![]() |
中标分类
行业分类
ICS分类
最新标准
|
登录注册 |
您的位置: 标准明细 |
Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative. This standard is developed in accordance with the rules given in GB/T 1.1-2009 Directives for standardization - Part 1: Structure and drafting of standards. This standard replaces DL/T 995-2006 Testing regulations on protection and stability control equipment. In addition to editorial changes, the following main technical changes have been made with respect to DL/T 995-2006: ——The testing regulations and requirements for relay protection and stability control equipment in smart substation are added; ——The content related to state overhaul of relay protection and stability control equipment is added; ——The testing time, items, requirements, etc. of relay protection and stability control equipment in conventional substation are partially modified and improved. This standard was proposed by the Standardization Center of the China Electricity Council. This standard is under the jurisdiction of the Technical Committee on Relay Protection of Standardization Administration of Power Industry. This standard replaces DL/T 995-2006. During the process of implementing this standard, the relevant comments and recommendations, whenever necessary, can be fed back to the Standardization Center of the China Electricity Council (No.1, 2nd Lane, Baiguang Road, Beijing, 100761, China). Testing regulations on protection and stability control equipment 1 Scope This standard specifies the cycle, content and requirements of various testings for relay protection and stability control equipment in power systems as well as their secondary circuits. This standard is applicable to the installation, debugging, operation and maintenance of relay protection and stability control equipment (hereinafter referred to as “protection equipment”) for power grid enterprises, grid-connected power generation enterprises and users. 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. GB/T 2900.15 Electrotechnical terminology - Transformer, instrument transformer, voltage regulator and reactor GB/T 2900.50 Electrotechnical terminology - Generation transmission and distribution of electricity - General GB/T 2900.57 Electrotechnical terminology - Generation, transmission and distribution of electricity - Operation GB/T 7261-2016 Basic testing method for relaying protection and security automatic equipment GB/T 14285-2006 Technical code for relaying protection and security automatic equipment GB/T 20840.7-2007 Instrument transformers - Part 7: Electronic voltage transformers GB/T 20840.8-2007 Instrument transformers - Part 8: Electronic current transformers GB/T 22386-2008 Common format for transient data exchange (COMTRADE) for power systems GB/T 25931-2010 Precision clock synchronization protocol for networked measurement and control systems DL/T 478-2013 General specification for relaying protection and security automatic equipment DL/T 527-2013 Technical specifications of power supply for protection and control equipment DL/T 587 Code for operating management of microprocessor-based relaying protection equipment DL/T 860 (all parts) Communication networks and systems in substations DL/T 1501-2016 Technical specifications of digital test equipment for relay protection 3 Terms and definitions For the purposes of this document, the terms and definitions given in GB/T 2900.15, GB/T 2900.50, GB/T 2900.57, GB/T 20840.7, GB/T 20840.8 and DL/T 860 as well as the following ones apply. relay protection system system that consists of relay protection equipment, merging unit, smart terminal, switch, channel, secondary circuit, etc. and implements the relay protection function 4 General 4.1 This standard gives the basic principle that the protection equipment shall follow during the testing process. The content hereof is not limited to single relay protection equipment, and also includes merging unit, smart terminal, switch, channel, secondary circuit and other equipment constituting the relay protection system. 4.2 The relay protection management, operation and maintenance units at all levels shall reasonably arrange the annual, quarterly and monthly testing plans according to the specific conditions of the local power grid and in combination with the overhaul status of the primary equipment. The relevant dispatching organizations shall support and coordinate and shall make overall arrangements. 4.3 For the testing work of protection equipment, standardized operation instruction and implementation plan shall be developed, and the testing content shall comply with this standard. 4.4 The accuracy class and technical characteristics of the testing instruments and apparatuses shall meet the requirements and shall be verified periodically. 4.5 The testing of the microprocessor-based protection equipment shall be carried out with full use of the “self-testing” function of protection equipment, focusing on the items that cannot be tested by the "self-testing" function. 4.6 For the non-outage testing work, the dual relay protection configuration and the coordination of remote and local backup protection shall be taken into account, and the principle that any electric power equipment is not allowed to operate without relay protection shall be followed. 5 Testing of relay protection and stability control equipment in conventional substation 5.1 Routine overhaul testing type and cycle 5.1.1 Routine overhaul testing type Routine overhaul testing is classified into the following three types: a) Acceptance testing of newly installed protection equipment; b) Periodic testing of protection equipment in operation (referred to as “periodic testing”); c) Supplementary testing of protection equipment in operation (referred to as “supplementary testing”). 5.1.1.1 Acceptance testing of newly installed protection equipment Acceptance testing of newly installed protection equipment shall be carried out in the following cases: a) Beginning of operation of a newly installed primary equipment; b) Input of a newly installed protection equipment on the existing primary equipment. 5.1.1.2 Periodic testing of protection equipment in operation Periodic testing is classified into the following three types: a) Full testing; b) Part-item testing; c) Tripping and closing test with the protection equipment. 5.1.1.3 Supplementary testing of protection equipment in operation Supplementary testing is classified into the following five types: a) Testing of protection equipment in operation after the major change (including software version upgrade of the protection equipment) is made or new circuit added to such equipment; b) Testing after overhaul or replacement of primary equipment; c) Testing after any abnormality is found during operation; d) Post-accident testing; e) Testing of protection equipment when it is put into operation again after power outage for one year or more. 5.1.2 Content and cycle of periodic testing 5.1.2.1 Periodic testing shall be carried out in accordance with the cycle and items specified in this standard and the content of the standardized operation instruction approved by the competent authorities at all levels. 