级
包括传声器、风罩、电缆、放大器和频率分析仪的声级测量系统应符合ISO 13347的规定。
6.6振动速度
应按!照ISO 14695的规定采用仪表测量均方根振动速度﹐以记录通风机的振动速度。
6.7容积流量
6.7.1压力测量仪表
在试验空间内测量压差的压力计和测量大气压的气压计应符合GB/T 1236-2017第6章的要求。
6.7.2 温度测量仪表
温度计应符合GB/T 1236-2017第8章的要求,
7推力的确定
7.1概述
采用直接测量的方法确定通风机推力(T.)有两种可行的基本形式:
8声级的确定
8.1概述
采用半混响法测定声级,这个方法非常实用,除了必要的噪声测量仪器仪表,要求的设施最少,只需要:
——一个合适的空间;
——一个经过校准的声源(如果市场上买不到经过校准的标准声源,如需自制见附录A)。
当阻力为零时,通风机只有一个工况点,没有因“加载装置”而产生的错综复杂的噪声。同样,由于只要求敞开的进口或出口声级,因此就不需要消声末端。宜认识到,这个方法测量的是通风机产生的噪声,无论噪声是从进口,出口或者是通风机机壳辐射而来,因此与通风机在隧道中的安装使用情况是一样的。
另外,也能采用测量风机声级的其他国际标准,例如ISO 13347。
8.2试验布置
通风机、校准过的标准声源以及传声器路径见图8.
9振动速度的确定
9.1概述
由于射流风机在实际使用中只有一个运行工况﹐就实验室试验而言,与ISO 14695的规定相比﹐射流风机的振动速度测试布置能够进行简化。
9.2试验布置
试验应以与提交用户相同的结构型式进行,其他方面,上、下游的消声器宜合理配置,当规定使用隔振器并要求测量振动等级的时候﹐应采用表1中给出的最小静变形来测量。
除非用户和供应商另有约定,通风机叶轮的平衡等级应为ISO 21940-11所定义的G6.3,所供电机应达到符合IEC 60034-14 的电机基座号对应的正常振动等级。
10流量的确定
10.1总则
宜注意﹐通过一个射流风机的流量与通过一个隧道的流量没有直接的关系,并且这也不是射流风机技术规范中的主要要求流量测量有三种方法:
a)第1种方法是采用进气风室试验装置,此时, 使前一台加压通风机作为试验装置的一部分,以便正确模拟通风机的运行工况;
b)第2种方法是在射流风机的进口采用毕托管横动法﹔
c)第3种方法最简便,但是精度也最低,就是在射流风机进口连接文丘里喷管或锥形进口作为流量测量装置。
10.2上游风室法
通风机在风室的安装方式见图9,这个布置模拟装置类型A,试验装置的上游段应符合GB/T 1236一2017中30.2的规定。
能够采用符合GB/T 1236—2017中第23章规定的弧形或锥形进口确定流量。
11结果的表示
11.1产品说明
12允差和换算规则
12.1允差
所列的性能参数是最可能的参数,不是最大或最小心,射流风机的允差值适用于无外部阻力下运行、按本文件测试的性能。
如表3所示﹐允差用于考虑测量不确定度和倒造w差﹐如果没有直接试验结果时﹐见附录C。表3注释所述的影响是针对表3中的大分差值﹐避免复杂的修正过程;另外﹐在某些情况下这些不确定度会使吸收功率的总允差高于表中给出的5%。
12.2换算规则
附录A(资料性)标准声源的图示与说明
附录B(资料性)声压级的修正
附录C(资料性)无因次参数
附录D(规范性)基于推力测量的效率
参考文献