5.1.2.2 The periodic testing cycle plan shall be formulated with comprehensive consideration of the voltage level and working condition of the equipment under its jurisdiction, and shall be carried out according to the cycle and items specified in this standard. In general, periodic testing shall be carried out as much as possible during the power outage of the primary equipment. See Tables 1 and 2 for the cycle requirements for full testing and part-item testing of 220kV or above protection equipment. Table 1 Cycle of full testing No. Equipment type Cycle of full testing (years) Description to definition scope 1 Microprocessor-based protection equipment 6 Including the AC, DC and operation circuits outside the leading-in terminal of the equipment and the auxiliary relays involved, the auxiliary contacts of the operating mechanism, the automatic switch of the DC control circuit, etc. 2 Non-microprocessor protection equipment 4 Including the AC, DC and operation circuits outside the leading-in terminal of the equipment and the auxiliary relays involved, the auxiliary contacts of the operating mechanism, the automatic switch of the DC control circuit, etc. 3 Optical fiber channel, multiplexing optical fiber or microwave connection channel specially for protection 6 Optical fiber channel and photoelectric conversion device for connecting the station-end protection equipment 4 Processing equipment (including equipment used in multiplexing with communication equipment and in conjunction with the stability control equipment and maintained by other departments) of carrier channel for the purpose of protection 6 Involving the following processing equipment: high-frequency cable, combined filter, differential network, and frequency divider Table 2 Cycle of part-item testing No. Equipment type Cycle of part-item testing (years) Description to definition scope 1 Microprocessor-based protection equipment 2~4 Including the AC, DC and operation circuits outside the leading-in terminal of the equipment and the auxiliary relays involved, the auxiliary contacts of the operating mechanism, the automatic switch of the DC control circuit, etc. 2 Non-microprocessor protection equipment 1 Including the AC, DC and operation circuits outside the leading-in terminal of the equipment and the auxiliary relays involved, the auxiliary contacts of the operating mechanism, the automatic switch of the DC control circuit, etc. 3 Optical fiber channel, multiplexing optical fiber or microwave connection channel specially for protection 2~4 Optical fiber head wiping, receiving margin testing, etc. 4 Processing equipment (including equipment used in multiplexing with communication equipment and in conjunction with the stability control equipment and maintained by other departments) of carrier channel for the purpose of protection 2~4 Transmission attenuation, receiving margin testing, etc. 5.1.2.3 When formulating the part-item testing cycle plan, the equipment operation and maintenance department may appropriately shorten the testing cycle and increase the testing items as follows according to the voltage level, manufacturing quality, operating condition, operating environment and conditions of the protection equipment: a) The first full testing shall be carried out within one year after the newly installed protection equipment is put into operation. After the second full testing of the equipment, if the equipment is found to be in poor operating condition or has exposed defects that need to be supervised, it may be considered to appropriately shorten the cycle of part-item testing and select the major testing items according to purpose. b) The 110kV microprocessor-based protection equipment should be subjected to part-item testing once every 2 to 4 years and to full testing once every 6 years; the non-microprocessor protection equipment shall be subjected to testing by making reference to the testing cycle of 220kV or above protection equipment of similar type. c) The tripping and closing test of the circuit breaker with use of the protection equipment should be carried out in combination with the overhaul of primary equipment. Supplementary testing may be carried out as necessary. 5.1.2.4 During the circuit breaker tripping and closing test for switching generator set, shedding load, cutting off line or instrument transformer and other equipment in the busbar differential protection, circuit breaker failure protection and stability control equipment, it is allowed to confirm the correctness of the wiring to the trip circuit of each circuit breaker by the conduction method. 5.1.3 Content of supplementary testing 5.1.3.1 For the testing carried out due to overhaul or replacement of the primary equipment (circuit breaker, current transformer, voltage transformer, etc.), the testing items shall be determined by the relay protection department of the operation and maintenance unit according to the nature of the equipment overhaul (replacement). 5.1.3.2 After the protection equipment in operation undergoes any major change or there is any change in the secondary circuit of the equipment, the relay protection department of the operation and maintenance unit shall test the protection equipment and also determined the testing items according to the equipment's nature of work. 5.1.3.3 In any case that the protection equipment is abnormal or is not acting correctly for any unknown cause, the relay protection department of the operation and maintenance unit shall purposely formulate specific testing items and testing sequence according to the accident situation, and shall conduct post-accident testing as soon as possible. After the testing work is completed, the report shall be issued in time, and submitted for future reference according to the equipment dispatching jurisdiction. 5.1.4 Testing management 5.1.4.1 The new type of protection equipment in trial operation shall be subjected to comprehensive inspection test and shall be reviewed by the relay protection operation management department of the power grid (provincial) company. 5.1.4.2 For the protection equipment which fails to meet the operation requirements due to poor manufacturing quality, the manufacturer shall be responsible for the solution and shall also report to the superior competent authorities. 5.1.4.3 After the protection equipment has a general problem, the manufacturer is obliged to promptly notify the operation authority and propose preventive measures. 5.2 Conditions required for the testing of conventional substation 5.2.1 Basic requirements and allocation of instruments and apparatuses 5.2.1.1 The instruments and apparatuses used for the testing of protection equipment shall be qualified upon testing and shall meet the requirements of GB/T 7261-2016. The accuracy class of the instruments and apparatuses used for the setting value testing shall not be less than 0.5. 5.2.1.2 The 220kV or above substations shall be equipped with high-frequency oscillator and selective level meter if it is necessary to debug the carrier channel. The 220kV or above substations or the concentrated control station shall be equipped with a complete set of microprocessor-based test instruments, the test lines and other tools that simultaneously output at least three phases of current and four phases of voltage. 5.2.1.3 The relay protection team shall be at least provided with: pointer voltmeter and ammeter, digital voltmeter and ammeter, clip-on ammeter, phase meter, millisecond meter, bridge, etc.; 500V, 1,000V and 2,500V insulation resistance meters; memory oscilloscope; high-frequency oscillator and selective level meter required for the testing of carrier channel, as well as non-inductive resistance, variable attenuator, etc.; complete set of microprocessor-based test instruments. It is recommended to allocate a portable oscillograph (waveform recorder) and an analog circuit breaker. If it is necessary to debug the optical fiber pilot protection channel, the instruments such as light source, optical power meter, bit-error tester, variable optical attenuator shall be allocated. 5.2.2 Preparation before testing 5.2.2.1 Before conducting on-site testing work, the testing personnel shall carefully understand the situation of the primary equipment of the tested protection equipment and its adjacent primary and secondary equipment and the details of relevant parts of the operating equipment, and accordingly formulate the technical measures ensuring safe operation of system throughout the testing work. 5.2.2.2 It is required to have the drawings consistent with the actual situation, records of the last testing, the latest setting value notice, standardized operation instruction, qualified instruments and apparatuses, spare products and parts, tools, connecting wires, etc. 5.2.2.3 The test apparatuses required to be equipped with grounding terminal is not allowed to be directly connected to the DC power supply circuit during on-site testing, to prevent the DC power supply from being grounded. 5.2.2.4 Preparation before acceptance testing of newly installed protection equipment includes: a) Understand the primary wiring of equipment, the possible operation mode after the equipment is put into operation, and the scheme of putting the equipment into operation; this scheme shall include the temporary relay protection mode at the initial stage of operation. b) Check all the drawings such as the wiring diagram (design drawing) and the compatible secondary circuit installation diagram, the cable layout, cable numbering diagram, operating mechanism diagram of circuit breaker, terminal box diagrams of current and voltage transformers, distribution box diagram of secondary circuit, as well as the principle and technical instructions of complete set of protection and stability control equipment, the operating mechanism instruction of circuit breaker, the end-of-manufacturing test reports of current and voltage transformers, etc. The above technical information shall be complete and correct. If the new equipment is debugged by the capital construction department, the relay protection acceptance personnel of the production department shall conduct acceptance inspection on the technical report after conducting acceptance inspection on complete set of technical data. c) Check that all protection equipment are installed in the correct positions on site according to the design drawings. 5.2.2.5 The setting test of the protection equipment shall be carried out according to the setting value notice provided by the relevant relay protection department. The person in charge of the work shall be familiar with the content of the setting value notice, check whether the set values are complete, and whether the transformation ratio values of the current and voltage transformers used are in line with the actual situation on the site (not limited to the verification of set functions in the setting value notice). 5.2.2.6 To conduct testing work on the operating equipment, the relay protection testing personnel shall obtain the consent of the operating personnel of power plant or substation in advance, and shall perform the work permit procedure in accordance with the relevant regulations of the electrical safety work, and shall not start the testing work until the operating personnel disconnect all the outlet circuits of protection equipment by using pressure plate. 5.2.2.7 The testing site shall be provided with a safe and reliable overhaul test power supply, and it is forbidden to connect test power supply from the operating equipment. 5.2.2.8 Inspect that all metal structures and equipment enclosures in the room where the protection and communication equipment are installed are connected to an equipotential grounding grid. 5.2.2.9 Inspect that the grounding copper bar under the panel where the static protection and control equipment are installed are reliably connected to an equipotential grounding grid. 5.2.2.10 Inspect that the equipotential grounding grid is closely connected to the main grounding grid of the power plant and substation. 5.3 On-site testing of conventional substation 5.3.1 Testing of current and voltage transformers 5.3.1.1 Acceptance of newly installed current and voltage transformers and their circuits. Inspect whether the nameplate parameters of the current and voltage transformers are complete, and whether the end-of-manufacturing certificate and test data are complete. In the absence of the above data, the test department of the relevant manufacturer, capital construction unit or production unit shall provide the following test data: the polarity of all windings, the transformation ratio of all windings and their tappings, the accuracy class of voltage transformer under each capacity, the accuracy class, capacity and internal installation position of each winding of current transformer, the DC resistance (each tapping) of secondary winding, and the volt-ampere characteristics of each winding of the current transformer. 5.3.1.2 Upon completion of the installation of current and voltage transformers, the relay protection testing personnel shall perform the following inspections: a) The transformation ratio, capacity and accuracy class of current and voltage transformers shall meet the design requirements. b) Test the polarity relationship between the windings of the transformer and check whether the polarity mark on the nameplate is correct. Inspect whether the connection mode and polarity relationship of the transformer windings are in accordance with the design and whether the phase sign is correct. c) When conditions permit, apply current to the primary split phase of current transformer to inspect whether the transformation ratio and circuit of working tapping are correct (the polarity and transformation ratio testings of the external transformer used in generator-instrument transformer unit protection and the bushing type current transformer of instrument transformer may be performed when the generator is undergoing short circuit test). d) Apply AC current to the load end from the secondary terminal box of the current transformer to determine the voltage drop of circuit and calculate the impedance between each phase and the neutral line as well as between the phases of current circuit (load of the secondary circuit), and then check whether the determined impedance value meets the error requirement of 10% of transformer by calculating according to the specific working conditions of the protection and the end-of-manufacturing data provided by the manufacturer. 5.3.2 Testing of secondary circuit 5.3.2.1 The testing of secondary circuit may be carried out only after the circuit breaker, current transformer and voltage circuit of the protected equipment are completely disconnected from the circuit of other unit equipment. 5.3.2.2 The secondary circuit of the current transformer shall be tested as follows: a) Inspect the correctness of all secondary wiring of the secondary winding of current transformer and the reliability of crimping of terminal block lead with screw. b) Inspect the grounding point and grounding condition of the secondary current circuit. The secondary circuit of the current transformer shall be grounded separately at only one point; the current circuit combined by several sets of current transformers shall be grounded at one point with direct electrical connection. 5.3.2.3 The secondary circuit of the voltage transformer shall be tested as follows: a) Inspect the correctness of all secondary circuit wiring for secondary and tertiary windings of voltage transformer and the reliability of crimping of terminal block lead with screw. b) For the secondary circuits of several sets of voltage transformers connected through the zero-phase small busbar (N600) of the control room, the N600 shall be grounded at one point only in the control room, and the secondary neutral point of each voltage transformer shall be disconnected at the grounding point of the switching field; in order to ensure reliable grounding, the neutral line of each voltage transformer shall not be connected with a fuse (automatic switch) or contactor, etc. that may be disconnected. A separate secondary circuit that is not directly in electrical relationship with secondary circuits of other transformers may be grounded at one point either in the control room or in the switching field. The 4 incoming lines of switching field from the secondary circuit of the voltage transformer and the 2 (3) incoming lines of switching field from the tertiary circuit of transformer shall be separated and shall not be shared. The open-delta voltage circuit of voltage transformer shall not be connected with a fuse (automatic switch) or contactor, etc. that may be disconnected. c) Inspect whether the metal oxide surge arrester of the secondary neutral point of voltage transformer is installed in compliance with the relevant regulations. d) When the voltage transformer is newly put into operation, inspect whether: the installation position and fusing (tripping) current of all fuses (automatic switches) in the secondary circuit of the voltage transformer are appropriate (the tripping current of automatic switch shall be determined through test), the quality is good, the selectivity can be guaranteed, and the impedance value of coil of automatic switch is appropriate. e) Inspect the contacting reliability of contacts of the fuse (automatic switch), disconnecting switch and switching equipment connected in series in the voltage circuit. f) Measure the DC resistance of each phase from the leading-out terminal of transformer to the voltage busbar of distribution panel in the voltage circuit, and calculate the voltage drop of the voltage transformer at the rated capacity, which shall not be more than 3% of the rated voltage. 5.3.2.4 The insulation of secondary circuit shall be tested as follows: a) The following shall be noted before testing: 1) Before insulation testing of the secondary circuit, it shall be confirmed that the circuit breaker and current transformer of the protected equipment are all powered off, the AC voltage circuit has been disconnected from the circuits of other unit equipment at the voltage switching handle or the distribution box and has been properly isolated from other circuits. 2) During insulation testing, it shall be noted that: the test line shall be firmly connected; after each insulation test, the test circuit must be discharged to the ground; for the busbar differential protection, circuit breaker failure protection and stability control equipment, if it is not possible for all of the protected equipment to be powered off at the same time, the insulation resistance testing can only be performed in sections, that is, when a protected unit is powered off, the insulation resistance of the circuit to which this unit belongs will be determined. b) During the acceptance test of the newly installed protection equipment, all the external leading-in circuits and cables shall be disconnected at the terminal block of protection panel, all the respective terminals of current circuit, voltage circuit, DC control circuit and signal circuit shall be connected, and then the insulation resistance of each circuit to the ground and that between circuits shall be measured with a 1,000V insulation resistance meter, which shall be greater than 10MΩ. c) During periodic testing, the external wiring of terminals of all current circuits, voltage circuits and DC control circuits shall be disconnected at the terminal block of protection panel, and the grounding point of the current and voltage networks shall be disconnected, and then the insulation resistance of each circuit to ground shall be measured with a 1,000V insulation resistance meter, which shall be greater than 1MΩ. d) For the signal circuit with contact output, the insulation resistance of each core of cable to ground and that between the cable cores shall be measured with a 1,000V insulation resistance meter, which shall not be less than 1MΩ. During periodic testing, only the insulation resistance of the cable core to the ground will be measured. e) For the secondary circuit of a voltage transformer grounded with a metal oxide surge arrester, it is required to inspect its wiring correctness and the power-frequency discharge voltage of the metal oxide surge arrester. f) During periodic testing, it is allowed to inspect whether the working state of the metal oxide surge arrester is normal with an insulation resistance meter. Generally, the metal oxide surge arrester shall not be broken down with a 1,000V insulation resistance meter, and shall be reliably broken down with a 2,500V insulation resistance meter. 5.3.2.5 The acceptance testing of the newly installed secondary circuit shall include: a) Observe, clean and make necessary repair and adjustment to all the components (including the operating handle, button, plug, lamp holder, position indicating relay, central signal device and other components related to the protection equipment, as well as the terminal blocks, cables, fuses, etc. in the circuits of these components) of the circuit. b) Apply current to all the intermediate wiring terminals in sequence with the conduction method, and inspect the designation of cable circuit and cable core from the leading-out terminal box of transformer to the operating panel, protection panel and stability control equipment panel or to the distribution box, and check whether the cable book is correctly filled in. c) When an equipment is newly put into operation or is connected into a new circuit, check whether the rated current of the fuse (automatic switch) meets the design or is compatible with the connected load, and also satisfies the coordination between upper and lower levels. d) Inspect that the internal and external wirings of equipment and terminal block on the panel are connected correctly and contact securely, the designation is complete and accurate and is accordance with the drawings and operating procedures. Inspect whether the cable plates on the cable terminal and along the cable laying route are correct and complete, which shall meet the design. e) Test that the DC circuit does not have a parasitic circuit. According to the specific conditions of the circuit design, the testing shall be carried out by the means of disconnecting some equipment e.g., fuse, indicator light, etc.) that may be disconnected during operation in the circuit or closing certain contacts in the circuit. Each set of independent protection equipment shall have a dedicated terminal pair directly leading to the positive and negative power supplies of the DC fuse. All the DC circuits of this set of protection equipment, including the coil network of the outlet relay for tripping, shall only be provided with the DC positive and negative power supplies from this dedicated terminal pair. f) Signal circuit and equipment may not be individually tested. 5.3.2.6 The testing of circuit breaker, disconnecting switch and secondary circuit shall include: a) The relay protection personnel shall be familiar with: the wiring modes (including anti-jump circuit and three-phase inconsistent protection circuit for circuit breaker, and other measures) of the electrical circuits of tripping and closing coils in circuit breaker; the opening and closing condition, switching time, composition method and contact capacity of the auxiliary contacts related to the protection circuit; the working mode of monitoring circuits for air pressure, hydraulic pressure and spring pressure in the secondary operating circuit of the circuit breaker; the wiring diagram for the secondary circuit of circuit breaker; the resistance of the tripping and closing coils of circuit breaker and the tripping and closing currents at rated voltage; the tripping and closing voltages of circuit breaker, which shall meet the requirements of the relevant regulations; the tripping time, the closing time, and the maximum time difference of three-phase contacts not closing at the same time of the circuit breaker, which shall not be greater than the specified value. b) All the adjustment and test work related to the secondary circuit of the protection equipment in the circuit breaker and the disconnecting switch shall be carried out by the relevant personnel who have jurisdiction over the circuit breaker and the disconnecting switch. The relay protection testing personnel shall understand and master the technical performance and debugging results of the relevant equipment, and be responsible for testing the correctness of relevant cable connection from the protection panel to the terminal block of the secondary circuit of circuit breaker (including disconnecting switch) and the reliability of crimping with screw. 5.3.2.7 For newly installed or modified current and voltage circuits, the secondary voltage circuit shall be directly tested under the working voltage, and the wiring correctness of the secondary current circuit shall be tested by the load current. 5.3.3 Testing of panel and protection equipment 5.3.3.1 Precautions during testing The following problems shall be noted during testing to avoid damage to the internal elements and components of the protection equipment: a) The plugins shall not be inserted or pulled out until the power supply of the protection equipment is disconnected, and there shall be measures against damage to the plugins due to static electricity. b) If any problem is found during the debugging process, the cause shall be found at first, and it is disallowed to replace the chip frequently. Where necessary, the chip shall be replaced by using a dedicated puller. During chip replacement, the insertion direction of chip shall be paid attention to; after a chip is inserted, it must be inspected by the second person to confirm no error before power-on testing or use. c) During testing, use of soldering iron shall be avoided as much as possible; if the damaged element needs to be welded on site, it shall be welded by an internal heating soldering iron equipped with a grounding wire or be welded by one which is powered off first. The elements used for replacement shall be qualified products confirmed by the manufacturer. d) When the circuit parameters are measured with an electronic instrument with AC power supply (e.g., oscilloscope, frequency meter, etc.), the measuring terminal of the electronic instrument shall be well insulated from the power supply side, and the instrument enclosure shall be grounded at the same point as the protection equipment. 5.3.3.2 External inspection of protection equipment The protection equipment shall be subjected to the following external inspections: a) Whether the actual composition of the protection equipment is consistent with the design, for example: configuration, model, and rated parameters (rated voltage of DC power supply, rated AC current and voltage, etc.) of the equipment. b) The process quality of the main and auxiliary equipment, and the quality of the materials used for the conductors and terminals. The fastness of all welding points and the contact reliability of all plugins in the protection equipment are problems of the manufacturing process quality, and the manufacturer shall be mainly responsible for quality assurance of products. When conducting testing of newly installed protection equipment, the testing personnel shall only conduct random testing. c) The signs on the panel shall be correct and complete and in accordance with the drawings and operating procedures. d) Inspect that the EMI mitigation devices and measures installed in the input circuit and power supply circuit of the protection equipment meet the technical requirements of the relevant standards and the manufacturer. These EMI mitigation devices and measures shall be kept in good condition throughout the testing of the protection equipment. e) Remove the pressure plates that do not participate in normal operation on the protection panel, or take other measures to prevent mis-switching on. f) Main items of periodic testing: inspecting whether the inside and outside of the protection equipment are clean and free of dust; cleaning the dust on the circuit board and the terminal block in the panel; and inspecting whether: the small switch, reel and button of the equipment are in good condition, the display and text are clear, the printed circuit board of each plugin is damaged or deformed and the connection is good, the elements on each plugin are well welded and the chip is tightly inserted, the converter and relay on each plugin are fixed without looseness, the screws of horizontal terminal block of the equipment are tightened and the rear panel wiring connection is good; inspecting, setting and recording the position of selective jumper and toggle switch in the plugins of the protection equipment with the method described in the technical instructions of the protection equipment according to the actual needs. 5.3.3.3 Insulation test The procedures and requirements of insulation test are as follows: a) Perform insulation test only at the acceptance testing of newly installed protection equipment. b) Pull out the plugins according to the requirements of the technical instructions of the protection equipment. c) Respectively short-circuit the terminals of AC voltage circuit, AC current circuit, DC power supply circuit, tripping and closing circuits, on-off input circuit, plant automation system interface circuit and signal circuit on the inner side of the terminal block of protection panel. d) Disconnect the control circuits from other protection equipment. e) Disconnect the printer from the protection equipment. f) The shield of all transformers in the protection equipment shall be reliably grounded. When the insulation resistance of a certain group of circuits to ground is measured, the other groups of circuits shall be grounded. g) Measure the insulation resistance value with a 500V insulation resistance meter, which shall be greater than 20MΩ. Discharge each circuit to ground after testing. 5.3.3.4 Power-on inspection The procedures and requirements for power-on inspection are as follows: a) Power on the protection equipment and the equipment shall be able to work normally. b) Inspect and record the hardware and software version Nos., check codes and other information of the equipment using the method described in the technical instructions of the protection equipment. c) Calibrate the clock. 5.3.3.5 Working power supply inspection The procedures and requirements for working power supply inspection are as follows: a) For microprocessor-based protection equipment, all plugins are required to be inserted. b) Test with 80% of the rated working power supply: the protection equipment shall work stably. c) Power self-starting test: switch on the power of the DC power plugin and slowly adjust the DC test power from zero to 80% of the rated power value. Consequently, the running light on the protection equipment shall be on, and the equipment is free of abnormity. d) DC power supply switch-on-off test: switch on and off the DC working power supply under the rated voltage for 80% of DC power supply three times, the inverter power supply shall start reliably, the protection equipment does not malfunction, and does not missend any signal. e) There is no abnormality during the recovery after power failure in the protection equipment, and the equipment shall work stably and normally after being powered on. f) At the moment being powered on and off, the protection equipment shall not send abnormal data, and the relay shall not malfunction. g) During the periodic testing, it shall also be inspected whether the inverter power supply is close to the minimum time between failures as specified in DL/T 527-2013, and shall be timely replaced if it is. 5.3.3.6 Analog-to-digital conversion system testing Analog-to-digital conversion system testing shall be carried out as follows. a) Test zero drift. It is required not to input AC current and voltage into the protection equipment when it is subjected to such a testing. Observe that the zero drift value of the equipment over a period of time meets the technical specifications of the equipment. b) Testing of the amplitude value and phase accuracy of each current and voltage input. During the acceptance testing of the newly installed protection equipment, input the current and voltage of different amplitude values and phases respectively according to the test method specified in the technical instructions of the equipment, and observe that the sampling value of the equipment meets the technical specifications of the equipment. It is allowed to only input the current and voltage of different amplitude values separately during full testing, and only the rated current and voltage separately during part-item testing. c) Technical requirements. They shall meet the relevant requirements of DL/T 478-2013. 5.3.3.7 On-off input circuit testing The on-off input circuit testing shall be carried out as follows: a) During the acceptance testing of the newly installed protection equipment: according to the test method specified in the technical instructions of the equipment, add the energizing quantity to the on-off input circuit of all the leading-in terminal blocks in sequence at the terminal blocks of the protection panel and observe the behavior of the equipment. According to the test method specified in the technical instructions of the equipment, connect and disconnect the pressure plate, turn the handle respectively and observe the behavior of the device. b) During full testing, it is only required to add the energizing quantity in sequence to the on-off input circuits that have been put into use, and observe the behavior of the equipment. c) Part-item testing may be carried out along with the overall test for the equipment. d) Technical requirements: the starting voltage value of the high-voltage input-circuit relay shall not exceed 0.7 times the rated voltage, and shall not be less than 0.55 times the rated voltage, and the relay driving power shall not be less than 5W. The input-circuit shall be connected and disconnected separately, and the input of the equipment shall be displayed correctly. The on-off input of the equipment shall be defined by positive logic, that is, the on-contact is “1” and the off-contact is “0”. The input’s name shall be as described in the requirements of the standard. If the same input is shared by several types of protection, it shall be transmitted separately to each type of protection. 5.3.3.8 Inspection of switching value output contacts and output signals The inspection of switching value output contact and output signal shall be carried out as follows: a) During the acceptance testing of the newly installed protection equipment: according to the test method specified in the technical instructions of the equipment, observe the on-off state of all the output contacts and output signals of the equipment in sequence at the terminal blocks of the protection panel. b) During full testing, according to the test method specified in the technical instructions of the equipment, observe in sequence the on-off state of all the output contacts and output signals of the equipment already put into use at the terminal blocks of the protection panel. c) Part-item testing may be carried out along with the overall test for the protection equipment. d) Technical requirements: the output contacts of the protection equipment shall be able to be reliably maintained and returned, the contact is good and not jittery, and the action delay of the equipment shall meet the engineering and design requirements. If a set of exit pressure plates or the same alarm signal is shared by several types of protection, these types of protection shall be transmitted separately to the exit pressure plates and protection panel terminal blocks. Foreword II 1 Scope 2 Normative references 3 Terms and definitions 4 General 5 Testing of relay protection and stability control equipment in conventional substation 6 Testing of relay protection and stability control equipment in smart substation Annex A (Informative) State overhaul of relay protection and stability control equipment Annex B (Normative) Testing items for commonly used relays Annex C (Normative) Testing items for various equipment of conventional substation Annex D (Normative) Testing methods for merging unit and smart terminal of smart substation 继电保护和电网安全自动装置检验规程 1 范围 本标准规定了电力系统继电保护和电网安全自动装置及其二次回路各类检验的周期、内容及要求。 本标准适用于电网企业、并网运行发电企业及用户对继电保护和电网安全自动装置(以下简称保护装置)进行安装调试、运行维护等工作。 2规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仪注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2900.15电工术语 变压器、互感器、调压器和电抗器 GB/T 2900.50电工术语 发电、输电及配电 通用术语 GB/T 2900.57电工术语 发电、输电及配电运行 GB/T 7261—2015继电保护及安全自动装置基本试验方法 GB/T 14285—2006继电保护及安全自动装置技术规程 GB/T 20840.7—2007 电子式电压互感器 GB/T 20840.8—2007 电子式电流互感器 GB/T 22386—2008 电力系统暂态数据交换通用格式 GB/T 25931—2010 网络测量和控制系统的精密时钟同步协议 DL/T 478—2013继电保护及安全自动装置通用技术条件 DL/T 527—2013继电保护及控制装置电源模块(模件)技术条件 DL/T 587微机继电保护装置运行管理规程 DL/T 860(所有部分)变电站通信网络和系统 DL/T 1501—2016数字化继电保护试验装置技术条件 3术语和定义 GB/T 2900.15、GB/T 2900.50、GB/T 2900.57、GB/T 20840.7、GB/T 20840.8、DL/T 860界定的以及下列术语和定义适用于本文件。 继电保护系统relay protection system 由继电保护装置、合并单元、智能终端、交换机、通道、二次回路等构成,实现继电保护功能的系统。 4总则 4.1 本标准是保护装置在检验过程中应遵守的基本原则。本标准内容不限于继电保护单体装置,还包括合并单元、智能终端、交换机、通道、二次回路等构成继电保护系统的设备。 4.2各级继电保护管理及运行维护单位,应根据当地电网具体情况并结合一次设备的检修合理地安排年、季、月的检验计划。相关调度机构应支持配合,并做统筹安排。 4.3保护装置检验工作应制定标准化的作业指导书及实施方案,其内容应符合本标准。 4.4检验用仪器、仪表的准确级及技术特性应符合要求,并应定期校验。 4.5微机型保护装置的检验,应充分利用其“自检”功能,着重检验“自检”功能无法检测的项目。 4.6对于不停电检验工作,应考虑继电保护双重化配置及远、近后备保护配合,遵循任何电力设备不允许在无继电保护的状态下运行的原则。 5常规变电站继电保护和电网安全自动装置的检验 5.1 常规检修检验种类及周期 5.1.1 常规检修检验种类 常规检修检验分为三类: a)新安装保护装置的验收检验: b)运行中保护装置的定期检验(简称定期检验); c)运行中保护装置的补充检验(简称补充检验)。 5.1.1.1 新安装保护装置的验收检验 新安装保护装置的验收检验,在下列情况进行: a)当新安装的一次设备投入运行时: b)当在现有的一次设备上投入新安装的保护装置时。 5.1.1.2运行中保护装置的定期检验 定期检验分为三种: a)全部检验; b)部分检验: c)用保护装置进行断路器跳、合闸试验。 5.1.1.3运行中保护装置的补充检验 补充检验分为五种: a)对运行中的保护装置进行较大的更改(含保护装置软件版本升级)或增设新的回路后的检验; b)检修或更换一次设备后的检验; c)运行中发现异常情况后的检验; d)事故后检验; e)已投运行的保护装置停电一年及以上,再次投入运行时的检验。 5.1.2定期检验的内容与周期 5.1.2.1 定期检验应根据本标准所规定的周期、项目及各级主管部门批准执行的标准化作业指导书的内容进行。 5.1.2.2定期检验周期计划的制定应综合考虑所辖设备的电压等级及工况,按本标准要求的周期、项目进行。一般情况下,定期检验应尽可能配合在一次设备停电检修期间进行。220kV电压等级及以上保护装置的全部检验及部分检验周期表见表1和表2。 表1全都检验周期表 编号 设备类型 全部检验周期 (年) 定义范围说明 1 微机型保护装置 6 包括装置引入端子外的交、直流及操作回路以及涉及的辅助继电器、操动机构的辅助触点、直流控制回路的自动开关等 2 非微机型保护装置 4 包括装置引入端子外的交、直流及操作回路以及涉及的辅助继电器、操动机构的辅助触点、商流控制回路的自动开关等 3 保护专用光纤通道,复用光纤或微波连接通道 6 指站端保护装置连接用光纤通道及光电转换装置 4 保护用载波通道的加工设备(包含与通信复用、电网安全自动装置合用且由其他部门负责维护的设备) 6 涉及如下相应的加工设备:高频电缆、结合滤波器、差接网络、分频器 表2部分检验周期表 编号 设备类型 部分检验周期 (年) 定义范围说明 1 微机型保护装置 2~4 包括装置引入端子外的交、直流及操作回路以及涉及的辅助继电器。操作机构的辅助触点、直流控制回路的自动开关等 2 非微机型保护装置 1 包括装置引入端子外的交、直流及操作回路以及涉及的辅助继电器、操作机构的辅助触点、直流控制回路的自动开关等 3 保护专用光纤通道,复用光纤或微波连接通道 2~4 指光纤头擦拭、收信裕度测试等 4 保护用载波通道的加工设备(包含与通信复用、电网安全自动装置合用且由其他部门负责维护的设备) 2~4 指传输衰耗、收信裕度测试等 5.1.2.3制定部分检验周期计划时,设备的运行维护部门可视保护装置的电压等级、制造质量、运行工况、运行环境与条件,适当缩短其检验周期,增加检验项目。具体如下: a)新安装保护装置投运后一年内应进行第一次全部检验。在装置第二次全部检验后,若发现装置运行情况较差或已暴露出了需予以监督的缺陷,可考虑适当缩短部分检验周期,并有目的、有重点地选择检验项目。 b)110kV电压等级的微机型保护装置宜每2年~4年进行一次部分检验,每6年进行一次全部检验;非微机型保护装置参照220kV及以上电压等级同类保护装置的检验周期。 c)利用保护装置进行断路器的跳、合闸试验宜与一次设备检修结合进行。必要时可进行补充检验。 5.1.2.4母线差动保护、断路器失灵保护及电网安全自动装置中投切发电机组、切除负荷、切除线路或变压器等设备的跳合断路器试验,允许用导通方法分别证实至每个断路器跳闸回路接线的正确性。 5.1.3补充检验的内容 5.1.3.1 因检修或更换一次设备(断路器、电流和电压互感器等)所进行的检验,应由运行维护单位继电保护部门根据一次设备检修(更换)的性质,确定其检验项目。 5.1.3.2运行中的保护装置经过较大的更改或装置的二次回路变动后,均应由运行维护单位继电保护部门进行检验,并按其工作性质确定其检验项目。 5.1.3.3凡保护装置发生异常或装置不正确动作且原因不明时,均应由运行维护单位继电保护部门根据事故情况,有目的地拟定具体检验项目及检验顺序,尽快进行事故后检验。检验工作结束后,应及时提出报告,按设备调度管辖权限上报备查。 5.1.4检验管理 5.1.4.1 对试运行的新型保护装置,应进行全面的检查试验,并经网(省)公司继电保护运行管理部门审查。 5.1.4.2 因制造质量不良、不能满足运行要求的保护装置,应由制造厂负责解决,并向上级主管部门报告。 5.1.4.3保护装置出现普遍性问题后,制造厂有义务向运行主管部门及时通报,并提出预防性措施。 5.2常规变电站检验工作应具备的条件 5.2.1 仪器、仪表的基本要求与配置 5.2.1.1 保护装置检验所使用的仪器、仪表应检验合格,并应满足GB/T 7261—2016中的规定,定值检验所使用的仪器、仪表的准确级应不低于0.5级。 5.2.1.2 220kV及以上变电站如需调试载波通道应配置高频振荡器和选频表。220kV及以上变电站或集控站应配置一套至少可同时输出三相电流、四相电压的微机成套试验仪及试验线等工具。 5.2.1.3继电保护班组应至少配置指针式电压表、电流表,数字式电压表、电流表,钳形电流表,相位表,毫秒计,电桥等;500V、1000V及2500V绝缘电阻表;可记忆示波器;载波通道测试所需的高频振荡器和选频表,无感电阻,可变衰耗器等;微机成套试验仪。 建议配置便携式录波器(波形记录仪)、模拟断路器。 需要调试光纤纵联通道时应配置光源、光功率计、误码仪、可变光衰耗器等仪器。 5.2.2检验前的准备工作 5.2.2.1 在现场进行检验工作前,应认真了解被检验保护装置的一次设备情况及其相邻的一、二次设备情况,与运行设备关联部分的详细情况,据此制定在检验工作全过程中确保系统安全运行的技术措施。 5.2.2.2应具备与实际状况一致的图纸、上次检验的记录、最新定值通知单、标准化作业指导书、合格的仪器仪表、备品备件、工具和连接导线等。 5.2.2.3规定有接地端的测试仪表,在现场进行检验时,不允许直接接到直流电源回路中,以防止发生直流电源接地的现象。 5.2.2.4新安装保护装置验收检验前的准备工作包括: a)了解设备的一次接线及投入运行后可能出现的运行方式和设备投入运行的方案,该方案应包括投入初期的临时继电保护方式。 b)检查保护装置的原理接线图(设计图)及与之相符合的二次回路安装图,电缆敷设图,电缆编号图,断路器操动机构图,电流、电压互感器端子箱图及二次回路分线箱图等全部图纸以及成套保护、自动装置的原理和技术说明书及断路器操动机构说明书,电流、电压互感器的出厂试验报告等。以上技术资料应齐全、正确。若新装置由基建部门负责调试,生产部门继电保护验收人员验收全套技术资料之后,再验收技术报告。 c)根据设计图纸,到现场核对所有保护装置的安装位置是否正确。 5.2.2.5对保护装置的整定试验,应按有关继电保护部门提供的定值通知单进行。工作负责入应熟知定值通知单的内容,核对所给定值是否齐全,所使用的电流、电压互感器的变比值是否与现场实际情况相符合(不应仅限于定值单中设定功能的验证)。 5.2.2.6继电保护检验人员在运行设备上进行检验工作时,应事先取得发电厂或变电站运行人员的同意,遵照电业安全工作相关规定履行工作许可手续,并在运行人员利用专用的连片将保护装置的所有出口回路断开之后,才能进行检验工作。 5.2.2.7检验现场应提供安全可靠的检修试验电源,禁止从运行设备上接取试验电源。 5.2.2.8检查装设保护和通信设备的室内的所有金属结构及设备外壳均应连接于等电位地网。 5.2.2.9检查装设静态保护和控制装置屏柜下部接地铜排已可靠连接于等电位地网。 5.2.2.10检查等电位接地网与厂、站主接地网紧密连接。 5.3常规变电站现场检验 5.3.1 电流、电压互感器的检验 5.3.1.1 新安装电流、电压互感器及其回路的验收。 检查电流、电压互感器的铭牌参数是否完整,出厂合格证及试验资料是否齐全,如缺乏上述数据,应由有关制造厂或基建、生产单位的试验部门提供下列试验资料:所有绕组的极性,所有绕组及其抽头的变比,电压互感器在各使用容量下的准确级,电流互感器各绕组的准确级(级别)、容量及内部安装位置,二次绕组的直流电阻(各抽头),电流互感器各绕组的伏安特性。 5.3.1.2 电流、电压互感器安装竣工后,继电保护检验人员应进行下列检查: a)电流、电压互感器的变比、容量、准确级应符合设计要求。 b)测试互感器各绕组间的极性关系,核对铭牌上的极性标志是否正确。检查互感器各次绕组的连接方式及其极性关系是否与设计符合,相别标识是否正确。 c)有条件时,自电流互感器的一次分相通入电流,检查工作抽头变比及回路是否正确(发电机—变压器组保护所使用的外附互感器、变压器套管互感器的极性与变比检验可在发电机做短路试验时进行)。 d)自电流互感器的二次端子箱处向负载端通入交流电流,测定回路的压降,计算电流回路每相与中性线及相间的阻抗(二次回路负担)。按保护的具体工作条件和制造厂家提供的出厂资料,来验算所测得的阻抗值是否符合互感器10%误差的要求。 5.3.2二次回路检验 5.3.2.1 在被保护设备的断路器、电流互感器以及电压回路与其他单元设备的回路完全断开后方可进行。 5.3.2.2电流互感器二次回路应进行下列检查: a)检查电流互感器二次绕组所有二次接线的正确性及端子排引线螺钉压接的可靠性。 b)检查电流二次回路的接地点与接地状况,电流互感器的二次回路应分别且只能有一点接地;由几组电流互感器二次组合的电流回路,应在有直接电气连接处一点接地。 5.3.2.3 电压互感器二次回路应进行下列检查: a)检查电压互感器二次、三次绕组的所有二次回路接线的正确性及端子排引线螺钉压接的可靠性。 b)经控制室零相小母线(N600)连通的几组电压互感器二次回路,只应在控制室将N600一点接地,各电压互感器二次中性点在开关场的接地点应断开;为保证接地可靠,各电压互感器的中性线不得接有可能断开的熔断器(自动开关)或接触器等。独立的、与其他互感器二次回路没有直接电气联系的二次回路,可以在控制室也可以在开关场实现一点接地。来自电压互感器二次回路的4根开关场引入线和互感器三次回路的2(3)根开关场引入线应分开,不得共用。电压互感器开口三角电压回路中不得接有可能断开的熔断器(自动开关)或接触器等。 c)检查电压互感器二次中性点在开关场的金属氧化物避雷器的安装是否符合相关规定。 d)新投入时,检查电压互感器二次回路中所有熔断器(自动开关)的装设地点、熔断(脱扣)电流是否合适(自动开关的脱扣电流需通过试验确定)、质量是否良好,能否保证选择性,自动开关线圈阻抗值是否合适。 e)检查串联在电压回路中的熔断器(自动开关)、隔离开关及切换设备触点接触的可靠性。 f)测量电压回路自互感器引出端子到配电屏电压母线的每相直流电阻,并计算电压互感器在额定容量下的压降,其值不应超过额定电压的3%。 5.3.2.4二次回路绝缘应进行下列检查: a)检查前应注意以下事项: 1)在对二次回路进行绝缘检查前,应确认被保护设备的断路器、电流互感器全部停电,交流电压回路已在电压切换把手或分线箱处与其他单元设备的回路断开,并与其他回路隔离完好后,才允许进行。 2)在进行绝缘测试时,应注意:试验线连接要紧固;每进行一项绝缘试验后,须将试验回路对地放电;对母线差动保护,断路器失灵保护及电网安全自动装置,如果不可能出现被保护的所有设备都同时停电的机会时,其绝缘电阻的检验只能分段进行,即哪一个被保护单元停电,就测定这个单元所属回路的绝缘电阻。 b)新安装保护装置的验收试验时,从保护屏柜的端子排处将所有外部引入的回路及电缆全部断开,分别将电流、电压、直流控制、信号回路的所有端子各自连接在一起,用1000V绝缘电阻表测量各回路对地和各回路相互间绝缘电阻,其阻值均应大于10MΩ。 c)定期检验时,在保护屏柜的端子排处将所有电流、电压、直流控制回路的端子的外部接线拆开,并将电压、电流网路的接地点拆开,用1000V绝缘电阻表测量回路对地的绝缘电阻,其绝缘电阻应大于1MΩ。 d)对使用触点输出的信号回路,用1000V绝缘电阻表测量电缆每芯对地及对其他各芯间的绝缘电阻。其绝缘电阻应不小于1MΩ。定期检验只测量芯线对地的绝缘电阻。 e)对采用金属氧化物避雷器接地的电压互感器的二次回路,需检查其接线的正确性及金属氧化物避雷器的工频放电电压。 f)定期检查时可用绝缘电阻表检验金属氧化物避雷器的工作状态是否正常。一般当用1000V绝缘电阻表时,金属氧化物避雷器不应击穿;而用2500V绝缘电阻表时,则应可靠击穿。 5.3.2.5新安装二次回路的验收检验应进行以下内容: a)对回路的所有部件进行观察、清扫与必要的检修及调整,所述部件包括与保护装置有关的操作把手、按钮、插头、灯座、位置指示继电器、中央信号装置及这些部件回路中端子排、电缆、熔断器等。 b)利用导通法依次经过所有中间接线端子,检查由互感器引出端子箱到操作屏柜、保护屏柜、自动装置屏柜或至分线箱的电缆回路及电缆芯的标号,并检查电缆簿的填写是否正确。 c)当设备新投入或接入新回路时,核对熔断器(自动开关)的额定电流是否与设计相符或与所接入的负荷相适应,并满足上下级之间的配合。 d)检查屏柜上的设备及端子排上内部、外部连线的接线应正确,接触应牢靠,标号应完整准确,且应与图纸和运行规程相符合。检查电缆终端和沿电缆敷设路线上的电缆标牌是否正确完整,并应与设计相符。 e)检验直流回路确实没有寄生回路存在。检验时应根据回路设计的具体情况,用分别断开回路的一些可能在运行中断开(如熔断器、指示灯等)的设备及使回路中某些触点闭合的方法来检验。每一套独立的保护装置,均应有专用于直接到直流熔断器正负极电源的专用端子对,这一套保护的全部直流回路包括跳闸出口继电器的线圈网路,都应且只能从这一对专用端子取得直流的正、负电源。 f)信号回路及设备可不进行单独的检验。 5.3.2.6断路器、隔离开关及二次回路的检验应进行以下内容: a)继电保护人员应熟知:断路器的跳闸线圈及合闸线圈的电气回路接线方式(包括防止断路器跳跃回路、三相不一致回路等措施);与保护回路有关的辅助触点的开闭情况、切换时间,构成方式及触点容量;断路器二次操作回路中的气压、液压及弹簧压力等监视回路的工作方式;断路器二次回路接线图;断路器跳闸及合闸线圈的电阻值及在额定电压下的跳、合闸电流;断路器跳闸电压及合闸电压,其值应满足相关规程的规定;断路器的跳闸时间、合闸时间以及合闸时三相触头不同时闭合的最大时间差,应不大于规定值。 b)断路器及隔离开关中的一切与保护装置二次回路有关的调整试验工作,均由管辖断路器、隔离开关的有关人员负责进行。继电保护检验人员应了解掌握有关设备的技术性能及其调试结果,并负责检验自保护屏柜引至断路器(包括隔离开关)二次回路端子排处有关电缆线连接的正确性及螺钉压接的可靠性。 5.3.2.7新安装或经更改的电流、电压回路,应直接利用工作电压检查电压二次回路,利用负荷电流检查电流二次回路接线的正确性。 5.3.3屏柜及保护装置检验 5.3.3.1检验时注意事项 检验时应注意如下问题以避免保护装置内部元器件损坏: a)断开保护装置的电源后才允许插、拔插件,且应有防止因静电损坏插件的措施。 b)调试过程中发现有问题要先找原因,不要频繁更换芯片。应更换芯片时,要用用起拔器。应注意芯片插入的方向,插入芯片后需经第二人检查无误后,方可通电检验或使用。 c)检验中尽量不使用烙铁,如元件损坏等应在现场进行焊接时,要用内热式带接地线烙铁或烙铁断电后再焊接。所替换的元件应使用制造厂确认的合格产品。 d)用具有交流电源的电子仪器(如示波器、频率计等)测量电路参数时,电子仪器测量端子与电源侧绝缘应良好,仪器外壳应与保护装置在回一点接地。 5.3.3.2保护装置外部检查 保护装置外部应进行下列检查: a)保护装置的实际构成情况是否与设计相符合,如:装置的配置、装置的型号、额定参数(直流电源额定电压、交流额定电流、电压等)。 b)主要设备、辅助设备的工艺质量,以及导线与端子采用材料的质量。保护装置内部的所有焊接点、插件接触的牢靠性等属于制造工艺质量的问题,主要依靠制造厂负责保证产品质量。进行新安装保护装置的检验时,试验人员只做抽查。 c)屏柜上的标志应正确完整清晰,并与图纸和运行规程相符。 d)检查安装在保护装置输入回路和电源回路的减缓电磁干扰器件和措施应符合相关标准和制造厂的技术要求。在保护装置检验的全过程应保持这些减缓电磁干扰器件和措施处于良好状态。 e)应将保护屏柜上不参与正常运行的连片取下,或采取其他防止误投的措施。 f)定期检验的主要检查项目:检查保护装置内、外部是否清洁无积尘;清扫电路板及屏柜内端子排上的灰尘;检查装置的小开关、拨轮及按钮是否良好;显示屏是否清晰,文字是否清楚;检查各插件印刷电路板是否有损伤或变形,连线是否连接好:检查各插件上元件是否焊接良好,芯片是否插紧:检查各插件上变换器、继电器是否固定好,有无松动;检查装置横端子排螺丝是否拧紧,后板配线连接是否良好;按照装置技术说明书描述的方法,根据实际需要,检查、设定并记录保护装置插件内的选择跳线和拨动开关的位置。 5.3.3.3绝缘试验 绝缘试验步骤及要求如下: a)仅在新安装保护装置的验收检验时进行绝缘试验。 b)按照保护装置技术说明书的要求拔出插件。 c)在保护屏柜端子排内侧分别短接交流电压回路端子、交流电流同路端子、直流电源回路端子、跳闸和合闸回路端子、开关量输入回路端子、厂站自动化系统接口回路端子及信号回路端子。 d)断开与其他保护的弱电联系回路。 e)将打印机与保护装置连接断开。 f)保护装置内所有互感器的屏蔽层应可靠接地。在测量某一组回路对地绝缘电阻时,应将其他各组回路都接地。 g)用500V绝缘电阻表测量绝缘电阻值,要求阻值均大于20MΩ。测试后应将各回路对地放电。 5.3.3.4通电检查 通电检查步骤及要求如下: a)打开保护装置电源,装置应能正常工作。 b)按照保护装置技术说明书描述的方法,检查并记录装置的硬件和软件版本号、校验码等信息。 c)校对时钟。 5.3.3.5工作电源检查 工作电源检查步骤及要求如下: a)对于微机型保护装置,要求插入全部插件。 b)80%额定工作电源下检验:保护装置应稳定工作。 c)电源自启动试验:闭合直流电源插件上的电源开关,将试验直流电源由零缓慢调至80%额定电源值,此时保护装置运行灯应燃亮,装置无异常。 d)直流电源拉合试验:在80%直流电源额定电压下拉合三次直流工作电源,逆变电源可靠启动,保护装置不误动,不误发信号。 e)保护装置断电恢复过程中无异常,通电后工作稳定正常。 f)在保护装置上电掉电瞬间,保护装置不应发异常数据,继电器不应误动作。 g)定期检验时还应检查逆变电源是否接近DL/T 527—2013所规定的最低无故障工作时间,如接近应及时更换。 5.3.3.6模数变换系统检验 模数变换系统检验应按以下进行。 a)检验零点漂移。进行本项目检验时,要求保护装置不输入交流电流、电压量。观察装置在一段时间内的零漂值满足装置技术条件的规定。 b)各电流、电压输入的幅值和相位精度检验。新安装保护装置的验收检验时,按照装置技术说明书规定的试验方法,分别输入不同幅值和相位的电流、电压量,观察装置的采样值满足装置技术条件的规定。全部检验时,可仅分别输入不同幅值的电流、电压量;部分检验时,可仅分别输入额定电流、电压量。 c)技术要求。应符合DL/T 478—2013中相应规定。 5.3.3.7开关量输入回路检验 开关量输入回路检验应按以下要求进行: a)新安装保护装置的验收检验时:在保护屏柜端子排处,按照装置技术说明书规定的试验方法,对所有引入端子排的开关量输入回路依次加入激励量,观察装置的行为。 按照装置技术说明书所规定的试验方法,分别接通、断开连片及转动把手,观察装置的行为。 b)全部检验时,仅对已投入使用的开关量输入回路依次加入激励量,观察装置的行为。 c)部分检验时,可随装置的整组试验一并进行。 d)技术要求:强电开入回路继电器的启动电压值不应大于0.7倍额定电压值,且不应小于0.55倍额定电压值,同时继电器驱动功率应不小于5W。分别接通、断开开入回路,装置的开入显示正确。装置开关量输入定义采用正逻辑,即触点闭合为“1”,触点断开为“0”,开入量名称与标准要求描述一致。 如果几种保护共用同一开入量,应将此开入量分别传动至各种保护。 5.3.3.8开关量输出触点及输出信号检查 开关量输出触点及输出信号检查应按以下要求进行: a)新安装保护装置的验收检验时;在装置屏柜端子排处,按照装置技术说明书规定的试验方法,依次观察装置所有输出触点及输出信号的通断状态。 b)全部检验时,在保护装置屏柜端子排处,按照装置技术说明书规定的试验方法,依次观察装置已投入使用的输出触点及输出信号的通断状态。 c)部分检验时,可随保护装置的整组试验一并进行。 d)技术要求:保护装置的开出触点应能可靠保持、返回,接触良好不抖动,且装置的动作延时应能满足工程和设计要求。如果几种保护共用一组出口连片或共用同一告警信号时,应将几种保护分别传动到出口连片和保护屏柜端子排。 5.3.3.9事件记录功能 5.3.3.9.1 测试方法: 记录保护装置的动作报告信息、动作报告存储数量、动作报告分类以及这些能否转换为电力系统暂态数据交换通用格式。 5.3.3.9.2技术要求: 装置应能记录保护装置动作信息,保留8次以上最新动作报告。 装置记录的所有数据应能转换为GB/T 22386—2008所规定的电力系统暂态数据交换通用格式(common format for transient data exchange,COMTRADE)。 装置记录的动作报告应分类显示。 装置应能提供运行、检修人员直接在保护装置液晶屏调阅和打印的功能,便于值班人员尽快了解情况和事故处理的装置动作信息;供专业人员分析事故和装置动作行为的记录。 5.3.3.10安全稳定控制装置信息传送 5.3.3.10.1 测试内容。检查稳控系统各装置间的信息传输,电流、电压、频率、断面潮流、允切机组(负荷)容量等交流量传输,线路投停状态、TWJ/HWJ状态、压板信息等开关量传输。 5.3.3.10.2测试方法。查看稳控系统各装置间的信息传输。 5.3.3.10.3技术要求。稳控系统主站、子站、执行站间应能正确传输交流量、开关量。 5.3.3.11 安全稳定控制装置启动判据 5.3.3.11.1 测试内容。检查装置的启动判据。 5.3.3.11.2测试方法。模拟每一种启动判据分别满足启动条件,检查装置能否进入启动状态。 5.3.3.11.3技术要求。依据实际工程具体要求,应能在满足任一种判据时,装置均应能进入启动状态。 5.3.4整定值的整定及检验 5.3.4.1 整定值的整定检验是指将保护装置各有关元件的动作值及动作时间按照定值通知单进行整定后的试验。该项试验在屏柜上每一元件检验完毕之后才可进行。具体的试验项目、方法、要求视构成原理而异,一般须遵守如下原则: a)每一套保护应单独进行整定检验,试验接线回路中的交、商流电源及时间测量连线均应直接接到被试保护屏柜的端子排上。交流电压、电流试验接线的相对极性关系应与实际运行接线中电压、电流互感器接到屏柜上的相对相位关系(折算到一次侧的相位关系)完全一致。 b)在整定检验时,除所通入的交流电流、电压为模拟故障值并断开断路器的跳、合闸回路外,整套保护装置应处于与实际运行情况完全一致的条件下,而且不得在试验过程中人为地予以改变。 c)保护装置整定的动作时间为自向保护屏柜通入模拟故障分量(电流、电压或电流及电压)至保护动作向断路器发出跳闸脉冲的全部时间。 d)电气特性的检验项目和内容应根据检验的性质,保护装置的具体构成方式和动作原理拟定。 检验保护装置的特性时,在原则上应符合实际运行条件,并满足实际运行的要求。每一检验项目都应有明确的目的,或为运行所必须,或用以判别元件、装置是否处于良好状态和发现可能存在的缺陷等。 5.3.4.2在定期检验及新安装保护装置的验收检验时,装置的整定检验要求如下: a)新安装保护装置的验收检验时,应按照定值通知单上的整定项目,依据装置技术说明书或制造厂推荐的试验方法,对保护的每一功能元件进行逐一检验。 b)在全部检验时,对于由不同原理构成的保护元件只需任选一种进行检查。建议对主保护的整定项目进行检查,后备保护如相间一段、二段、三段阻抗保护只需选取任一整定项目进行检查。 c)部分检验时,可结合保护装置的整组试验一并进行。 5.3.5纵联保护通道检验 5.3.5.1 对于载波通道的检查项目如下: a)继电保护专用载波通道中的阻波器、结合滤波器、高频电缆等加工设备的试验项目与电力线载波通信规定的相一致。与通信合用通道的试验工作由通信部门负责,其通道的整组试验特性除满足通信本身要求外,也应满足继电保护安全运行的有关要求。在全部检验时,只进行结合滤波器、高频电缆的相关试验。 b)投入结合设备的接地刀闸,将结合设备的一次(高压)侧断开,并将接地点拆除之后,用1000V绝缘电阻表分别测量结合滤波器二次侧(包括高频电缆)及一次侧对地的绝缘电阻及一、二次间的绝缘电阻。 c)测定载波通道传输衰耗。部分检验时,可以简单地以测量接收电平的方法代替(对侧发信机发出满功率的连续高频信号),将接收电平与最近一次通道传输衰耗试验中所测量到的接收电平相比较。其差若大于3dB时,则须进行进一步检查通道传输衰耗值变化的原因。 d)对于专用收发信机,在新投入运行及在通道中更换了(增加或减少)个别加工设备后,所进行的传输衰耗试验的结果,应保证收信机接收对端信号时的通道裕量不低于8.686dB,否则保护不允许投入运行。 5.3.5.2对于光纤及微波通道的检查项目如下: a)对于光纤及微波通道可以采用自环的方式检查通道是否完好。光纤通道还可以通过下面两种方法检查通道是否完好:方法一,拔插待测光纤一端的通信端口,观察其对应另一端的通信接口信号灯是否正确熄灭和点亮;方法二,采用激光笔照亮待测光纤的一端而在另外一端检查是否点亮。 b)光纤尾纤检查及要求:光纤尾纤应呈现自然弯曲(弯曲半径大于3cm),不应存在弯折的现象,不应承受任何外重,尾纤表皮应完好无损;尾纤接头应干净无异物,如有污染应立即清洁干净;尾纤接头连接应牢靠,不应有松动现象。 c)对于与光纤及微波通道相连的保护用附属接口设备应对其继电器输出触点、电源和接口设备的接地情况进行检查。 d)通信专业应对光纤及微波通道的误码率和传输时间进行检查,指标应满足GB/T 14285—2006的要求。 e)对于利用专用光纤及微波通道传输保护信息的远方传输设备,应对其发信功率(电平)、收信灵敏度进行测试,并保证通道的裕度满足运行要求。 5.3.5.3传输远方跳闸信号的通道,在新安装或更换设备后应测试其通道传输时间。采用允许式信号的纵联保护,除了测试通道传输时间,还应测试“允许跳闸”信号的返回时间。 5.3.5.4保护装置与通信设备之间的连接(继电保护利用通信设备传送保护信息的通道)应有电气隔离,并检查各端子排接线的正确性和可靠性。 5.3.6操作箱检验 5.3.6.1 操作箱检验应符合以下要求: a)进行每一项试验时,试验人员须准备详细的试验方案,尽量减少断路器的操作次数。 b)对分相操作断路器,应逐相传动防止断路器跳跃回路。 c)对于操作箱中的出口继电器,还应进行动作电压范围的检验,其值应在55%~70%额定电压之间。对于其他逻辑回路的继电器,应满足80%额定电压下可靠动作。 5.3.6.2操作箱的检验根据厂家调试说明书并结合现场情况进行。并重点检验下列元件及回路的正确性: a)防止断路器跳跃回路和三相不一致回路。 如果使用断路器本体的防止断路器跳跃回路和三相不一致回路,则检查操作箱的相关回路是否满足运行要求。 b)交流电压的切换回路。 c)合闸回路、跳闸1回路及跳闸2回路的接线正确性,并保证各回路之间不存在寄生回路。 5.3.6.3新建及重大改造设备需利用操作箱对断路器进行下列传动试验: a)断路器就地分闸、合闸传动。 b)断路器远方分闸、合闸传动。 c)防止断路器跳跃回路传动。 d)断路器三相不一致回路传动。 e)断路器操作闭锁功能检查。 f)断路器操作油压或空气压力继电器、SF6密度继电器及弹簧压力等触点的检查,检查各级压力继电器触点输出是否正确,检查压力低闭锁合闸、闭锁重合闸、闭锁跳闸等功能是否正确。 g)断路器辅助触点检查,远方、就地方式功能检查。 h)在使用操作箱的防止断路器跳跃回路时,应检验串联接入跳合闸同路的自保持线圈,其动作电流不应大于额定跳合闸电流的50%,线圈压降小于额定值的5%。 i)所有断路器信号检查。 5.3.6.4操作箱定期检验时可结合保护装置的整组试验一并进行。 5.3.7整组试验 5.3.7.1 在做完每一套单独保护(元件)的整定检验后,需要将同一被保护设备的所有保护装置连在一起进行整组的检查试验,以校验各保护装置在故障及重合闸过程中的动作情况和保护回路设计正确性及其调试质量。 5.3.7.2若同一被保护设备的各套保护装置皆接于同。一电流互感器二次回路,则按回路的实际接线,自电流互感器引进的第一套保护屏柜的端子排上接入试验电流、电压,以检验各套保护相互间的动作关系是否正确。如果同一被保护设备的各套保护装置分别接于不同的电流回路时,则应临时将各套保护的电流回路串联后进行整组试验。 5.3.7.3新安装保护装置的验收检验或全部检验时,可先进行每一套保护(指几种保护共用一组出口的保护总称)带模拟断路器(或带实际断路器或采用其他手段)的整组试验。 每一套保护传动完成后,还需模拟各种故障用所有保护带实际断路器进行整组试验。 新安装保护装置或回路经更改后的整组试验由基建单位负责时,生产部门继电保护验收人员应参加试验,了解掌握试验情况。 5.3.7.4部分检验时,只需用保护带实际断路器进行整组试验。 5.3.7.5整组试验包括如下内容: a)整组试验时应检查各保护之间的配合、装置动作行为、断路器动作行为、保护起动故障录波信号、厂站自动化系统信号、中央信号、监控信息等正确无误。 b)借助于传输通道实现的纵联保护、远方跳闸等的整组试验,应与传输通道的检验一同进行。必要时,可与线路对侧的相应保护配合一起进行模拟区内、区外故障时保护动作行为的试验。 c)对装设有综合重合闸装置的线路,应检查各保护及重合闸装置间的相互动作情况与设计相符合。为减少断路器的跳合次数,试验时,应以模拟断路器代替实际的断路器。使用模拟断路器时宜从操作箱出口接入,并与装置、试验器构成闭环。 d)将装置(保护和重合闸)带实际断路器进行必要的跳、合闸试验,以检验各有关跳、合闸回路、防止断路器跳跃回路、重合闸停用回路及气(液)压闭锁等相关回路动作的正确性,每一相的电流、电压及断路器跳合闸回路的相别是否一致。 e)在进行整组试验时,还应检验断路器、合闸线圈的压降不小于额定值的90%。 5.3.7.6对母线差动保护、失灵保护及电网安全自动装置的整组试验,可只在新建变电站(升压站)投产时进行。 定期检验时允许用导通的方法证实到每一断路器接线的正确性。一般情况下,母线差动保护、失灵保护及电网安全自动装置回路设计及接线的正确性,要根据每一项检验结果(尤其是电流互感器的极性关系)及保护本身的相互动作检验结果来判断。 变电站扩建变压器、线路或回路发生变动,有条件时应利用母线差动保护、失灵保护及电网安全自动装置传动到断路器。 5.3.7.7对设有可靠稳压装置的厂站直流系统,经确认稳压性能可靠后,进行整组试验时,应按额定电压进行。 5.3.7.8在整组试验中应检查以下问题: a)各套保护间的电压、电流回路的相别及极性是否一致。 b)在同一类型的故障下,应该同时动作于发出跳闸脉冲的保护,在模拟短路故障中是否均能动作,其信号指示是否正确。 c)有两个线圈以上的直流继电器的极性连接是否正确,对于用电流起动(或保持)的回路,其动作(或保持)性能是否可靠。 d)所有相互间存在闭锁关系的回路,其性能是否与设计符合。 e)所有在运行中需要由运行值班员操作的把手及连片的连线、名称、位置标号是否正确,在运行过程中与这些设备有关的名称、使用条件是否一致。 f)中央信号装置或监控系统的有关光字、音响信号指示是否正确。 g)各套保护在直流电源正常及异常状态下(自端子排处断开其中一套保护的负电源等)是否存在寄生回路。 h)断路器跳、合闸回路的可靠性,其中装设单相重合闸的线路,验证电压、电流、断路器回路相别的一致性及与断路器跳合闸回路相连的所有信号指示回路的正确性。对于有双跳闸线圈的断路器,应检查两跳闸接线的极性是否一致。 i) 自动重合闸是否能确实保证按规定的方式动作并保证不发生多次重合情况。 5.3.7.9整组试验结束后应在恢复接线前测量交流回路的直流电阻。工作负责人应在继电保护记录本中注明可以投入运行的保护和需要利用负荷电流及工作电压进行检验以后才能正式投入运行的保护。 5.4常规变电站与厂站自动化系统、继电保护及故障信息管理系统的配合检验 5.4.1检验前的准备 5.4.1.1 检验人员在与厂站自动化系统、继电保护及故障信息管理系统的配合检验前应熟悉图纸,并了解各传输量的具体定义并与厂站自动化系统、继电保护及故障信息管理系统的信息表进行核对。 5.4.1.2现场应制定配合检验的传动方案。 5.4.1.3定期检验时,可结合整组试验一并进行。 5.4.2检查项目 5.4.2.1 厂站自动化系统(含各种测量、控制装置和监控后台)新投入、全部检验、部分检查项目详见附录C。 5.4.2.2继电保护及故障信息管理系统新投入、全部检验、部分检查项目详见附录C。 5.5常规变电站保护装置投运 5.5.1 投入运行前的准备工作 5.5.1.1 现场工作结束后,工作负责人应检查试验记录有无漏试项目,核对保护装置的整定值是否与定值通知单相符,试验数据、试验结论是否完整正确。盖好所有保护装置及辅助设备的盖子,对必要的元件采取防尘措施。 5.5.1.2拆除在检验时使用的试验设备、仪表及一切连接线,清扫现场,所有被拆动的或临时接入的连接线应全部恢复正常,所有信号装置应全部复归。 5.5.1.3清除试验过程中微机装置及故障录波器产生的故障报告、告警记录等所有报告。 5.5.1.4填写继电保护工作记录,将主要检验项目和传动步骤、整组试验结果及结论、定值通知单执行情况详细记载于内,对变动部分及设备缺陷、运行注意事项应加以说明,并修改运行人员所保存的有关图纸资料。向运行负责人交代检验结果,并写明该装置是否可以投入运行。最后办理工作票结束手续。 5.5.1.5运行人员在将保护装置投入前,应根据信号灯指示或者用高内阻电压表以一端对地测压板端子电压的方法检查并证实被检验的保护装置确实未给出跳闸或合闸脉冲,才允许将装置的连接片接到投入的位置。 5.5.1.6检验人员应在规定期间内提出书面报告,主管部门技术负责人应详细审核,如发现不妥且足以危害保护安全运行时,应根据具体情况采取必要的措施。 5.5.2应用一次电流及工作电压加以检验 5.5.2.1 对新安装的保护装置,各有关部门需分别完成下列各项工作后,才允许进行5.5.2所列的试验工作: a)符合实际情况的图纸与保护装置的技术说明及现场使用说明。 b)运行中需由运行值班员操作的连接片、电源开关、操作把手等的名称、用途、操作方法等应在 现场使用说明中详细注明。 5.5.2.2对新安装的或设备回路有较大变动的保护装置,在投入运行以前,应用一次电流及工作电压加以检验和判定,要求如下: a)对接入电流、电压的相互相位、极性有严格要求的保护装置(如带方向的电流保护、距离保护等),其相别、相位关系以及所保护的方向是否正确。 b)电流差动保护(母线、发电机、变压器的差动保护、线路纵联差动保护及横差保护等)接到保护回路中的各组电流回路的相对极性关系及变比是否正确。 c)每组电流互感器(包括备用绕组)的接线是否正确,回路连线是否牢靠。 d)定期检验时,如果设备回路没有变动(未更换一次设备电缆、辅助变流器等),只需用简单的方法判明曾被拆动的二次回路接线确实恢复正常(如对差动保护测量其差电流、用电压表测量继电器电压端子上的电压等)即可。 5.5。2.3用一次电流与工作电压检验,宜进行以下项目: a)测量电压、电流的幅值及相位关系。 b)对使用电压互感器三次电压或零序电流互感器电流的保护装置,应利用一次电流与工作电压向装置中的相应元件通入模拟的故障量或改变被检查元件的试验接线方式,以判明装置接线的正确性。 注:由于整组试验中已判明同一回路中各保护元件间的相位关系是正确的,因此该项检验在同一回路中只须选取其中一个元件进行检验即可。 c)测量电流差动保护各组电流互感器的相位及差动回路中的差电流(或差电压),以判明差动回路接线的正确性及电流变比补偿回路的正确性。所有差动保护(母线、变压器、发电机的纵差、横差等)在投入运行前,除测定相回路和差回路外,还应测量各中性线的不平衡电流、电压,以保证保护装置和二次回路接线的正确性。 d)检查相序滤过器不平衡输出的数值应满足保护装置的技术条件。 e)对高频相差保护、导引线保护,须进行所在线路两侧电流电压相别、相位一致性的检验。 f)对导引线保护,须以一次负荷电流判定导引线极性连接的正确性。 5.5.2.4对变压器差动保护,需要用在全电压下投入变压器的方法检验保护能否躲开励磁涌流的影响。 5.5.2.5对发电机差动保护。应在发电机投入前进行的短路试验过程中,测量差动回路的差电流,以判明电流回路极性的正确性。 5.5.2.6对于零序方向元件的电流及电压回路连接正确性的检验要求和方法,应由专门的检验规程规定。 对于使用非自产零序电压、电流的并联高压电抗器保护、变压器中性点保护等,在正常运行条件下无法利用一次电流、电压测试时,应与调度部门协调,创造条件进行利用工作电压检查电压二次回路,利用负荷电流检查电流二次回路接线的正确性。 5.5.2.7保护装置未经本条所述的检验,不能正式投入运行。对于新安装变压器,在变压器充电前,应将其差动保护投入使用。在一次设备运行正常且带负荷之后,再由试验人员利用负荷电流检查差动回路的正确性。保护装置的检验项目见表3。 表3常规变电站保护装置检验项目 序号 检验项目 新安装 全部检验 部分检验 检验方法对应章条 1 检验前准备工作 √ √ √ 5.2.2 2 TA、TV检验 √ — — 5.3.1 3 TA、TV二次回路检验 √ √ √ 5.3.2.2、5.3.2.3 4 二次回路绝缘检查 √ √ √ 5.3.2.4 5 装置外部检查 √ √ √ 5.3.3.2 6 装置绝缘试验 √ — — 5.3.3.3 7 装置上电检查 √ √ √ 5.3.3.4 8 工作电源检查 √ √ — 5.3.3.5 9 模数变换系统检验 √ √ — 5.3.3.6 10 开关量输入回路检验 √ √ √ 5.3.3.7 11 输出触点及输出信号检查 √ √ √ 5.3.3.8 12 事件记录功能 √ √ √ 5.3.3.9 13 安全稳定控制装置信息传送和启动判据检查 √ √ √ 5.3.3.10、5.3.3.11 14 整定值的整定及检验 √ √ — 5.3.4 15 纵联保护通道检验 √ √ √ 5.3.5 16 操作箱检验 √ — — 5.3.6 17 整组试验 √ √ √ 5.3.7 18 与厂站自动化系统、继电保护及故障信息管理系统配和检验 √ √ √ 5.4 19 装置投运 √ √ √ 5.5 5.5.2.8对用一次电流及工作电压进行的检验结果,应按当时的负荷情况加以分析,拟订预期的检验结果,凡所得结果与预期的不一致时,应进行认真细致的分析,查找确实原因,不允许随意改动保护回路的接线。 5.5.2.9纵联保护需要在线路带电运行情况下检验载波通道的衰减及通道裕置,以测定载波通道运行的可靠性。 5.5.2.10宜使用钳形电流表检查流过保护二次电缆屏蔽层的电流,以确定100mm2铜排是否有效起到抗干扰的作用。当检测不到电流时,应检查屏蔽层是否良好接地。 6智能变电站继电保护和电网安全自动装置检验 6.1检验种类及周期 智能变电站继电保护、安全自动装置、合并单元、智能终端检验种类和检验周期同常规变电站要求,仅取消部分检验。基于DL/T 860标准的装置在运至现场安装调试之前,应进行集成联调。 6.2智能变电站检验工作条件 6.2.1 仪器、仪表的基本要求和配置 6.2.1.1仪器仪表配置 应配置以下仪器仪表: a)常规配置:数字化继电保护试验装置,光电转换器,继电保护微机型试验装置。 b)调试电子式互感器及合并单元应配置:电子互感器校验仪、标准时钟源、时钟测试仪。 c)调试光纤通信通道(包括光纤纵联保护通道和变电站内的光纤回路)时应配置:光源、光功率计、激光笔、误码仪、可变光衰耗器、法兰盘(各种光纤头转换,如LC转ST等)、光纤头清洁器等仪器。 d)宜配置便携式录波器、便携式电脑、网络记录分析仪、网络测试仪、模拟断路器、电子式互感器模拟仪、分光器、数字式相位表、数字式万用表、光纤线序查找器。 6.2.1.2仪器仪表要求 仪器仪表要求如下: a)保护装置检验所使用的仪器、仪表应经过检验合格,并应满足GB/T 7261—2016中的规定,定值检验所使用的仪器、仪表的准确级应不低于0.5级。 b)数字化继电保护试验装置:应满足DL/T 1501—2016《数字化继电保护试验装置技术条件》的要求。 c)电子互感器校验仪:提供模拟量输入端口和数字量输入光纤接口,适应输出为模拟量和数字量的电子式互感器;可以接受不同格式的SV报文(GB/T 20840.8—2002、DL/T 860.92);提供时钟输出端口,适应需要外同步的电子互感器;具有准确度测量、额定延时测量、极性测试和SV报文离散性测试功能。 d)网络记录分析仪:能够进行实时抓捕网络报文,对GOOSE、MMS、GB/T 25931—2010、DL/T 860.92报文进行解析,并能根据DL/T 860 9.2报文绘制模拟量波形,且可另存为COMTRADE格式文件。 e)网络测试仪:可以对交换机进行性能测试,同时可以模拟网络背景流量,流量报文格式、大小、发送频率可以手工配置。 f)检验便携式电脑:具有1个及以上的100M/1000M以太网口,应专门用于检验测试。 6.2.2检验测试系统 根据现场情况和试验条件,可以灵活采用以下几种方式进行智能变电站保护装置试验。 图1采用数字化继电保护试验装置进行保护装置的检验,保护设备和数字化继电保护试验装置之间采用光纤点对点连接,通过光纤传送采样值和跳合闸信号。 保护装置 光纤 数字化继电保护试验装置 图1继电保护测试系统1 图2采用数字化继电保护试验装置进行继电保护设备的检验。保护设备通过点对点光纤连接数字化继电保护试验装置和智能终端,智能终端通过电缆连接数字化继电保护试验装置。 |
联系我们
|
微信联系客服
![]() |
关于我们 | 联系我们 | 收费付款 |
服务热线:400-001-5431 | 电话:010-8572 5110 | 传真:010-8581 9515 | Email: bz@bzfyw.com | |
版权所有: 北京悦尔信息技术有限公司 2008-2020 京ICP备17065875号-1 51La |
本页关键词: |
DL/T 995-2016, DL 995-2016, DLT 995-2016, DL/T995-2016, DL/T 995, DL/T995, DL995-2016, DL 995, DL995, DLT995-2016, DLT 995, DLT995 |